
Logic and Games
WS 2015/2016

Prof. Dr. Erich Grädel
Notes and Revisions by Matthias Voit

Mathematische Grundlagen der Informatik
RWTH Aachen

cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizenziert unter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2016 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 Reachability Games and First-Order Logic 1
1.1 Model Checking . 1
1.2 Model Checking Games for Modal Logic 2
1.3 Reachability and Safety Games 5
1.4 Games as an Algorithmic Construct: Alternating Algorithms . 10
1.5 Model Checking Games for First-Order Logic 20

2 Parity Games and Fixed-Point Logics 25
2.1 Parity Games . 25
2.2 Algorithms for parity games . 30
2.3 Fixed-Point Logics . 35
2.4 Model Checking Games for Fixed-Point Logics 37
2.5 Defining Winning Regions in Parity Games 42

3 Infinite Games 45
3.1 Determinacy . 45
3.2 Gale-Stewart Games . 47
3.3 Topology . 53
3.4 Determined Games . 59
3.5 Muller Games and Game Reductions 61
3.6 Complexity . 74

4 Basic Concepts of Mathematical Game Theory 79
4.1 Games in Strategic Form . 79
4.2 Nash equilibria . 81
4.3 Two-person zero-sum games . 85
4.4 Regret minimization . 86
4.5 Iterated Elimination of Dominated Strategies 89
4.6 Beliefs and Rationalisability . 95

4.7 Games in Extensive Form . 98
4.8 Subgame-perfect equilibria in infinite games 102

Appendix A 111
4.9 Cardinal Numbers . 119

1 Reachability Games and
First-Order Logic

1.1 Model Checking

One of the fundamental algorithmic tasks in logic is model checking.
For a logic L and a domain D of (finite) structures, the model-checking
problem asks, given a structure A ∈ D and a formula ψ ∈ L, whether
A is a model of ψ. Notice that an instance of the model-checking
problem has two inputs: a structure and a formula. We can measure
the complexity in terms of both inputs, and this is what is commonly
refered to as the combined complexity of the model-checking problem (for
L and D). However, in many cases, one of the two inputs is fixed, and
we measure the complexity only in terms of the other. If we fix the
structure A, then the model-checking problem for L on this structure
amounts to deciding ThL(A) := {ψ ∈ L : A |= ψ}, the L-theory of A.
The complexity of this problem is called the expression complexity of the
model-checking problem (for L on A). For first-order logic (FO) and for
monadic second-order logic (MSO) in particular, such problems have a
long tradition in logic and numerous applications in many fields. Of
great importance in many areas of logic, in particular for finite model
theory or databases, are model-checking problems for a fixed formula
ψ, which amounts to deciding the model class of ψ inside D, that is
ModD(ψ) := {A ∈ D : A |= ψ}. Its complexity is the structure complexity
or data complexity of the model-checking problem (for ψ on D).

One of the important themes in this course is a game-based approach
to model checking. The general idea is to reduce the problem whether
A |= ψ to a strategy problem for a model checking game G(A, ψ) played
by two players called Verifier (or Player 0) and Falsifier (or Player 1). We

1

1 Reachability Games and First-Order Logic

want to have the following relation between these two problems:

A |= ψ iff Verifier has a winning strategy for G(A, ψ).

We can then do model checking by constructing, or proving the existence
of, winning strategies.

To assess the efficiency of games as a solution for model checking
problems, we have to consider the complexity of the resulting model
checking games based on the following criteria:

• Are all plays necessarily finite?

• If not, what are the winning conditions for infinite plays?

• Do the players always have perfect information?

• What is the structural complexity of the game graphs?

• How does the size of the graph depend on different parameters of
the input structure and the formula?

For first-order logic (FO) and modal logic (ML) we have only fi-
nite plays with positional winning conditions, and, as we shall see,
the winning regions are computable in linear time with respect to the
size of the game graph. Model checking games for fixed-point logics
however admit infinite plays, and we use so-called parity conditions to
determine the winner of such plays. It is still an open question whether
winning regions and winning strategies in parity games are computable
in polynomial time.

1.2 Model Checking Games for Modal Logic

The first logic that we discuss is propositional modal logic (ML). Let us
first briefly review its syntax and semantics:

Definition 1.1. Given a set A of actions and a set {Pi : i ∈ I} of atomic
propositions, the set of formulae of ML is inductively defined:

• All atomic propositions Pi are formulae of ML.

• If ψ, φ are formulae of ML, then so are ¬ψ, (ψ ∧ φ) and (ψ ∨ φ).

• If ψ ∈ ML and a ∈ A, then ⟨a⟩ψ ∈ ML and [a]ψ ∈ ML.

2

1.2 Model Checking Games for Modal Logic

Remark 1.2. If there is only one action a ∈ A, we write ♢ψ and □ψ

instead of ⟨a⟩ψ and [a]ψ, respectively.

Definition 1.3. A transition system or Kripke structure with actions from a
set A and atomic properties {Pi : i ∈ I} is a structure

K = (V, (Ea)a∈A, (Pi)i∈I)

with a universe V of states, binary relations Ea ⊆ V × V describing
transitions between the states, and unary relations Pi ⊆ V describing the
atomic properties of states.

A transition system can be seen as a labelled graph where the nodes
are the states of K, the unary relations provide labels of the states, and
the binary transition relations can be pictured as sets of labelled edges.

Definition 1.4. Let K = (V, (Ea)a∈A, (Pi)i∈I) be a transition system,
ψ ∈ ML a formula and v a state of K. The model relationship K, v |= ψ,
i.e., ψ holds at state v of K, is inductively defined:

• K, v |= Pi if and only if v ∈ Pi.

• K, v |= ¬ψ if and only if K, v ̸|= ψ.

• K, v |= ψ ∨ φ if and only if K, v |= ψ or K, v |= φ.

• K, v |= ψ ∧ φ if and only if K, v |= ψ and K, v |= φ.

• K, v |= ⟨a⟩ψ if and only if there exists w such that (v, w) ∈ Ea and
K, w |= ψ.

• K, v |= [a]ψ if and only if K, w |= ψ holds for all w with (v, w) ∈ Ea.

For a transition system K and a formula ψ we define the extension
JψKK := {v : K, v |= ψ} as the set of states of K where ψ holds.

For the game-based approach to model-checking, it is convenient to
assume that modal formulae are written in negation normal form, i.e.
negation is applied to atomic propositions only. This does not reduce
the expressiveness of modal logic since every formula can be efficiently
translated into negation normal form by applying De Morgan’s laws
and the duality of □ and ♢ (i.e. ¬⟨a⟩ψ ≡ [a]¬ψ and ¬[a]ψ ≡ ⟨a⟩¬ψ) to
push negations to the atomic subformulae.

3

1 Reachability Games and First-Order Logic

Syntactically, modal logic is an extension of propositional logic.
However, since ML is evaluated over transition systems, i.e. structures,
it is often useful to see it as a fragment of first-order logic.

Theorem 1.5. For each formula ψ ∈ ML there is a first-order formula
ψ∗(x) (with only two variables), such that for each transition system K
and all its states v we have that K, v |= ψ ⇐⇒ K |= ψ∗(v).

Proof. The transformation is defined inductively, as follows:

Pi 7−→ Pix

¬ψ 7−→ ¬ψ∗(x)

(ψ ◦ φ) 7−→ (ψ∗(x) ◦ φ∗(x)), where ◦ ∈ {∧,∨,→}
⟨a⟩ψ 7−→ ∃y(Eaxy ∧ ψ∗(y))

[a]ψ 7−→ ∀y(Eaxy → ψ∗(y))

where ψ∗(y) is obtained from ψ∗(x) by interchanging x and y every-
where in the formula. q.e.d.

We are now ready to describe the model checking games for ML.
Given a transition system K and a formula ψ ∈ ML, we define a game
G(K, ψ) whose positions are pairs (φ, v) where φ is a subformula of
ψ and v ∈ V is a node of K. From any position (φ, v) in this game,
Verifier’s goal is to show that K, v |= φ, whereas Falsifier tries to establish
that K, v ̸|= φ.

In the game, Verifier moves at positions of the form (φ ∨ ϑ, v), with
the choice to move either to (φ, v) or to (ϑ, v), and at positions (⟨a⟩φ, v),
where she can move to any position (φ, w) with w ∈ vEa. Analogously,
Falsifier moves from positions (φ ∧ ϑ, v) to either (φ, v) or (ϑ, v), and
from ([a]φ, v) to any position (φ, w) with w ∈ vEa. Finally, at literals,
i.e. if φ = Pi or φ = ¬Pi, the position (φ, v) is a terminal position where
Verifier has won if K, v |= φ, and Falsifier has won if K, v ̸|= φ.

The correctness of the construction of G(K, ψ) follows readily by
induction.

Proposition 1.6. For any position (φ, v) of G(K, ψ) we have that

K, v |= φ ⇔ Verifier has a winning strategy for G(K, ψ) from (φ, v).

4

1.3 Reachability and Safety Games

1.3 Reachability and Safety Games

The model-checking games for propositional modal logic, that we have
just discussed, are an instance of reachability games played on graphs or,
more precisely, two-player games with perfect information and positional
winning conditions, played on a game graph (or arena)

G = (V, V0, V1, E)

where the set V of positions is partitioned into sets of positions V0 and
V1 belonging to Player 0 and Player 1, respectively. Player 0 moves from
positions v ∈ V0, while Player 1 moves from positions v ∈ V1. All moves
are along edges, and so the interaction of the players, starting from an
initial position v0, produces a finite or infinite play which is a sequence
v0v1v2 . . . with (vi, vi+1) ∈ E for all i.

The winning conditions of the players are based on a simple posi-
tional principle: Move or lose! This means that Player σ has won at a
position v in the case that position v belongs to his opponent and there
are no moves available from that position. Thus the goal of Player σ is to
reach a position in Tσ := {v ∈ V1−σ : vE = ∅}. We call this a reachability
condition.

But note that this winning condition applies to finite plays only.
If the game graph admits infinite plays (for instance cycles) then we
must either consider these as draws, or introduce a winning condition
for infinite plays. The dual notion of a reachability condition is a safety
condition where Player σ just has the objective to avoid a given set of
‘bad’ positions, which in this case is the set T1−σ, and to remain inside
the safe region V \ T1−σ.

A (positional) strategy for Player σ in such a game G is a (partial)
function f : {v ∈ Vσ : vE ̸= ∅} → V such that (v, f (v)) ∈ E. A finite or
infinite play v0v1v2 . . . is consistent with f if vi+1 = f (vi) for every i such
that vi ∈ Vσ. A strategy f for Player σ is winning from v0 if every play
that starts at initial position v0 and that is consistent with f is won by
Player σ.

We first consider reachability games where both players play with the

5

1 Reachability Games and First-Order Logic

reachability objective to force the play to a position in Tσ. We define
winning regions

Wσ := {v ∈ V : Player σ has a winning strategy from position v}.

If W0 ∪ W1 = V, i.e. for each v ∈ V one of the players has a winning
strategy, the game G is called determined. A play which is not won by
any of the players is considered a draw.

Example 1.7. No player can win from one of the middle two nodes:

□ □

The winning regions of a reachability game G = (V, V0, V1, E) can
be constructed inductively as follows:

W0
σ = Tσ and

W i+1
σ = W i

σ ∪ {v ∈ Vσ : vE ∩ W i
σ ̸= ∅} ∪ {v ∈ V1−σ : vE ⊆ W i

σ}.

Clearly W i
σ is the region of those positions from which Player σ has a

strategy to win in at most i moves, and for finite game graphs, with
|V| = n, we have that Wσ = Wn

σ .

Next we consider the case of a reachability-safety game, where Player
0, as above, plays with the reachability objective to force the play to a
terminal position in T0, whereas player 1 plays with the safety objective
of avoiding T0, i.e. to keep the play inside the safe region S1 := V \ T0.
Notice that there are no draws in such a game.

The winning region W0 of Player 0 can be defined as in the case
above, but the winning region W1 of Player 1 is now the maximal set
W ⊆ S1 such that from all w ∈ W Player 1 has a strategy to remain
inside W, which can be defined as the limit of the descending chain
W0

1 ⊇ W1
1 ⊇ W2

1 ⊇ . . . with

W0
1 = S1 and

W i+1
1 = W i

1 ∩ {v ∈ V : (v ∈ V0 and vE ⊆ W i
1) or

(v ∈ V1 and vE ∩ W i
1 ̸= ∅)}.

6

1.3 Reachability and Safety Games

Again on finite game graphs, with |V| = n, we have that W1 = Wn
σ .

This leads us to two fundamental concepts for the analysis of games
on graphs: attractors and traps. Let G = (V, V0, V1, E) be a game graph
and X ⊆ V.

Definition 1.8. The attractor of X for Player σ, in short Attrσ(X) is the set
of those positions from which Player σ has a strategy to reach X (or to
win because the opponent cannot move anymore). We can inductively
define Attrσ(X) :=

⋃
n∈N Xn, where

X0 = X and

Xi+1 = Xi ∪ {v ∈ Vσ : vE ∩ Xi ̸= ∅} ∪ {v ∈ V1−σ : vE ⊆ Xi}.

For instance, the winning region Wσ in a reachability game is the
attractor of the winning positions: Wσ = Attrσ(Tσ).

A set Y ⊆ V \ T1−σ =: Sσ is called a trap for Player 1 − σ if Player σ

has a strategy to guarantee that from each v ∈ Y the play will remain
inside Y. Note that the complement of an attractor Attrσ(X) is a trap
for player σ. The maximal trap Y of Player 1 − σ can be defined as
Y =

⋂
n∈N Yn, where

Y0 =Sσ and

Yi+1 =Yi ∩ {v : (v ∈ Vσ and vE ∩ Yi ̸= ∅) or

(v ∈ V1−σ and vE ⊆ Yi)}.

The winning region of a Player σ with the safety objective for Sσ is
the maximal trap for player 1 − σ.

We consider several algorithmic problems for a given reachability
game G: The computation of winning regions W0 and W1, the computa-
tion of winning strategies, and the associated decision problem

Game := {(G, v) : Player 0 has a winning strategy for G from v}.

Theorem 1.9. Game is P-complete and decidable in time O(|V|+ |E|).

Note that this remains true for strictly alternating games.

7

1 Reachability Games and First-Order Logic

Algorithm 1.1. A linear time algorithm for Game

Input: A game G = (V, V0, V1, E)
output: Winning regions W0 and W1

for all v ∈ V do (∗ 1: Initialisation ∗)
win[v] := ⊥
P[v] := {u : (u, v) ∈ E}
n[v] := |vE|

end do

for all v ∈ V0 (∗ 2: Calculate win ∗)
if n[v] = 0 then Propagate(v, 1)

for all v ∈ V1
if n[v] = 0 then Propagate(v, 0)

return win

procedure Propagate(v, σ)
if win[v] ̸= ⊥ then return
win[v] := σ (∗ 3: Mark v as winning for player σ ∗)
for all u ∈ P[v] do (∗ 4: Propagate change to predecessors ∗)

n[u] := n[u]− 1
if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)

end do
end

8

1.3 Reachability and Safety Games

The inductive definition of an attractor shows that winning regions
for both players can be computed efficiently. Hence we can also solve
Game in polynomial time. To solve Game in linear time, we use the
slightly more involved Algorithm 1.1. Procedure Propagate will be
called once for every edge in the game graph, so the running time of
this algorithm is linear with respect to the number of edges in G.

Furthermore, we can show that the decision problem Game is equiv-
alent to the satisfiability problem for propositional Horn formulae. We
recall that propositional Horn formulae are finite conjunctions

∧
i∈I Ci of

clauses Ci of the form

X1 ∧ . . . ∧ Xn → X or

X1 ∧ . . . ∧ Xn︸ ︷︷ ︸
body(Ci)

→ 0︸︷︷︸
head(Ci)

.

A clause of the form X or 1 → X has an empty body.
We will show that Sat-Horn and Game are mutually reducible via

logspace and linear-time reductions.

(1) Game ≤log-lin Sat-Horn
For a game G = (V, V0, V1, E), we construct a Horn formula ψG with
clauses

v → u for all u ∈ V0 and (u, v) ∈ E, and

v1 ∧ . . . ∧ vm → u for all u ∈ V1 and uE = {v1, . . . , vm}.

The minimal model of ψG is precisely the winning region of Player 0,
so

(G, v) ∈ Game ⇐⇒ ψG ∧ (v → 0) is unsatisfiable.

(2) Sat-Horn ≤log-lin Game
For a Horn formula ψ(X1, . . . , Xn) =

∧
i∈I Ci, we define a game

Gψ = (V, V0, V1, E) as follows:

V = {0} ∪ {X1, . . . , Xn}︸ ︷︷ ︸
V0

∪ {Ci : i ∈ I}︸ ︷︷ ︸
V1

and

9

1 Reachability Games and First-Order Logic

E = {X → Ci : X = head(Ci)} ∪ {Ci → Xj : Xj ∈ body(Ci)},

i.e., Player 0 moves from a variable to some clause containing the
variable as its head, and Player 1 moves from a clause to some
variable in its body. Player 0 wins a play if, and only if, the play
reaches a clause C with body(C) = ∅. Furthermore, Player 0 has a
winning strategy from position X if, and only if, ψ |= X, so we have

Player 0 wins from position 0 ⇐⇒ ψ is unsatisfiable.

These reductions show that Sat-Horn is also P-complete and, in
particular, also decidable in linear time.

1.4 Games as an Algorithmic Construct: Alternating
Algorithms

Alternating algorithms are algorithms whose set of configurations is
divided into accepting, rejecting, existential and universal configurations.
The acceptance condition of an alternating algorithm A is defined by a
game played by two players ∃ and ∀ on the computation graph G(A, x)
(or equivalently, the computation tree T (A, x)) of A on input x. The
positions in this game are the configurations of A, and we allow moves
C → C′ from a configuration C to any of its successor configurations
C′. Player ∃ moves at existential configurations and wins at accepting
configurations, while Player ∀ moves at universal configurations and
wins at rejecting configurations. By definition, A accepts some input x if
and only if Player ∃ has a winning strategy for the game played on TA,x.

We will introduce the concept of alternating algorithms formally,
using the model of a Turing machine, and we prove certain relation-
ships between the resulting alternating complexity classes and usual
deterministic complexity classes.

1.4.1 Turing Machines

The notion of an alternating Turing machine extends the usual model of
a (deterministic) Turing machine which we introduce first. We consider

10

1.4 Games as an Algorithmic Construct: Alternating Algorithms

Turing machines with a separate input tape and multiple linear work
tapes which are divided into basic units, called cells or fields. Informally,
the Turing machine has a reading head on the input tape and a com-
bined reading and writing head on each of its work tapes. Each of the
heads is at one particular cell of the corresponding tape during each
point of a computation. Moreover, the Turing machine is in a certain
state. Depending on this state and the symbols the machine is currently
reading on the input and work tapes, it manipulates the current fields of
the work tapes, moves its heads and changes to a new state.

Formally, a (deterministic) Turing machine with separate input tape and
k linear work tapes is given by a tuple M = (Q, Γ, Σ, q0, Facc, Frej, δ), where
Q is a finite set of states, Σ is the work alphabet containing a designated
symbol � (blank), Γ is the input alphabet, q0 ∈ Q is the initial state,
F := Facc ∪ Frej ⊆ Q is the set of final states (with Facc the accepting states,
Frej the rejecting states and Facc ∩ Frej = ∅), and δ : (Q \ F)× Γ × Σk →
Q × {−1, 0, 1} × Σk × {−1, 0, 1}k is the transition function.

A configuration of M is a complete description of all relevant facts
about the machine at some point during a computation, so it is a tuple
C = (q, w1, . . . , wk, x, p0, p1, . . . , pk) ∈ Q × (Σ∗)k × Γ∗ × Nk+1 where q
is the current state, wi is the contents of work tape number i, x is the
contents of the input tape, p0 is the position on the input tape and pi is
the position on work tape number i. The contents of each of the tapes
is represented as a finite word over the corresponding alphabet[, i.e., a
finite sequence of symbols from the alphabet]. The contents of each of
the fields with numbers j > |wi| on work tape number i is the blank
symbol (we think of the tape as being infinite). A configuration where x
is omitted is called a partial configuration. The configuration C is called
final if q ∈ F. It is called accepting if q ∈ Facc and rejecting if q ∈ Frej.

The successor configuration of C is determined by the current state and
the k + 1 symbols on the current cells of the tapes, using the transition
function: If δ(q, xp0 , (w1)p1 , . . . , (wk)pk) = (q′, m0, a1, . . . , ak, m1, . . . , mk, b),
then the successor configuration of C is ∆(C) = (q′, w′, p′, x), where for
any i, w′

i is obtained from wi by replacing symbol number pi by ai and
p′i = pi + mi. We write C ⊢M C′ if, and only if, C′ = ∆(C).

The initial configuration C0(x) = C0(M, x) of M on input x ∈ Γ∗ is

11

1 Reachability Games and First-Order Logic

given by the initial state q0, the blank-padded memory, i.e., wi = ε and
pi = 0 for any i ≥ 1, p0 = 0, and the contents x on the input tape.

A computation of M on input x is a sequence C0, C1, . . . of configu-
rations of M, such that C0 = C0(x) and Ci ⊢M Ci+1 for all i ≥ 0. The
computation is called complete if it is infinite or ends in some final con-
figuration. A complete finite computation is called accepting if the last
configuration is accepting, and the computation is called rejecting if the
last configuration is rejecting. M accepts input x if the (unique) complete
computation of M on x is finite and accepting. M rejects input x if the
(unique) complete computation of M on x is finite and rejecting. The
machine M decides a language L ⊆ Γ∗ if M accepts all x ∈ L and rejects
all x ∈ Γ∗ \ L.

1.4.2 Alternating Turing Machines

Now we shall extend deterministic Turing machines to nondeterministic
Turing machines from which the concept of alternating Turing machines
is obtained in a very natural way, given our game theoretical framework.

A nondeterministic Turing machine is nondeterministic in the sense
that a given configuration C may have several possible successor config-
urations instead of at most one. Intuitively, this can be described as the
ability to guess. This is formalised by replacing the transition function
δ : (Q \ F)× Γ × Σk → Q × {−1, 0, 1} × Σk × {−1, 0, 1}k by a transition
relation ∆ ⊆ ((Q \ F) × Γ × Σk) × (Q × {−1, 0, 1} × Σk × {−1, 0, 1}k).
The notion of successor configurations is defined as in the deterministic
case, except that the successor configuration of a configuration C may
not be uniquely determined. Computations and all related notions carry
over from deterministic machines in the obvious way. However, on
a fixed input x, a nondeterministic machine now has several possible
computations, which form a (possibly infinite) finitely branching compu-
tation tree TM,x. A nondeterministic Turing machine M accepts an input
x if there exists a computation of M on x which is accepting, i.e., if there
exists a path from the root C0(x) of TM,x to some accepting configuration.
The language of M is L(M) = {x ∈ Γ∗ | M accepts x}. Notice that for
a nondeterministic machine M to decide a language L ⊆ Γ∗ it is not

12

1.4 Games as an Algorithmic Construct: Alternating Algorithms

necessary that all computations of M are finite. (In a sense, we count
infinite computations as rejecting.)

From a game-theoretical perspective, the computation of a nondeter-
ministic machine can be viewed as a solitaire game on the computation
tree in which the only player (the machine) chooses a path through the
tree starting from the initial configuration. The player wins the game
(and hence, the machine accepts its input) if the chosen path finally
reaches an accepting configuration.

An obvious generalisation of this game is to turn it into a two-player
game by assigning the nodes to the two players who are called ∃ and
∀, following the intuition that Player ∃ tries to show the existence of a
good path, whereas Player ∀ tries to show that all selected paths are bad.
As before, Player ∃ wins a play of the resulting game if, and only if, the
play is finite and ends in an accepting leaf of the game tree. Hence, we
call a computation tree accepting if, and only if, Player ∃ has a winning
strategy for this game.

It is important to note that the partition of the nodes in the tree
should not depend on the input x but is supposed to be inherent to
the machine. Actually, it is even independent of the contents of the
work tapes, and thus, whether a configuration belongs to Player ∃ or to
Player ∀ merely depends on the current state.

Formally, an alternating Turing machine is a nondeterministic Turing
machine M = (Q, Γ, Σ, q0, Facc, Frej, ∆) whose set of states Q = Q∃ ∪ Q∀ ∪
Facc ∪ Frej is partitioned into existential, universal, accepting, and rejecting
states. The semantics of these machines is given by means of the game
described above.

Now, if we let accepting configurations belong to player ∀ and
rejecting configurations belong to player ∃, then we have the usual
winning condition that a player loses if it is his turn but he cannot move.
We can solve such games by determining the winner at leaf nodes and
propagating the winner successively to parent nodes. If at some node,
the winner at all of its child nodes is determined, the winner at this
node can be determined as well. This method is sometimes referred
to as backwards induction and it basically coincides with our method
for solving Game on trees (with possibly infinite plays). This gives the

13

1 Reachability Games and First-Order Logic

following equivalent semantics of alternating Turing machines:
The subtree TC of the computation tree of M on x with root C is

called accepting, if

• C is accepting
• C is existential and there is a successor configuration C′ of C such

that TC′ is accepting or
• C is universal and TC′ is accepting for all successor configurations

C′ of C.

M accepts an input x, if TC0(x) = TM,x is accepting.
For functions T, S : N → N, an alternating Turing machine M is

called T-time bounded if, and only if, for any input x, each computation
of M on x has length less or equal T(|x|). The machine is called S-
space bounded if, and only if, for any input x, during any computation
of M on x, at most S(|x|) cells of the work tapes are used. Notice
that time boundedness implies finiteness of all computations which is
not the case for space boundedness. The same definitions apply for
deterministic and nondeterministic Turing machines as well since these
are just special cases of alternating Turing machines. These notions
of resource bounds induce the complexity classes Atime containing
precisely those languages L such that there is an alternating T-time
bounded Turing machine deciding L and Aspace containing precisely
those languages L such that there is an alternating S-space bounded
Turing machine deciding L. Similarly, these classes can be defined for
nondeterministic and deterministic Turing machines.

We are especially interested in the following alternating complexity
classes:

• ALogspace =
⋃

d∈N Aspace(d · log n),
• APtime =

⋃
d∈N Atime(nd),

• APspace =
⋃

d∈N Aspace(nd).

Observe that Game ∈ Alogspace. An alternating algorithm which
decides Game with logarithmic space just plays the game. The algorithm
only has to store the current position in memory, and this can be done
with logarithmic space. We shall now consider a slightly more involved
example.

14

1.4 Games as an Algorithmic Construct: Alternating Algorithms

Example 1.10. QBF ∈ Atime(O(n)). W.l.o.g we assume that negation
appears only at literals. We describe an alternating procedure Eval(φ, I)
which computes, given a quantified Boolean formula ψ and a valuation
I : free(ψ) → {0, 1} of the free variables of ψ, the value JψKI .

Algorithm 1.2. Alternating algorithm deciding QBF.

Input: (ψ, I) where ψ ∈ QAL and I : free(ψ) → {0, 1}
if ψ = Y then

if I(Y) = 1 then accept
else reject

if ψ = φ1 ∨ φ2 then „∃“ guesses i ∈ {1, 2} , Eval(φi, I)
if ψ = φ1 ∧ φ2 then „∀“ chooses i ∈ {1, 2} , Eval(φi, I)
if ψ = ∃Xφ then „∃“ guesses j ∈ {0, 1} , Eval(φ, I [X = j])
if ψ = ∀Xφ then „∀“ chooses j ∈ {0, 1} , Eval(φ, I [X = j])

1.4.3 Alternating versus Deterministic Complexity Classes

The main results we want to establish in this section concern the re-
lationship between alternating complexity classes and deterministic
complexity classes. We will see that alternating time corresponds to
deterministic space, while by translating deterministic time into alternat-
ing space, we can reduce the complexity by one exponential. Here, we
consider the special case of alternating polynomial time and polynomial
space. We should mention, however, that these results can be generalised
to arbitrary large complexity bounds which are well behaved in a certain
sense.

Lemma 1.11. NPspace ⊆ APtime.

Proof. Let L ∈ NPspace and let M be a nondeterministic nl-space
bounded Turing machine which recognises L for some l ∈ N. The
machine M accepts some input x if, and only if, some accepting config-
uration is reachable from the initial configuration C0(x) in the config-
uration tree of M on x in at most k := 2cnl

steps for some c ∈ N. This
is due to the fact that there are most k different configurations of M on
input x which use at most nl cells of the memory which can be seen

15

1 Reachability Games and First-Order Logic

using a simple combinatorial argument. So if there is some accepting
configuration reachable from the initial configuration C0(x), then there
is some accepting configuration reachable from C0(x) in at most k steps.
This is equivalent to the existence of some intermediate configuration C′

that is reachable from C0(x) in at most k/2 steps and from which some
accepting configuration is reachable in at most k/2 steps.

So the alternating algorithm deciding L proceeds as follows. The ex-
istential player guesses such a configuration C′ and the universal player
chooses whether to check that C′ is reachable from C0(x) in at most k/2

steps or whether to check that some accepting configuration is reachable
from C′ in at most k/2 steps. Then the algorithm (or equivalently, the
game) proceeds with the subproblem chosen by the universal player, and
continues in this binary search like fashion. Obviously, the number of
steps which have to be performed by this procedure to decide whether
x is accepted by M is logarithmic in k. Since k is exponential in nl, the
time bound of M is dnl for some d ∈ N, so M decides L in polynomial
time. q.e.d.

Lemma 1.12. APtime ⊆ Pspace.

Proof. Let L ∈ APtime and let A be an alternating nl-time bounded
Turing machine that decides L for some l ∈ N. Then there is some
r ∈ N such that any configuration of A on any input x has at most r
successor configurations and w.l.o.g. we can assume that any non-final
configuration has precisely r successor configurations. We can think of
the successor configurations of some non-final configuration C as being
enumerated as C1, . . . , Cr. Clearly, for given C and i we can compute Ci.
The idea for a deterministic Turing machine M to check whether some
input x is in L is to perform a depth-first search on the computation tree
TA,x of A on x. The crucial point is that we cannot construct and keep
the whole configuration tree TA,x in memory since its size is exponential
in |x| which exceeds our desired space bound. However, since the length
of each computation is polynomially bounded, it is possible to keep
a single computation path in memory and to construct the successor
configurations of the configuration under consideration on the fly.

Roughly, the procedure M can be described as follows. We start
with the initial configuration C0(x). Given any configuration C under

16

1.4 Games as an Algorithmic Construct: Alternating Algorithms

consideration, we propagate 0 to the predecessor configuration if C is
rejecting and we propagate 1 to the predecessor configuration if C is
accepting. If C is neither accepting nor rejecting, then we construct,
for i = 1, . . . , r the successor configuration Ci of C and proceed with
checking Ci. If C is existential, then as soon as we receive 1 for some i,
we propagate 1 to the predecessor. If we encounter 0 for all i, then we
propagate 0. Analogously, if C is universal, then as soon as we receive
a 0 for some i, we propagate 0. If we receive only 1 for all i, then we
propagate 1. Then x is in L if, and only if, we finally receive 1 at C0(x).
Now, at any point during such a computation we have to store at most
one complete computation of A on x. Since A is nl-time bounded, each
such computation has length at most nl and each configuration has size
at most c · nl for some c ∈ N. So M needs at most c · n2l memory cells
which is polynomial in n. q.e.d.

So we obtain the following result.

Theorem 1.13. (Parallel time complexity = sequential space complexity)

(1) APtime = Pspace.
(2) AExptime = Expspace.

Proposition (2) of this theorem is proved exactly the same way as
we have done it for proposition (1). Now we prove that by translating
sequential time into alternating space, we can reduce the complexity by
one exponential.

Lemma 1.14. Exptime ⊆ APspace

Proof. Let L ∈ Exptime. Using a standard argument from complexity
theory, there is a deterministic Turing machine M = (Q, Σ, q0, δ) with
time bound m := 2c·nk

for some c, k ∈ N with only a single tape (serving
as both input and work tape) which decides L. (The time bound of
the machine with only a single tape is quadratic in that of the original
machine with k work tapes and a separate input tape, which, however,
does not matter in the case of an exponential time bound.) Now if
Γ = Σ ⊎ (Q × Σ) ⊎ {#}, then we can describe each configuration C of M
by a word

17

1 Reachability Games and First-Order Logic

C = #w0 . . . wi−1(qwi)wi+1 . . . wt# ∈ Γ∗.

Since M has time bound m and only one single tape, it has space bound
m. So, w.l.o.g., we can assume that |C| = m+ 2 for all configurations C of
M on inputs of length n. (We just use a representation of the tape which
has a priori the maximum length that will occur during a computation
on an input of length n.) Now the crucial point in the argumentation is
the following. If C ⊢ C′ and 1 ≤ i ≤ m, symbol number i of the word
C′ only depends on the symbols number i − 1, i and i + 1 of C. This
allows us to decide whether x ∈ L(M) with the following alternating
procedure which uses only polynomial space.

Player ∃ guesses some number s ≤ m of steps of which he claims
that it is precisely the length of the computation of M on input x.
Furthermore, ∃ guesses some state q ∈ Facc, a Symbol a ∈ Σ and
a number i ∈ {0, . . . , s}, and he claims that the i-th symbol of the
configuration C of M after the computation on x is (qa). (So players
start inspecting the computation of M on x from the final configuration.)
If M accepts input x, then obviously player ∃ has a possibility to choose
all these objects such that his claims can be validated. Player ∀ wants to
disprove the claims of ∃. Now, player ∃ guesses symbols a−1, a0, a1 ∈ Γ
of which he claims that these are the symbols number i − 1, i and i + 1
of the predecessor configuration of the final configuration C. Now,
∀ can choose any of these symbols and demand that ∃ validates his
claim for this particular symbol. This symbol is now the symbol under
consideration, while i is updated according to the movement of the
(unique) head of M. Now, these actions of the players take place for
each of the s computation steps of M on x. After s such steps, we check
whether the current symbol and the current position are consistent with
the initial configuration C0(x). The only information that has to be
stored in the memory is the position i on the tape, the number s which
∃ has initially guessed and the current number of steps. Therefore, the
algorithm uses space at most O(log(m)) = O(nk) which is polynomial in
n. Moreover, if M accepts input x then obviously player ∃ has a winning
strategy for the computation game. If, conversely, M rejects input x, then
the combination of all claims of player ∃ cannot be consistent and player

18

1.4 Games as an Algorithmic Construct: Alternating Algorithms

∀ has a strategy to spoil any (cheating) strategy of player ∃ by choosing
the appropriate symbol at the appropriate computation step. q.e.d.

Finally, we make the simple observation that it is not possible
to gain more than one exponential when translating from sequential
time to alternating space. (Notice that Exptime is a proper subclass of
2Exptime.)

Lemma 1.15. APspace ⊆ Exptime

Proof. Let L ∈ APspace, and let A be an alternating nk-space bounded
Turing machine which decides L for some k ∈ N. Moreover, for an input
x of A, let Conf(A, x) be the set of all configurations of A on input x. Due
to the polynomial space bound of A, this set is finite and its size is at most
exponential in |x|. So we can construct the graph G = (Conf(A, x),⊢)
in time exponential in |x|. Moreover, a configuration C is reachable from
C0(x) in TA,x if and only if C is reachable from C0(x) in G. So to check
whether A accepts input x we simply decide whether player ∃ has a
winning strategy for the game played on G from C0(x). This can be
done in time linear in the size of G, so altogether we can decide whether
x ∈ L(A) in time exponential in |x|. q.e.d.

Theorem 1.16. (Translating sequential time into alternating space)

(1) ALogspace = P.

(2) APspace = Exptime.

Proposition (1) of this theorem is proved using exactly the same
arguments as we have used for proving proposition (2). An overview
over the relationship between deterministic and alternating complexity
classes is given in Figure 1.1.

Logspace ⊆ Ptime ⊆ Pspace ⊆ Exptime ⊆ Expspace
|| || || ||

ALogspace ⊆ APtime ⊆ APspace ⊆ AExptime

Figure 1.1. Relation between deterministic and alternating complexity classes

19

1 Reachability Games and First-Order Logic

1.5 Model Checking Games for First-Order Logic

Let us first recall the syntax of FO formulae on relational structures.
We have that Ri(x̄), ¬Ri(x̄), x = y and x ̸= y are well-formed valid FO
formulae, and inductively for FO formulae φ and ψ, we have that φ ∨ ψ,
φ ∧ ψ, ∃xφ and ∀xφ are well-formed FO formulae. This way, we allow
only formulae in negation normal form where negations occur only at
atomic subformulae and all junctions except ∨ and ∧ are eliminated.
These constraints do not limit the expressiveness of the logic, but the
resulting games are easier to handle.

For a structure A = (A, R1, . . . , Rm) with Ri ⊆ Ari , we define the
evaluation game G(A, ψ) as follows:

We have positions φ(ā) for every subformula φ(x̄) of ψ and every
ā ∈ Ak.

At a position φ ∨ ϑ, Verifier can choose to move either to φ or to
ϑ, while at positions ∃xφ(x, b̄), he can choose an instantiation a ∈ A of
x and move to φ(a, b̄). Analogously, Falsifier can move from positions
φ ∧ ϑ to either φ or ϑ and from positions ∀xφ(x, b̄) to φ(a, b̄) for an
a ∈ A.

The winning condition is evaluated at positions with atomic or
negated atomic formulae φ, and we define that Verifier wins at φ(ā) if,
and only if, A |= φ(ā), and Falsifier wins if, and only if, A ̸|= φ(ā).

In order to determine the complexity of FO model checking, we
have to consider the process of determining whether A |= ψ. To decide
this question, we have to construct the game G(A, ψ) and check whether
Verifier has a winning strategy from position ψ. The size of the game
graph is bound by |G(A, ψ)| ≤ |ψ| · |A|width(ψ), where width(ψ) is the
maximal number of free variables in the subformulae of ψ. So the game
graph can be exponential, and therefore we can get only exponential time
complexity for Game. In particular, we have the following complexities
for the general case:

• alternating time: O(|ψ|+ qd(ψ) log |A|)
where qd(ψ) is the quantifier-depth of ψ,

• alternating space: O(width(ψ) · log |A|+ log |ψ|),
• deterministic time: O(|ψ| · |A|width(ψ)) and

20

1.5 Model Checking Games for First-Order Logic

• deterministic space: O(|ψ|+ qd(ψ) log |A|).

Efficient implementations of model checking algorithms will con-
struct the game graph on the fly while solving the game.

We obtain that the structural complexity of FO model checking
is ALogtime, and both the expression complexity and the combined
complexity are PSpace.

Fragments of FO with Efficient Model Checking
We have seen that the size of the model checking games for first-

order fomulae is exponential with respect to the width of the formulae,
so we do not obtain polynomial-time model-checking algorithms in the
general case. We now consider appropriate restrictions of FO, that lead
to fragments with small model-checking games and thus to efficient
game-based model-checking algorithms.

The k-variable fragment of FO is

FOk := {ψ ∈ FO : width(ψ) ≤ k}.

Clearly |G(A, ψ)| ≤ |ψ| · |A|k for any finite structure A and any
ψ ∈ FOk.

Theorem 1.17. ModCheck(FOk) is solvable in time O(|ψ| · |A|k) and
P-complete, for every k ≥ 2.

As shown in Theorem 1.5, modal logic can be embedded (efficiently)
into FO2. Hence, also ML model checking has polynomial time complex-
ity.

It is a general observation that modal logics have many convenient
model-theoretic and algorithmic properties. Besides efficient model-
checking the following facts are important in many applications of
modal logic.

• The satisfiability problem for ML is decidable (in PSpace),

• ML has the finite model property: each satisfiable formula has a
finite model,

• ML has the tree model property: each satisfiable formula has a
tree-shaped model,

21

1 Reachability Games and First-Order Logic

• algorihmic problems for ML can be solved by automata-based meth-
ods.

The embedding of ML into FO2 has sometimes been proposed as
an explanation for the good properties of modal logic, since FO2 is a
first-order fragment that shares some of these properties. However, more
recently, it has been seen that this explanation has its limitations and is
not really convincing. In particular, there are many extensions of ML
to temporal and dynamic logics such as LTL, CTL, CTL∗, PDL and the
µ-calculus Lµ that are of great importance for applications in computer
science, and that preserve many of the good algorithmic properties of
ML. Especially the associated satisfiability problems remain decidable.
However this is not at all true for the corresponding extension of FO2.

A better and more recent explanation for the good properties of
modal logic is that modal operators correspond to a restricted form of
quantification, namely guarded quantification. Indeed, in the embedding
of ML into FO2, all quantifiers are guarded by atomic formulae. This can
be vastly generalised beyond two-variable logic and involving formulae
of arbitrary relational vocabularies, leading to the guarded fragment of
FO.

Definition 1.18. The guarded fragment of first-order logic GF is the frag-
ment of first-order logic which allows only guarded quantification

∃ȳ(α(x̄, ȳ) ∧ φ(x̄, ȳ)) and ∀ȳ(α(x̄, ȳ) → φ(x̄, ȳ)),

where the guards α are atomic formulae containing all free variables of φ.

GF is a generalisation of modal logics: ML ⊆ GF ⊆ FO. Indeed, the
modal operators ♢ and □ can be expressed as

⟨a⟩φ ≡ ∃y(Eaxy ∧ φ(y)) and [a]φ ≡ ∀y(Eaxy → φ(y)).

It has turned out that the guarded fragment preserves (and explains
to some extent) essentially all of the good model-theoretic and algorith-
mic properties of modal logics, in a far more expressive setting. In terms
of model-checking games, we can observe that guarded logics have small

22

1.5 Model Checking Games for First-Order Logic

model checking games of size ∥G(A, ψ)∥ = O(|ψ| · ∥A∥), and so there
exist efficient game-based model-checking algorithms for them.

23

