Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa

6. Übung Logik und Spiele

Abgabe: bis Montag, den 3.6., um 13:30 Uhr im Übungskasten oder in der Vorlesung.

Aufgabe 1

- (a) Geben Sie für die folgende Mengen $X \subseteq \{0,1\}^{\omega}$ jeweils die kleinste Stufe Σ_{α}^{0} bzw. Π_{α}^{0} der Borel-Hierarchie an, die X enthält. Zeigen oder wiederlegen sie jeweils, dass X vollständig für die entsprechende Stufe ist.
 - (i) $X = \{x \in \{0,1\}^{\omega} : x \text{ enthält beliebig lange Infixe } 10^n 1\};$
 - (ii) $X = \{x \in \{0,1\}^{\omega} : x \text{ enthält das Infix } 00, \text{ aber nicht das Infix } 11\};$
 - (iii) $X = \{v(w)^{\omega} : v \in \{0, 1\}^*, w \in \{0, 1\}^+\}.$
- (b) Zeigen Sie, dass jede Stufe Σ^0_{α} bzw. Π^0_{α} der Borel-Hierarchie unter endlicher Vereinigung und endlichem Schnitt abgeschlossen ist.
- (c) Zeigen Sie, dass $\Sigma_{\alpha}^{0} \subseteq \Sigma_{\alpha+1}^{0}$ gilt für alle $\alpha \geq 1$.

Aufgabe 2

Zu einer Sprache $W\subseteq A^*$ von endlichen Wörtern definieren wir die folgende Sprache $\lim W\subseteq A^\omega$ von unendlichen Wörtern:

$$\lim W = \{x \in A^{\omega} : \text{ex. unendlich viele } n \in \mathbb{N} \text{ mit } x_0 \dots x_n \in W\}$$

Zeigen Sie, dass für jedes $L \subseteq A^{\omega}$ gilt: $L \in \Pi_2^0 \iff L = \lim W$ für ein $W \subseteq A^*$.

Aufgabe 3

Eine Funktion $f: B^{\omega} \to C^{\omega}$ ist stetig, wenn $f^{-1}(Z)$ offen ist für jede offene Menge $Z \subseteq C^{\omega}$. Wir sagen $X \subseteq B^{\omega}$ ist Wadge reduzierbar auf $Y \subseteq C^{\omega}$, $X \leq Y$, falls es eine stetige Funktion $f: B^{\omega} \to C^{\omega}$ gibt mit $f^{-1}(Y) = X$.

Beweisen Sie, dass die Relation ≤ folgende Eigenschaften erfüllt:

- (a) $X \leq Y$ und $Y \leq Z$ impliziert $X \leq Z$;
- (b) $X \leq Y$ impliziert $B^{\omega} \setminus X \leq C^{\omega} \setminus Y$.