Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel, D. Fischer

4. Übung Logik und Spiele

Abgabe: bis Dienstag, den 10.5. um 12:00 Uhr am Lehrstuhl oder in der Vorlesung.

Aufgabe 1

- (a) Sei (\mathbb{N}, s) die Struktur der natürlichen Zahlen mit der Nachfolgefunktion s(x) := x + 1. Geben Sie LFP-Formeln an, welche die Addition, Multiplikation und Exponentiation definieren, d. h. $\varphi_+(x, y, z)$ gilt genau dann, wenn x + y = z usw.
- (b) Geben Sie L_{μ} -Formeln an, welche besagen, dass
 - (i) es einen Pfad gibt, auf dem irgendwann nur noch Zustände aus P vorkommen;
 - (ii) auf allen Pfaden immer wieder ein Zustand aus P vorkommt;
 - (iii) auf allen Pfaden, immer wenn ein Zustand aus P auftaucht, es von diesem Zustand aus einen Pfad zu einem Zustand aus Q gibt.

Aufgabe 2

Eine Gewinnbedingung $W \subseteq V^{\omega}$ heißt präfixunabhängig, wenn $x\alpha \in W \Leftrightarrow \alpha \in W$ für jedes $x \in V^*$ und $\alpha \in V^{\omega}$. Offensichtlich ist jede Paritätsbedingung präfixunabhängig.

(a) Zeigen Sie: Für jedes Spiel \mathcal{G} über der Arena $G = (V, V_0, V_1, E)$ mit einer präfixunabhängigen Gewinnbedingung W ist die Gewinnregion W_0 von Spieler 0 ein Fixpunkt des Operators

$$F_{\psi}: \mathcal{P}(V) \to \mathcal{P}(V): X \mapsto \{v \in V: G, v \models \psi(X)\}$$

für die Formel $\psi(X) := (V_0 \wedge \Diamond X) \vee (V_1 \wedge \Box X) \in L_u$.

(b) Geben Sie notwendige und hinreichende Bedingungen an, so dass auf Paritätsspielen $W_0 = \mathbf{lfp}(F_{\psi})$ bzw. $W_0 = \mathbf{gfp}(F_{\psi})$ gilt.

Aufgabe 3

Betrachten Sie die Spiele (G, V, V_0, V_1, E, Win) , wobei Win eine der folgenden Gewinnbedingungen darstellen soll:

- Reachability (F): Spieler 0 gewinnt eine Partie π , falls $\operatorname{Occ}(\pi) \cap F \neq \emptyset$
- Safety(F): Spieler 0 gewinnt eine Partie π , falls $\mathrm{Occ}(\pi) \subseteq F$
- Büchi(F): Spieler 0 gewinnt eine Partie π , falls $Inf(\pi) \cap F \neq \emptyset$
- co-Büchi(F): Spieler 0 gewinnt eine Partie π , falls $Inf(\pi) \subseteq F$,

wobei $Occ(\pi)$ die Menge aller in π vorkommenden Knoten und $Inf(\pi)$ die Menge aller unendlich oft in π vorkommenden Knoten bezeichnet.

Untersuchen Sie für jede Gewinnbedingung, ob es eine Gewinnstrategie für Spieler σ ist, immer in seiner Gewinnregion W_{σ} zu bleiben.