
Logic and Games
WS 2015/2016

Prof. Dr. Erich Grädel
Notes and Revisions by Matthias Voit

Mathematische Grundlagen der Informatik
RWTH Aachen



cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizenziert unter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2016 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 Reachability Games and First-Order Logic 1
1.1 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Model Checking Games for Modal Logic . . . . . . . . . . . . . 2
1.3 Reachability and Safety Games . . . . . . . . . . . . . . . . . . . 5
1.4 Games as an Algorithmic Construct: Alternating Algorithms . 10
1.5 Model Checking Games for First-Order Logic . . . . . . . . . . 20

2 Parity Games and Fixed-Point Logics 25
2.1 Parity Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Algorithms for parity games . . . . . . . . . . . . . . . . . . . . 30
2.3 Fixed-Point Logics . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Model Checking Games for Fixed-Point Logics . . . . . . . . . 37
2.5 Defining Winning Regions in Parity Games . . . . . . . . . . . 42

3 Infinite Games 45
3.1 Determinacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Gale-Stewart Games . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Determined Games . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Muller Games and Game Reductions . . . . . . . . . . . . . . . 61
3.6 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Basic Concepts of Mathematical Game Theory 79
4.1 Games in Strategic Form . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Nash equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Two-person zero-sum games . . . . . . . . . . . . . . . . . . . . 85
4.4 Regret minimization . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Iterated Elimination of Dominated Strategies . . . . . . . . . . . 89
4.6 Beliefs and Rationalisability . . . . . . . . . . . . . . . . . . . . . 95



4.7 Games in Extensive Form . . . . . . . . . . . . . . . . . . . . . . 98
4.8 Subgame-perfect equilibria in infinite games . . . . . . . . . . . 102

Appendix A 111
4.9 Cardinal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3 Infinite Games

After our treatment of reachability (and safety) games in the first, and
parity games in the second chapter, we now discuss infinite games in
more general setting. More precisely, the games that we study are two-
player, zero-sum games of perfect information, played on game graphs and
admitting infinite plays.

Formally, a graph game is a pair G = (G, Win) where G =

(V, V0, V1, E, Ω) is a directed graph with V = V0 ·∪ V1 and Ω : V → C for
a set C of colours (or priorities) and a set Win ⊆ Cω of infinite sequences
of colours. We call G the arena of G and Win the winning condition of G.

As before a play of G is a finite or infinite sequence π = v0v1v2 . . . ∈
V≤ω such that (vi, vi+1) ∈ E for all i. A finite play is lost by the player
who cannot move any more, and an infinite play π is won by Player 0
if Ω(π) = Ω(v0)Ω(v1) . . . ∈ Win, otherwise Player 1 wins (there are no
draws). Let Plays(G) denote the set of all plays of G and Pfin(G) be set
of all initial segments x ∈ V∗ of a play in Plays(G)

3.1 Determinacy

A strategy for Player σ in a game G = (G, Win) is a function f : V∗Vσ →
V such that (v, f (xv)) ∈ E for all x ∈ V∗ and v ∈ Vσ. Thus, a strategy
maps prefixes of plays which end in a position in Vσ to legal moves of
Player σ. A play π = v0v1 . . . is consistent with a strategy f for Player σ if
for all proper prefixes v0 . . . vn of π such that vn ∈ Vσ we have vn+1 =

f (v0 . . . vn). We say that f is a winning strategy from position v0 if every
play starting in v0 that is consistent with f is won by Player σ. The set

Wσ = {v ∈ V : Player σ has a winning strategy from v}
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3 Infinite Games

is the winning region of Player σ. In zero-sum games it always holds that
W0 ∩ W1 = ∅. We call a game G determined if W0 ∪ W1 = V, i.e. if from
each position one player has a winning strategy.

We can generalize the notion of winning regions from initial posi-
tions to arbitrary initial segments of plays. Let W̃σ be the set of those
initial segments x ∈ V∗ of plays for which Player σ has a strategy f to
prolong x to a wining play (i.e. every play of form xπ ∈ Plays(G) that is
consistent with f is won by Player σ). Clearly if Pfin(G) = W̃0 ∪ W̃1 then
G is determined.

For determinacy questions it suffices to consider games played on
trees and forests. Indeed, for an arena G with a node v0, let T (G, v0)

be the tree obtained by unraveling G from v0. Obviously, a player has
a winning strategy for (G, Win) from v0 if, and only if she has one for
(T (G, v0), Win) for the root v0. For the forest F (G) :=

⋃
v∈G T (G, v) we

then have that (F (G), Win) is determined if, and only if, (G, Win) is
determined. Notice further that, on trees and forests, all strategies are
positional so in this case there is no difference between determinacy and
determinacy via positional strategies.

A classical and very old determinacy theorem is due to Zermelo
who proved that a game of this kind is always determined if it only
admits finite plays. A slightly stronger variant of this result, applying to
games with infinite plays, is the following.

Theorem 3.1 (Zermelo). Let G be a game such that in every play the
winner is determined after finitely many moves. Then G is determined.

Proof. The condition that the winner of every play is determined after
finitely many moves means that every infinite play π of G has a finite
initial segment x < π such that every play of form xπ′ is won by the
same player. We claim that this implies that Pfin(G) = W̃0 ∪ W̃1 and
hence the determinacy of G.

Let X = Pfin(G) \ (W̃0 ∪ W̃1), and assume, towards a contradiction,
that X ̸= ∅. Take some x = yv ∈ X , with v ∈ Vσ.

For all w ∈ vE it follows that xw = yvw ̸∈ W̃σ (because otherwise
x ∈ W̃σ). Further, if we had that xw ∈ W̃1−σ for all w ∈ vE, then also
x ∈ W̃1−σ. Thus there exists some prolongation xw of x with xw ∈ X.
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By induction, there exists an infinite play xπ such that xy ∈ X for
all finite y. In particular the winner of xπ is not determined after any
finite initial segment, which contradicts our initial assumption. q.e.d.

The game that Zermelo originally wanted to study is Chess, which
does not quite satisfy our definition of a game given above, since it ad-
mits draws. One thus has to slightly modify the determinacy statement
for Chess.

Corollary 3.2. For Chess one of the following three possibilities holds:

• White has a winning strategy.

• Black has a winning strategy.

• Both players have a strategy to enforce at least a draw.

In the previous chapter, we proved a strong determinacy theorem
for parity games. We now look for general properties of Win that guar-
antee determinacy. To answer this question we shall need topological
arguments. But before we develop them, we introduce the notion of a
Gale-Stewart game and prove the existence of non-determined games.

3.2 Gale-Stewart Games

In this chapter we will show that, using the Axiom of Choice, one
can construct a non-determined game. Later, we will mention which
topological properties guarantee determinacy and how this is related to
logic.

Let B be an alphabet (for instance B = {0, 1} or B = ω). In a
Gale-Stewart game the players alternately choose symbols from B in
an infinite sequence of moves and thus create an infinite word π ∈ Bω.
Gale-Stewart games can be described as graph games in different ways.
For B = {0, 1}, for example, as a game on the infinite binary tree

T 2 = ({0, 1}∗, V0, V1, E, Ω),

where

V0 =
⋃

n∈ω

{0, 1}2n,
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3 Infinite Games

V1 =
⋃

n∈ω

{0, 1}2n+1,

E = {(x, xi) : x ∈ {0, 1}∗, i ∈ {0, 1}},

and Ω : {0, 1}∗ → {0, 1, ε} : ε 7→ ε, xi 7→ i. Alternatively, it can be
described as a game on the graph depicted in Figure 3.1. Similar game
graphs can be defined for arbitrary B.

0 0

1 1

Figure 3.1. Game graph for Gale-Stewart game over B = {0, 1}

Theorem 3.3 (Gale-Stewart). There exists a non-determined Gale-Stewart
game.

We shall present two proofs. The first one uses enumerations of the
strategy spaces of the two player via ordinals (see Appendix A) up to
2ω. The second uses ultrafilters. Both rely on the Axiom of Choice (AC).

Proof. For any countable alphabet B with at least two symbols, let T0 =

{x ∈ B∗ : |x| even} and T1 = {x ∈ B∗ : |x| odd}. Then

F = { f : T0 → B} and G = {g : T1 → B}

are the sets of strategies for Player 0 and for Player 1. Since B is countable,
|F| = |G| = |P(ω)| =: 2ω. Thus, using the well-ordering principle
(which is equivalent to AC) we can enumerate the strategies by ordinals
up to 2ω:

F = { fα : α < 2ω} and G = {gα : α < 2ω}.

For strategies f and g let f ˆg ∈ Bω be the uniquely determined play
arising from f and g. We shall construct two increasing sequences of
sets Xα, Yα ⊆ Bω for α < 2ω such that

(1) Xα ∩ Yα = ∅,
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(2) |Xα|, |Yα| < 2ω,

Let X0 = Y0 = ∅. For a successor ordinal α = β + 1 consider the
strategy fβ. The cardinality of Xβ and Yβ is smaller than 2ω but there
are 2ω different strategies g ∈ G and thus 2ω different plays that are
consistent with fβ. Hence there exists one that is not in Xβ. Choose such
a play fβˆg (AC again) and add it to Yβ to construct Yα : Yβ ∪ { fβˆg}.
Analogously, choose a play f ˆgβ that is consistent with gβ and which
is not in Yα, and construct Xα := Xβ ∪ { f ˆgβ}. For limit ordinals λ let
Xλ :=

⋃
β<λ Xβ and Yλ :=

⋃
β<λ Yβ.

We claim that the Gale-Stewart game with winning condition Win :=
⋃

α<2ω Xα is not determined.
Indeed, assume that f = fα, for some α < 2ω, is a winning strategy

for Player 0. By the construction of Win, there is a strategy g ∈ G such
that fαˆg ∈ Yα+1 and thus fαˆg /∈ Win, a contradiction.

Now assume that g = gα, for some α < 2ω, is a winning strategy for
Player 1. Analogously, there is a strategy f ∈ F such that f ˆgα ∈ Xα+1 ⊆
Win, a contradiction as well. q.e.d.

The second proof that we shall present uses the concept of an
ultrafilter. We first recall the definition of a filter.

Definition 3.4. Let I be a non-empty set. A non-empty set F ⊆ P(I) is
a filter if

(1) ∅ /∈ F,
(2) x ∈ F, y ∈ F ⇒ x ∩ y ∈ F, and
(3) x ∈ F, y ⊇ x ⇒ y ∈ F.

The intuition behind a filter is that it is a family of large sets.

Example 3.5. The set {x ⊆ ω : ω \ x is finite} is a filter. We call it the
Fréchet filter.

Definition 3.6. An ultrafilter is a filter that satisfies the additional re-
quirement:

(4) for all x ⊆ I either x ∈ F or I \ x ∈ F.

Example 3.7. Fix n ∈ ω. Then Un = {a ⊆ ω : n ∈ a} is an ultrafilter.
Ultrafilters of this form are called principal ultrafilters.
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3 Infinite Games

Every ultrafilter U that contains a finite set must be principal. Oth-
erwise U would contain a smallest set a which is not a singleton. Pick
some n ∈ a. Since {n} ̸∈ U, the complement ω \ {n} is in U, and hence
also its intersection with a. But a∩ (ω \ {n}) = a \ {n} ⊊ a contradicting
the minimality of a in U.

On the other side, an ultrafilter that does not contain a finite set
must contain all co-finite ones, and thus extend the Fréchet filter. But
the Fréchet filter is not an ultrafilter and it is not obvious that it can be
extended to one in a consistent way. The proof that this is possible uses
Zorn’s Lemma or the Compactness Theorem for propositional logic. It
holds for every set F ⊆ P(ω) such that a1 ∩ · · · ∩ am ̸= ∅ for all m ∈ N,
a1, . . . , am ∈ F.

Theorem 3.8. The Fréchet filter F can be expanded to an ultrafilter
U ⊃ F.

Proof. Let F be the Fréchet filter. We use propositional variables Xa for
every a ∈ P(ω). Let Φ = ΦU ∪ ΦF where

ΦU = {¬X∅}
∪ {Xa ∧ Xb → Xa∩b : a, b ⊆ ω}
∪ {Xa → Xb : a ⊆ b, a, b ⊆ ω}
∪ {Xa ↔ ¬Xω\a : a ⊆ ω}

and

ΦF = {Xa : a ∈ F}.

Every model I of Φ defines an ultrafilter U which expands F,
namely U = {a ⊆ ω : I(Xa) = 1}. It remains to show that Φ is
satisfiable.

By the compactness theorem, it suffices to show that every finite
subset of Φ is satisfiable. Hence, let Φ0 be a finite subset of Φ. Then the
set F0 = {a ∈ F : Xa ∈ Φ0} is also finite. Now consider the following
two cases:

• F0 = ∅. Define the interpretation I by
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I(Xa) =





1 if 0 ∈ a,

0 otherwise.

Then I |= Φ0.

• F0 = {a1, . . . , am}. Since F is a filter, there exists n0 ∈ a1 ∩ · · · ∩ am.
Define the interpretation I by

I(Xa) =





1 if n0 ∈ a

0 otherwise

Again, we have I |= Φ0.

Hence, Φ0 is satisfiable. q.e.d.

We are now able to give an alternative construction for non-
determined games. Let U be an ultrafilter that expands the Fréchet
filter. We construct a Gale-Stewart game over B = ω with winning
condition WinU as follows. Player 0 wins a play x = x0x1 . . . ∈ ωω if

• Player 1 has played a number that is not higher than the previously
played one, i.e. min{j : xj+1 ≤ xj} exists and is even, or

• x0 < x1 < x2 < . . . and

A(x) := [0, x0) ∪
⋃

i∈ω

[x2i+1, x2i+2) ∈ U

0 x0 x1 x2 x3 x4 x5 x6

Figure 3.2. The winning condition of the ultrafilter game

Proposition 3.9. The Gale-Stewart game with winning condition WinU

is not determined.

Proof. Towards a contradiction, assume that Player 0 has a winning
strategy f . We construct two plays x and x′, both of which are consistent
with f .
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3 Infinite Games

• In the first play the opening move x0 = f (ε) of Player 0 is answered
by Player 1 with an arbitrary number x1 > x0. The second move of
Player 0 is then x2 = f (x0x1).

• In the second play x′, Player 1 uses x2 as her answer to the opening
move x0 = f (ε) by Player 0. The second move of Player 0 in the play
x′ is then x3 = f (x0x2), and Player 1 uses this in the play x as her
answer to x0x1x2.

• This is the iterated. In play x, Player 1 extends in her (i + 1)st move
the sequence x0x1 . . . x2i by x2i+1 = f (x0x2x3 . . . x2i), i.e. she just
copies the (i + 1)st move of Player 0 in play x′.

• Similarly, in play x′, Player 1 answers the initial segment
x0x2x3 . . . x2i+1 by x2i+2 = f (x0x1 . . . x2i+1), i.e she copies the i + 1st
move of Player 1 in x.

Thus, in both plays, Player 1 essentially uses the strategy f itself as a
counterstrategy against f .

0

1

0

1

x0

x1

x2

x3

x4

x5

x0

x2

x3

x4

x5

f f

f f

Figure 3.3. Playing the Ultrafilter game

This results in two plays x = x0x1x2 . . . and x′ = x0x2x3x4 . . . , where
x2i+2 = f (x0x1 . . . x2i+1) but also x2i+1 = f (x0x1 . . . x2i). Both plays
are consistent with the winning strategy f for Player 0. Thus we have
A(x) ∈ U and A(x′) ∈ U. But

A(x) = [0, x0) ∪
⋃

i∈ω

[x2i+1,x2i+2)

and

A(x′) = [0, x0) ∪
⋃

i∈ω

[x2i+2,x2i+3).

Thus A(x) ∩ A(x′) = [0, x0) ∈ U. However, since U expands the Fréchet
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filter, the co-finite set ω \ [0, x0) is in U and thus [0, x0) ̸∈ U, a contradic-
tion.

Analogously, one derives a contradiction from the assumption that
Player 1 has a winning strategy. q.e.d.

3.3 Topology

Definition 3.10. A topology on a set S is defined by a collection of open
subsets of S. It is required that

• ∅, and S are open;
• if X and Y are open, then X ∩ Y is open;
• if {Xi : i ∈ I} is a family of open sets, then

⋃
i∈I Xi is open.

If O ⊆ P(S) is a collection of open sets, we call the pair (S,O) a
topological space.

Often, a topology is defined by its base: A set B of open subsets of S
such that every open set can be represented as a union of sets in B.

Example 3.11. The standard topology on R is defined by the base consist-
ing of all open intervals (a, b) ⊆ R.

In our setting, we will only be concerned with the following topol-
ogy on Bω, which is due to Cantor. Its base consists of all sets of the form
z↑ := z · Bω for z ∈ B∗. Consequently, a set X ⊆ Bω is open if it is the
union of sets z↑, i.e. if there exists a set W ⊆ B∗ such that X = W · Bω.
Moreover, a set X ⊆ Bω is closed if its complement Bω \ X is open. For
B = {0, 1}, this topology is called the Cantor space, and for B = ω it is
called the Baire space.

B∗z

z↑ Bω

Figure 3.4. Base sets in the Cantor space

53
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Example 3.12.

• The base sets z↑ are both open and closed (clopen) since we have
Bω \ z↑ = Wz · Bω where Wz = {y ∈ B∗ | y ̸≤ z and z ̸≤ y}. (Here,
u ≤ v means that u is a prefix of v.)

• 0∗1{0, 1}ω is open. The complement {0ω} is closed, but not open.
• Ld = {x ∈ ωω : x contains d infinitely often} =

⋂

n∈ω

(ω∗ · d)n · ωω is

a countable intersection of open sets.

Next, we will give another useful characterisation of closed sets. A
tree T ⊆ B∗ is a prefix-closed set of finite words, i.e., z ∈ T and y ≤ z
implies y ∈ T. For a tree T let [T] be the set of infinite paths through T
(note: T ⊆ B∗, but [T] ⊆ Bω).

Example 3.13. Let T = 0∗ = {0n : n ∈ ω}. Then [T] = {0ω}.

Lemma 3.14. X ⊆ Bω is closed if and only if there exists a tree T ⊆ B∗

such that X = [T].

Proof.
(⇒) Let X be closed. Then there is a W ⊆ B∗ such that Bω \ X = W · Bω.
Let T := {w ∈ B∗ | ∀z(z ≤ w ⇒ z /∈ W)}. T is closed under prefixes
and [T] = X.

(⇐) Let X = [T]. For every x /∈ [T] there exists a smallest prefix
wx ≤ x such that wx /∈ T. Let W := {wx : x /∈ X}. Then Bω \ X = W · Bω

is open, thus X is closed. q.e.d.

We call a set W ⊆ B∗ prefix-free if there is no pair x, y ∈ W such that
x < y.

Lemma 3.15.

(1) For every open set A ⊆ Bω there is a prefix-free set W ⊆ B∗ such
that A = W · Bω.

(2) Let B be a finite alphabet. A ⊆ Bω is clopen if and only if there is a
finite set W ⊆ B∗ such that A = W · Bω.

Proof. For (1), let A = U · Bω for some open U ⊆ B∗. Define

W := {w ∈ U : U contains no proper prefix of w}.
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W is prefix-free and W · Bω = U · Bω = A.
For (2) let A ⊆ Bω be clopen. Thus there exist prefix-free sets

U, V ⊆ B∗ such that A = U · Bω and Bω \ A = V · Bω. We will show
that U ∪ V is finite. Let T = {w ∈ B∗ | w has no prefix in U ∪ V}. If T
is finite, then U ∪ V is also finite. If U (or V) is infinite, then T is also
infinite since it contains all proper prefixes of elements of U (respectively
V). Hence it suffices to show that T is finite. Notice that T is a finitely
branching tree (since B is finite) that contains no infinite path, since
otherwise there exists an infinite word x ∈ Bω corresponding to this
path with x /∈ U · Bω ∪V · Bω = A ∪ (Bω \ A) = Bω. By König’s Lemma,
this implies that T is finite.

For the converse, let A = W · Bω where W ⊆ B∗ is finite. Let
l = max{|w| : w ∈ W}. Then Bω \ A = Z · Bω where

Z = {z ∈ B∗ : |z| = l and no prefix of z is in W}.

Thus, A is clopen. q.e.d.

Notice that (2) does not hold for infinite alphabets B.

Definition 3.16. Let T = (S,O) be a topological space. The class of Borel
sets is the smallest class B ⊆ P(S) that contains all open sets and is
closed under countable unions and complementation:

• O ⊆ B;
• If X ∈ B then S \ X ∈ B;
• If {Xn : n ∈ ω} ⊆ B then

⋃
n∈ω Xn ∈ B.

Most of the ω-languages L ⊆ Bω occurring in Computer Science
are Borel sets. Borel sets form a natural hierarchy of sets Σ0

α and Π0
α for

0 ≤ α < ω1, where ω1 is the first uncountable ordinal number.

• Σ0
1 = O;

• Π0
α = coΣ0

α := {S \ X : X ∈ Σ0
α} for every α;

• Σ0
α = {⋃n∈ω Xn : Xn ∈ Π0

β for β < α} for α > 0.

We are especially interested in the first levels of the Borel hierarchy:

• Σ0
1: Open sets

• Π0
1: Closed sets
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3 Infinite Games

• Σ0
2: Countable unions of closed sets

• Π0
2: Countable intersections of open sets

• Σ0
3: Countable unions of Π0

2-sets
• Π0

3: Countable intersections of Σ0
2-sets

Example 3.17. Let d ∈ B.

Ld = {x ∈ Bω : x contains d infinitely often} =
⋂

n∈ω

(B∗ · d)n · Bω

︸ ︷︷ ︸
∈Σ0

1

.

Hence, Ld ∈ Π0
2.

To determine the membership of an ω-language in a class Σ0
α or

Π0
α of the Borel hierarchy and to relate the classes, we need a notion of

reducibility between ω-languages.

Definition 3.18. A function f : Bω → Cω is called continuous if f−1(Y)
is open for every open set Y ⊆ Cω.

Let X ⊆ Bω, Y ⊆ Cω. We say that X is Wadge reducible to Y, X ≤ Y,
if there exists a continuous function f : Bω → Cω such that f−1(Y) = X,
i.e. x ∈ X iff f (x) ∈ Y for all x ∈ Bω. For any such function f , we write
f : X ≤ Y.

Exercise 3.1. Prove that the relation ≤ satisfies the following properties:

• X ≤ Y and Y ≤ Z imply X ≤ Z;
• X ≤ Y implies Bω \ X ≤ Cω \ Y.

Theorem 3.19. Let X ≤ Y for Y ∈ Σ0
α (or Y ∈ Π0

α). Then X ∈ Σ0
α

(respectively X ∈ Π0
α).

Proof. The claim is true by definition for Σ0
1 (the open sets) and thus also

for Π0
1.

For α > 1, let f : X ≤ Y and Y ∈ Σ0
α. We have that Y =

⋃
n∈ω Yn

where Yn ∈ ⋃
β<α Π0

β. Define Xn := f−1(Yn). Then Xn ≤ Yn for all
n ∈ ω, and thus, by induction hypothesis, Xn ∈ ⋃β<α Π0

β. We have:

x ∈ X ⇔ f (x) ∈ Y

⇔ f (x) ∈ Yn for some n ∈ ω

⇔ x ∈ Xn for some n ∈ ω.

Hence, X =
⋃

n∈ω Xn ∈ Σ0
α. q.e.d.
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In the following we will present a game-theoretic characterisation
of the relation ≤ in terms of the so-called Wadge game.

Definition 3.20. Let X ⊆ Bω, Y ⊆ Cω. The Wadge game W(X, Y) is an
infinite game between two players 0 and 1 who move in alternation. In
the i-th round, Player 0 chooses a symbol xi ∈ B, and afterwards Player 1
chooses a (possibly empty) word yi ∈ C∗. After ω rounds, Player 0 has
produced an ω-word x = x0x1x2 · · · ∈ Bω, and Player 1 has produced
a finite or infinite word y = y0y1y2 · · · ∈ C≤ω. Player 1 wins the play
(x, y) if, and only if, y ∈ Cω and x ∈ X ⇔ y ∈ Y.

Example 3.21. Let B = C = {0, 1}.

• Player 1 wins W(0∗1{0, 1}ω, (0∗1)ω).
Winning strategy for Player 1: Choose 0 until Player 0 chooses 1 for
the first time. Afterwards, always choose 1.

• Player 0 wins W((0∗1)ω, 0∗1{0, 1}ω).
Winning strategy for Player 0: Choose 1 until Player 1 chooses a
word containing 1 for the first time. Afterwards, always choose 0.

Theorem 3.22 (Wadge). Let X ⊆ Bω, Y ⊆ Cω. Then X ≤ Y if and only if
Player 1 has a winning strategy for W(X, Y).

Proof.
(⇐) A winning strategy of Player 1 for W(X, Y) induces a mapping
f : Bω → Cω such that x ∈ X iff y ∈ Y. It remains to show that f is
continuous. Let Z = U · Cω be open. For every u ∈ U denote by Vu the
set of all words v = x0x1 . . . xn ∈ B∗ such that u is the answer of Player 1
to v, i.e. u = f (x0) f (x1) . . . f (xn). Then f−1(U · Cω) = V · Bω where
V :=

⋃
u∈U Vu.

(⇒) Let f : X ≤ Y. We construct a strategy for Player 1 as fol-
lows. Player 1 has to answer Player 0’s moves x0x1x2 . . . by an ω-word
y0y1y2 . . . , but Player 1 can delay choosing yi until he knows x0x1 . . . xn

for some appropriate n ≥ i.
Choice of y0: Consider the partition Bω = ·⋃c∈C f−1(c · Cω). Since

c · Cω is clopen, f−1(c · Cω) is also clopen. For every x ∈ Bω there exists
c ∈ C such that x ∈ f−1(c · Cω), and since f−1(c · Cω) is clopen, there
is a prefix wx ≤ x such that wx · Bω ⊆ f−1(c · Cω). So Player 1 can
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wait until Player 0 has chosen a prefix w ∈ B∗ that determines the set
f−1(c · Cω) the word x will belong to and choose y0 = c.

The subsequent choices are done analogously. Let y0 . . . yi ∈ C∗ be
Player 1’s answer to x0 . . . xn ∈ B∗. For the choice of yi+1 we consider
the partition

x0 · · · xn · Bω = ·
⋃

c∈C
f−1(y0 · · · yi · c · Cω).

Since the sets f−1(y0 · · · yi · c · Cω) are clopen, after finitely many moves,
by choosing a prolongation x0 · · · xnxn+1 · · · xk, Player 0 has determined
in which set f−1(y0 · · · yi · c · Cω) the word x will be. Player 1 then
chooses yi+1 = c.

By using this strategy, Player 1 constructs the answer y = f (x) for
the sequence x chosen by Player 0. Otherwise, there would be a smallest
i such that yi ̸= f (xi). This is impossible since x ∈ f−1(y0 · · · yi · Cω).
Since f : X ≤ Y, we have x ∈ X iff y ∈ Y. q.e.d.

Definition 3.23. A set Y ⊆ Cω is Σ0
α-complete if:

• Y ∈ Σ0
α;

• X ≤ Y for all X ∈ Σ0
α.

Π0
α-completeness is defined analogously.

Note that Y is Σ0
α-complete if, and only if, Cω \ Y is Π0

α-complete.

Proposition 3.24. Let B = {0, 1}. Then:

• 0∗1{0, 1}ω is Σ0
1-complete;

• {0ω} is Π0
1-complete;

• {0, 1}∗0ω is Σ0
2-complete;

• (0∗1)ω is Π0
2-complete.

Proof. By the above remark, it suffices to show that 0∗1{0, 1}ω and (0∗1)ω

are Σ0
1-complete and Π0

2-complete, respectively.

• We know that 0∗1{0, 1}ω ∈ Σ0
1. Let X = W · Bω be open. We

describe a winning strategy for Player 1 in W(X, 0∗1{0, 1}ω): Pick 0
until Player 0 has completed a word contained in W; from this point
onwards, pick 1. Hence, X ≤ 0∗1{0, 1}ω.
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• We know that (0∗1)ω ∈ Π0
2. Let X =

⋂
n∈ω Wn · Bω ∈ Π0

2. We
describe a winning strategy for Player 1 in W(X, {0, 1}∗0ω): Start
with i := 0; for arbitrary i, answer with 1 and set i := i + 1 if the
sequence x0 . . . xk of symbols chosen by Player 0 so far has a prefix
in Wi, otherwise answer with 0 and leave i unaffected. q.e.d.

3.4 Determined Games

We call a game G = (V, V0, V1, E, Win) clopen, open, closed, etc., or sim-
ply a Borel game, if the winning condition Win ⊆ Vω has the respective
property.

Clopen games are basically finite games: If A ⊆ Bω is clopen, then
for every x ∈ Bω there exists a finite prefix wx ≤ x such that:

• If x ∈ A then wx↑ ⊆ A;
• If x /∈ A then wx↑ ⊆ Bω \ A.

Thus, by Zermelo’s Theorem, clopen games are determined.
A stronger result is the following:

Theorem 3.25. Every open game, and thus every closed game, is deter-
mined.

Proof. Let G = (V, V0, V1, E, Win) where Win = U · Vω is open. First, we
consider finite plays: Let Tσ = {v ∈ V1−σ : vE = ∅} and Aσ = Attrσ(Tσ).
From every position v ∈ Aσ Player σ wins after finitely many moves
with the attractor strategy.

For the infinite plays consider

G ′ := G ↾ V \ (A0 ∪ A1)

with positions V′ := V \ (A0 ∪ A1). In G ′ every play is infinite, and
Player 0 wins π = v0v1v2 . . . if and only if π ∈ U · Vω. Obviously,
Player 0 wins in G ′ starting from v0 if she can enforce a sequence
v0v1 . . . vn ∈ U. Then every infinite prolongation of this sequence is a
play in U · Vω.

Instead of G ′ we consider again the equivalent game on the trees
T (v) = TG(v), the unfolding of G from v ∈ V. Positions in T (v) are
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words over V: T (v) ⊆ V∗. Now consider the set

B0 = {v ∈ V′ : v ∈ AttrT (v)
0 (U · V∗)}

of positions from where player 0 can enforce a play prefix in U · V∗.
From every position in V′ \ A0, Player 1 has a strategy to guarantee
that the play never reaches U · V∗ since V′ \ A0 is a trap for Player 0.
But a play that never reaches U · V∗ is won by Player 1. It follows that
W0 = A0 ∪ B0 and W1 = A1 ∪ (V′ \ B0), and thus V = W0 ∪ W1. q.e.d.

A much stronger result was established by Donald Martin in 1975. Its
proof is beyond the scope of these lecture notes.

Theorem 3.26 (Martin). All Borel games are determined.

Here are some winning conditions for frequently used games in
Computer Science:

• Muller conditions: Let B be finite, F0 ⊆ P(B), F1 = P(B) \ F0.
Player σ wins π ∈ Bω if and only if

Inf(π) := {b ∈ B : b appears infinitely often in π} ∈ Fσ.

Hence, the winning condition is the set

{x ∈ Bω : Inf(π) ∈ Fσ} =
⋃

X∈F0

(⋂

d∈X

Ld ∩
⋃

d/∈X

(Bω \ Ld)
)
,

a finite Boolean combination of Π0
2-sets.

• Parity conditions (see previous chapter) are special cases of Muller
conditions and thus also finite Boolean combinations of Π0

2-sets.
• Every ω-regular language is a Boolean combination of Π0

2-sets.
This follows from the recognisability of ω-regular languages by
Muller automata and the fact that Muller conditions are Boolean
combinations of Π0

2-sets.

In practice, winning conditions are often specified in a suitable logic:
ω-words x ∈ Bω are interpreted as structures Ax = (ω,<, (Pb)b∈B) with
unary predicates Pb = {i ∈ ω : xi = b}. A sentence ψ (for example
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in FO, MSO, etc.) over the signature {<} ∪ {Pb : b ∈ B} defines the
ω-language (winning condition) L(ψ) = {x ∈ Bω : Ax |= ψ}.

Example 3.27. Let B = {0, . . . , m}. The parity condition is specified by
the FO sentence

ψ :=
∧

b≤m
b odd

(
∃y∀z (y < z → ¬Pbz) ∨

∧

c<b

∀y∃z (y < z ∧ Pcz)

)
.

We have:

• FO and LTL define the same ω-languages (winning conditions);

• MSO defines exactly the ω-regular languages;

• There are ω-languages that are definable in MSO but not in FO;

• ω-regular languages are Boolean combinations of Π0
2-sets.

In particular, graph games with winning conditions specified in LTL,
FO, MSO, etc. are Borel games and therefore determined.

3.5 Muller Games and Game Reductions

Muller games are infinite games played over an arena G = (V0, V1, E, Ω :
V → C) with a winning condition depending only on the set of priorities
seen infinitely often in a play. It is specified by a partition P(C) =

F0 ·∪ F1, and a play π = v0v1v2 . . . is won by Player σ if

Inf(π) = {c : Ω(vi) = c for infinitely many i ∈ ω} ∈ Fσ.

We will only consider the case that the set C of priorities is finite. Then
Muller games are Borel games specified by the FO sentence

∨

X∈Fσ

(
∧

c∈X
∀x∃y(x < y ∧ Pcy) ∧

∧

c/∈X

∃x∀y(x < y → ¬Pcy)

)
.

So Muller games are determined. Parity conditions are special Muller
conditions, and we have seen that games with parity winning conditions
are even positionally determined. The question arises what kind of
strategies are needed to win Muller games. Unfortunately, there are
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simple Muller games that are not positionally determined, even solitaire
games.

Example 3.28. Consider the game arena depicted in Figure 3.5 with the
winning condition F0 = {{1, 2, 3}}, i.e. all positions have to be visited
infinitely often. Obviously, player 0 has winning a winning strategy, but
no positional one: Any positional strategy of player 0 will either visit
only positions 1 and 2 or positions 2 and 3.

1 2 3

Figure 3.5. A solitaire Muller game

Although Muller games are, in general, not positionally determined,
we will see that Muller games are determined via winning strategies
that can be implemented using finite memory. To this end, we introduce
the notions of a memory structure and of a memory strategy. Although
we will not require that the memory is finite, we will use finite memory
in most cases.

Definition 3.29. A memory structure for a game G with positions in V
is a triple M = (M, update, init), where M is a set of memory states,
update : M × V → M is a memory update function and init : V → M is a
memory initialisation function. The size of the memory is the cardinality of
the set M.

A strategy with memory M for Player σ is given by a next-move
function F : Vσ × M → V such that F(v, m) ∈ vE for all v ∈ Vσ, m ∈ M.
If a play, from starting position v0, has gone through positions v0v1 . . . vn,
the memory state is m(v0 . . . vn), defined inductively by m(v0) = init(v0),
and m(v0 . . . vivi+1) = update(m(v0 . . . vi), vi+1), and in case vn ∈ Vσ the
strategy leads to position F(vn, m(v0 . . . , vn)).

Remark 3.30. In case |M| = 1, the strategy is positional, and it can be
described by a function F : Vσ → V.

Definition 3.31. A game G is determined via memory M if it is deter-
mined and both players have winning strategies with memory M on
their winning regions.
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Example 3.32. In the game from Example 3.28, Player 0 wins with a
strategy with memory M = ({1, 3}, update, init) where

• init(1) = init(2) = 1, init(3) = 3 and

• update(m, v) =





v if v ∈ {1, 3},

m if v = 2.

The corresponding strategy is defined by

F(v, m) =





2 if v ∈ {1, 3},

3 if v = 2, m = 1,

1 if v = 2, m = 3.

Let us consider a more interesting example now.

Example 3.33. Consider the game DJW2 with its arena depicted in Fig-
ure 3.6. Player 0 wins a play π if the maximal number in Inf(π) is equal
to the number of letters in Inf(π). Formally:

F0 = {X ⊆ {1, 2, a, b} : |X ∩ {a, b}| = max(X ∩ {1, 2})}.

a 1

b 2

Figure 3.6. Muller game G = DJW2

Player 0 has a winning strategy from every position, but no po-
sitional one. Assume that f : {a, b} → {1, 2} is a positional winning
strategy for Player 0. If f (a) = 2 (or f (b) = 2), then Player 1 always
picks a (respectively b) and wins, since this generates a play π with
Inf(π) = {a, 2} (respectively Inf(π) = {b, 2}). If f (a) = f (b) = 1, then
Player 1 alternates between a and b and wins, since this generates a play
π with Inf(π) = {a, b, 1}. However, Player 0 has a winning strategy that
uses the memory depicted in Figure 3.7. The corresponding strategy is
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defined as follows:

F(c, m) =





1 if m = c#d,

2 if m = #cd.

b#a

#ab #ba

a#b

a, 1, 2

b

1, 2

b

b, 1, 2

a

a

1, 2
a

b

Figure 3.7. Memory for Player 0

Why is this strategy winning? If from some point onwards Player 1
picks only a or only b, then, from this point onwards, the memory state
is always b#a or a#b, respectively, and according to F Player 0 always
picks 1 and wins. In the other case, Player 1 picks a and b again and
again and the memory state is #ab or #ba infinitely often. Thus Player 0
picks 2 infinitely often and wins as well.

The memory structure used in this example is a special case of the
LAR memory structure, which we will use for arbitrary Muller games.
But first, let us look at a Muller game with infinitely many priorities that
allows no winning strategy with finite memory but one with a simple
infinite memory structure:

Example 3.34. Consider the game with its arena depicted in Figure 3.8
and with winning condition F0 = {{0}}. It is easy to see that every
finite-memory strategy of Player 0 (the player who moves at position 0) is
losing. A winning strategy with infinite memory is given by the memory
structure M = (ω, init, update) where init(v) = v and update(m, v) =
max(m, v) together with the strategy F defined by F(0, m) = m + 1.
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0

1 2 · · · n · · ·

Figure 3.8. A game where finite-memory strategies do not suffice

Given a game graph G = (V, V0, V1, E) and a memory structure
M = (M, update, init), we obtain a new game graph

G ×M = (V × M, V0 × M, V1 × M, Eupdate)

where

Eupdate = {
(
(v, m), (v′, m′)

)
: (v, v′) ∈ E and m′ = update(m, v′)}.

Obviously, every play (v0, m0)(v1, m1) . . . in G ×M has a unique
projection to the play v0v1 . . . in G. Conversely, every play v0, v1, . . . in
G has a unique extension to a play (v0, m0)(v1, m1) . . . in G ×M with
m0 = init(v0).

Definition 3.35. For games G = (G, Ω, Win) and G ′ = (G′, Ω′, Win′), we
say that G reduces to G ′ via memory M, G ≤M G ′, if G′ = G ×M and
every play in G ′ is won by the same player as the projected play in G.

Given a memory structure M for G and a memory structure M′ for
G ×M, we obtain a memory structure M∗ = M×M′ for G. The set of
memory locations is M × M′, and we have memory initialisation

init∗(v) = (init(v), init′(v, init(v)))

with the update function

update∗((m, m′), v) =

(update(m, v), update′(m′, (v, update(m, v)))).

Theorem 3.36. Suppose that G reduces to G ′ via memory M and that
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Player σ has a winning strategy for G ′ with memory M′ from position
(v0, init(v0))). Then Player σ has a winning strategy for G with memory
M×M′ from position v0.

Proof. Given a strategy F′ : (Vσ × M) × M′ → (V × M) for Player σ

in G ′, we have to construct a strategy F : (Vσ × (M × M′)) → V for
Player σ in G. For any v ∈ Vσ and any pair (m, m′) ∈ M × M′ we
have that F′((v, m), m′) = (w, update(m, w)) for some w ∈ vE. We put
F(v, (m, m′)) = w. If a play in G that is consistent with F proceeds from
position v with current memory location (m, m′) to a new position w,
then the memory is updated to (n, n′) with n = update(m, w) and n′ =
update′(m′, (w, n)). In the extended play in G ′, we have an associated
move from (v, m) to (w, n) with memory update from m′ to n′. Thus,
every play in G from initial position v0 that is consistent with F is the
projection of a play in G ′ from (v0, init(v0)) that is consistent with F′.
Therefore, if F′ is a winning strategy from (v0, init(v0)), then F is a
winning strategy from v0. q.e.d.

Corollary 3.37. Every game that reduces via memory M to a positionally
determined game is determined via memory M.

Obviously, memory reductions between games can be composed.
If G reduces to G ′ with memory M = (M, update, init) and G ′ reduces
to G ′′ with memory M′ = (M′, update′, init′) then G reduces to G ′′ with
memory (M × M′, update′′, init′′) where

init′′(v) = (init(v), init′(v, init(v)))

and
update′′((m, m′), v) =

(update(m, v), update′(m′, (v, update(m, v)))).

The classical example of a game reduction with finite memory is
the reduction of Muller games to parity games via latest appearance
records. Intuitively, a latest appearance record (LAR) is a list of priorities
ordered by their latest occurrence. More formally, for a finite set C of
priorities, LAR(C) is the set of sequences c1 . . . ck#ck+1 . . . cl of elements
from C ·∪ {#} in which each priority c ∈ C occurs at most once and
# occurs precisely once. At a position v, the LAR c1 . . . ck#ck+1 . . . cl is
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updated by moving the priority Ω(v) to the end, and moving # to the
previous position of Ω(v) in the sequence. For instance, at a position
with priority c2, the LAR c1c2c3#c4c5 is updated to c1#c3c4c5c2. (If Ω(v)
did not occur in the LAR, we simply append Ω(v) at the end). Thus,
the LAR memory for an arena with priority labelling Ω : V → C is the
triple (LAR(C), update, init) with init(v) = #Ω(v) and

update(c1 . . . ck#ck+1 . . . cl, v) =



c1 . . . ck#ck+1 . . . clΩ(v) if Ω(v) ̸∈ {c1, . . . cl},

c1 . . . cm−1#cm+1 . . . clcm if Ω(v) = cm.

The hit set of an LAR c1 . . . ck#ck+1 . . . cl is the set {ck+1 . . . cl} of
priorities occurring after the symbol #. Note that if in a play π = v0v1 . . .
the LAR at position vn is c1 . . . ck#ck+1 . . . cl, then Ω(vn) = cl and the hit
set {ck+1 . . . cl} is the set of priorities that have been visited since the
latest previous occurrence of cl in the play.

Lemma 3.38. Let π be a play of a Muller game G with finitely many
priorities, and let Inf(π) be the set of priorities occurring infinitely often
in π. Then the hit set of the latest appearance record is, from some point
onwards, always a subset of Inf(π) and infinitely often coincides with
Inf(π).

Proof. For each play π = v0v1v2 . . . there is a position vm such that
Ω(vn) ∈ Inf(π) for all n ≥ m. Since no priority outside Inf(π) is
seen after position vm, the hit set will, from that position onwards, al-
ways be contained in Inf(π), and the LAR will always have the form
c1 . . . cj−1cj . . . ck#ck+1 . . . cl where c1, . . . cj−1 remains fixed and
Inf(π) = {cj, . . . , cl}. Since all priorities in Inf(π) are seen again and
again, it happens infinitely often that, among these, the one occurring
leftmost in the LAR is hit. At such positions, the LAR is updated to
c1, . . . , cj−1#cj+1 . . . clcj, and the hit set coincides with Inf(π). q.e.d.

Theorem 3.39. Every Muller game with finitely many priorities reduces
via LAR memory to a parity game.

Proof. Let G be a Muller game with game graph G, priority labelling
Ω : V → C and winning condition (F0,F1). We have to prove that
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G ≤LAR G ′ for a parity game G ′ with game graph G × LAR(C) and an
appropriate priority labelling Ω′ on V × LAR(C), which is defined as
follows:

Ω′(v, c1c2 . . . ck#ck+1 . . . cl) =





2k if {ck+1, . . . , cl} ∈ F0,

2k + 1 if {ck+1, . . . , cl} ∈ F1.

Let π = v0v1v2 . . . be a play on G and fix a number m such that,
for all n ≥ m, Ω(vn) ∈ Inf(π) and the LAR at position vn has the form
c1 . . . cjcj+1 . . . ck#ck+1 . . . cl where Inf(π) = {cj+1, . . . cl} and the prefix
c1 . . . cj remains fixed. In the corresponding play π′ = (v0, r0)(v1, r1) . . .
in G ′, all nodes (vn, rn) for n ≥ m have a priority 2k + ρ with k ≥ j and
ρ ∈ {0, 1}. Assume that the play π is won by Player σ, i.e., Inf(π) ∈ Fσ.
Since the hit set of the LAR coincides with Inf(π) infinitely often, the
minimal priority seen infinitely often on the extended play is 2j + σ.
Thus the extended play in the parity game G ′ is won by the same player
as the original play in G. q.e.d.

Corollary 3.40. Muller games are determined via finite memory strate-
gies. The size of the memory is bounded by (|C|+ 1)!.

The question arises which Muller conditions (F0,F1) guarantee
positional winning strategies for arbitrary game graphs? One obvious
answer are parity conditions. But there are others:

Example 3.41. Let C = {0, 1}, F0 = {C} and F1 = P(C) \ {C} =

{{0}, {1}, ∅}. (F0,F1) is not a parity condition, but every Muller game
with winning condition (F0,F1) is positionally determined.

Definition 3.42. The Zielonka tree for a Muller condition (F0,F1) over
C is a tree Z(F0,F1) whose nodes are labelled with pairs (X, σ) such
that X ∈ Fσ. We define Z(F0,F1) inductively as follows. Let C ∈ Fσ

and C0, . . . , Ck−1 be the maximal sets in {X ⊆ C : X ∈ F1−σ}. Then
Z(F0,F1) consists of a root, labelled with (C, σ), to which we attach as
subtrees the Zielonka trees Z(F0 ∩ P(Ci),F1 ∩ P(Ci)), i = 0, . . . , k − 1.

Example 3.43. Let C = {0, 1, 2, 3, 4} and F0 = {{0, 1}, {2, 3, 4}, {2, 3},
{2, 4}, {3}, {4}}, F1 = P(C) \ F0. The Zielonka tree Z(F0,F1) is de-
picted in Figure 3.9.
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C, 1

{0, 1}, 0

{0}, 1 {1}, 1

{2, 3, 4}, 0

{2}, 1 {3, 4}, 1

{3}, 0

∅, 1

{4}, 0

∅, 1

Figure 3.9. A Zielonka tree

A set Y ⊆ C belongs to Fσ if there is a node of Z(F0,F1) that is
labelled with (X, σ) for some X ⊇ Y and for all children (Z, 1 − σ) of
(X, σ) we have Y ̸⊆ Z.

Example 3.44. Consider again the tree Z(F0,F1) from Example 3.43. It is
the case that {2, 3} ∈ F0, since ({2, 3, 4}, 0) is a node of Z(F0,F1) and

• {2, 3} ⊆ {2, 3, 4};
• {2, 3} ̸⊆ {2};
• {2, 3} ̸⊆ {3, 4}.

The Zielonka tree of a parity-condition is especially simple, as
Figure 3.10 shows.

Besides parity games there are other important special cases of
Muller games. Of special relevance are games with Rabin and Streett
conditions because these admit positional winning strategies for one
player.

Definition 3.45. A Streett-Rabin condition is a Muller condition
(F0,F1) such that F0 is closed under union.

In the Zielonka tree for a Streett-Rabin condition, the nodes labelled
with (X, 1) have only one successor. It follows that if both F0 and F1 are
closed under union, then the Zielonka tree Z(F0,F1) is a path, which
implies that (F0,F1) is equivalent to a parity condition.
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{0, . . . , m − 1}, 0

{1, . . . , m − 1}, 1

{2, . . . , m − 1}, 0

{m − 2, m − 1}, σ

{m − 1}, 1 − σ

Figure 3.10. The Zielonka tree of a parity-condition with m priorities

In a Streett-Rabin game, Player 1 has a positional winning strategy
on his winning region. On the other hand, Player 0 can win on his
winning region via a finite-memory strategy, and the size of the memory
can be directly read off from the Zielonka tree. We present an elementary
proof of this result.

Theorem 3.46. Let G = (V, V0, V1, E, Ω) be a game with a Streett-Rabin
winning condition (F0,F1). Then G is determined, i.e. V = W0 ∪
W1, with a finite memory winning strategy for Player 0 on W0, and a
positional winning strategy for Player 1 on W1. The size of the memory
required by the winning strategy for Player 0 is bounded by the number
of leaves of the Zielonka tree Z(F0,F1).

Proof. We proceed by induction on the number of priorities in C or,
equivalently, the depth of the Zielonka tree Z(F0,F1). Let l be the
number of leaves of Z(F0,F1). We distinguish two cases.

Case 1: C ∈ F1. Let

X0 :=

{
v :

Player 0 has a winning strategy with memory

of size ≤ l from v

}
,

and X1 = V \ X0. It suffices to prove that Player 1 has a positional
winning strategy on X1. To construct this strategy, we combine three
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positional strategies of Player 1: A trap strategy, an attractor strategy,
and a winning strategy on a subgame with fewer priorities.

At first, we observe that X1 is a trap for Player 0. This means that
Player 1 has a positional trap strategy t on X1 to enforce that the play
stays within X1.

Since F0 is closed under union, there is a unique maximal subset
C′ ⊆ C with C′ ∈ F0. Let Y := X1 ∩ Ω−1(C \ C′), and let Z = Attr1(Y) \
Y. Observe that Player 1 has a positional attractor strategy a, by which
he can force, from any position z ∈ Z, that the play reaches Y.

Finally, let V′ = X1 \ (Y ∪Z) and let G ′ be the subgame of G induced
by V′, with winning condition (F0 ∩P(C′),F1 ∩P(C′)) (see Figure 3.11).
Since this game has fewer priorities, the induction hypothesis applies,
i.e. we have V′ = W ′

0 ∪ W ′
1, and Player 0 has a winning strategy with

memory ≤ l on W ′
0, whereas Player 1 has a positional winning strategy g′

on W ′
1. However, W ′

0 = ∅: Otherwise we could combine the strategies of
Player 0 to obtain a winning strategy with memory ≤ l on X0 ∪W ′

0 ⊋ X0,
a contradiction to the definition of X0. Hence W ′

1 = V′.

X0

X1V′ Z Y

Ω−1(C′) Ω−1(C \ C′)

Figure 3.11. Constructing a winning strategy for Player 1

We can now define a positional strategy g for Player 1 on X1 by

g(x) =





g′(x) if x ∈ V′,

a(x) if x ∈ Z,

t(x) if x ∈ Y.

Consider any play π that starts at a position v ∈ X1 and is consistent
with g. We have to show that π is won by Player 1. Obviously, π stays
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within X1. If it hits Y ∪ Z only finitely often, then from some point
onwards it stays within V′ and coincides with a play consistent with
g′. It is therefore won by Player 1. Otherwise, π hits Y ∪ Z, and hence
also Y, infinitely often. Thus, Inf(π)∩ (C \ C′) ̸= ∅ and Inf(π) ∈ F1. So
Player 1 has a positional winning strategy on X1.

Case 2: C ∈ F0. There exist maximal subsets C0, . . . , Ck−1 ⊆ C with
Ci ∈ F1 (see Figure 3.12). Observe that if D ∩ (C \ Ci) ̸= ∅ for all i < k
then D ∈ F0. Now let

X1 := {v ∈ V : Player 1 has a positional winning strategy from v},

and X0 = V \ X1. We claim that Player 0 has a finite memory winning
strategy of size ≤ l on X0. To construct this strategy, we proceed in a
similar way as above, for each of the sets C \Ci. We will obtain strategies
f0, . . . , fk−1 for Player 0 such that each fi has finite memory Mi, and
we will use these strategies to build a winning strategy f on X0 with
memory M0 ∪ · · · ∪ Mk−1.

(C, 0)

(C0, 1) (C1, 1) . . . (Ck−1, 1)

Figure 3.12. The top of the Zielonka tree Z(F0,F1)

For i = 0, . . . , k − 1, let Yi = X0 ∩ Ω−1(C \ Ci), and Zi = Attr0(Yi) \
Yi, and let ai be a positional attractor strategy by which Player 0 can
force a play from any position in Zi to reach Yi. Furthermore, let
Ui = X0 \ (Yi ∪ Zi), and let Gi be the subgame of G induced by Ui with
winning condition (F0 ∩ P(Ci),F1 ∩ P(Ci)). The winning region of
Player 1 in Gi is empty: Indeed, if Player 1 could win Gi from v, then,
by the induction hypothesis, he could win with a positional winning
strategy. By combining this strategy with the positional winning strategy
of Player 1 on X1, this would imply that v ∈ X1, but v ∈ Ui ⊆ V \ X1.

Hence, by the induction hypothesis, Player 0 has a winning strategy
fi with finite memory Mi on Ui. Let ( fi + ai) be the combination of fi

72

3.5 Muller Games and Game Reductions

with the attractor strategy ai, defined by

( fi + ai)(v) :=





fi(v) if v ∈ Ui,

ai(v) if v ∈ Zi.
.

From any position v ∈ Ui ∪ Zi this strategy ensures that the play either
remains inside Ui and is winning for Player 1, or that it eventually
reaches a position in Yi.

We now combine the strategies ( f0 + a0), . . . , ( fk−1 + ak−1) to a win-
ning strategy f on X0, which ensures that either the play ultimately
remains within one of the regions Ui and coincides with a play ac-
cording to fi, or that it cycles infinitely often through all the regions
Y0, . . . , Yk−1.

At positions in Ỹ :=
⋂

i<k Yi, Player 0 just plays with a (positional)
trap strategy t ensuring that the play remains in X0. At the first position
v ̸∈ Ỹ, Player 0 takes the minimal i such that v ̸∈ Yi, i.e. v ∈ Ui ∪ Zi,
and uses the strategy ( fi + ai) until a position w ∈ Yi is reached. At this
point, Player 0 switches from i to j = i + l (mod k) for the minimal l
such that w ̸∈ Yj. Hence w ∈ Uj ∪ Zj; Player 0 now plays with strategy
( f j + aj) until a position in Yj is reached. There Player 0 again switches
to the appropriate next strategy, as he does every time he reaches Ỹ.

Assuming that Mi ∩ Mj = ∅ for i ̸= j, it is not difficult to see that f
can be implemented with memory M = M0 ∪ · · · ∪ Mk−1. We leave the
formal definition of f as an exercise.

Note that, by the induction hypothesis, the size of the memory Mi

is bounded by the number of leaves of the Zielonka subtrees Z(F0 ∩
P(Ci),F1 ∩ P(Ci)). Consequently, the size of M is bounded by the
number of leaves of Z(F0,F1).

It remains to prove that f is winning on X0. Let π be a play that
starts in X0 and is consistent with f . If π eventually remains inside
some Ui, then from some point onwards it coincides with a play that is
consistent with fi and is therefore won by Player 0. Otherwise, it is easy
to see that π hits each of the sets Y0, . . . , Yk−1 infinitely often. But this
means that Inf(π) ∩ (C \ Ci) ̸= ∅ for all i ≤ k; as observed above this
implies that Inf(π) ∈ F0. q.e.d.
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An immediate consequence of Theorem 3.46 is that parity games
are positionally determined.

3.6 Complexity

We will now determine the complexity of computing the winning regions
for games over finite game graphs. The associated decision problem is

Given: Game graph G, winning condition (F0,F1), v ∈ V,
σ ∈ {0, 1}.
Question: v ∈ Wσ?

For parity games, we already know that this problem is in NP ∩ coNP,
and it is conjectured to be in P. Moreover, for many special cases, we
know that it is indeed in P. Now we will examine the complexity of
Streett-Rabin games and games with arbitrary Muller conditions.

Theorem 3.47. Deciding whether Player σ wins from a given position in
a Streett-Rabin game is

• coNP-hard for σ = 0,
• NP-hard for σ = 1.

Proof. It is sufficient to prove the claim for σ = 1 since Streett-Rabin
games are determined. We will reduce the satisfiability problem for
Boolean formulae in CNF to the given problem. For every formula

Ψ =
∧

i

Ci, Ci =
∨

j

Yij

in CNF, we define the game GΨ as follows: Positions for Player 0 are the
literals X1, . . . , Xk,¬X1, . . . ,¬Xk occurring in Ψ; positions for Player 1
are the clauses C1, . . . , Cn. Player 1 can move from a clause C to a literal
Y ∈ C; Player 0 can move from Y to any clause. The winning condition
is given by

F0 = {Z : {X,¬X} ⊆ Z for at least one variable X}.

Obviously, (F0,F1) is a Streett-Rabin condition.
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We claim that Ψ is satisfiable if and only if Player 1 wins GΨ (from
any initial position).

(⇒) Assume that Ψ is satisfiable. There exists a satisfying interpre-
tation I : {X1, . . . , Xk} → {0, 1}. Player 1 moves from a clause C to a
literal Y ∈ C such that JYKI = 1. In the resulting play only literals with
JYKI = 1 are seen, and thus Player 1 wins.

(⇐) Assume that Ψ is unsatisfiable. It is sufficient to show that
Player 1 has no positional winning strategy. Every positional strategy f
for Player 1 chooses a literal Y = f (C) ∈ C for every clause C. Since Ψ is
unsatisfiable, there exist clauses C, C′ and a variable X such that f (C) =
X, f (C′) = ¬X. Otherwise, f would define a satisfying interpretation
for Ψ. Player 0’s winning strategy is to move from ¬X to C and from
any other literal to C′. Then X and ¬X are seen infinitely often, and
Player 0 wins. Thus, f is not a winning strategy for Player 1. If Player 1
has no positional winning strategy, he has no winning strategy at all.

Is Ψ 7→ GΨ a polynomial reduction? The problem that arises is
the winning condition: Both F0 and F1 contain exponentially many
sets. Moreover, the Zielonka tree Z(F0,F1) has exponential size. On
the other hand, F0 and F1 can be represented in a very compact way
using a Boolean formula in the following sense: Let (F0,F1) be a Muller
condition over C. A Boolean formula Ψ with variables in C defines the
set FΨ = {Y ⊆ C : IY |= Ψ} where

IY(c) =





1 if c ∈ Y

0 if c /∈ Y.

Ψ defines (F0,F1) if FΨ = F0 (and thus F¬Ψ = F1). Representing
the winning condition by a Boolean formula makes the reduction a
polynomial reduction. q.e.d.

Another way of defining Streett-Rabin games is by a collection of
pairs (L, R) with L, R ⊆ C. The collection {(L1, R1), . . . , (Lk, Rk)} defines
the Muller condition (F0,F1) given by:

F0 = {X ⊆ C : X ∩ Li ̸= ∅ ⇒ X ∩ Ri ̸= ∅ for all i ≤ k}.
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We have:

• Every Muller condition defined by a collection of pairs is a Streett-
Rabin condition.

• Every Streett-Rabin condition is definable by a collection of pairs.

• Representing a Streett-Rabin condition by a collection of pairs can
be exponentially more succinct than a representation by its Zielonka
tree or an explicit enumeration of F0 or F1: There are Streett-
Rabin conditions definable with k pairs such that the corresponding
Zielonka tree has k! leaves.

The reduction Ψ 7→ GΨ can be modified such that the winning
condition is given by 2m pairs, where m is the number of variables in Ψ:

L2i = {Xi}, R2i = {¬Xi}, L2i−1 = {¬Xi}, R2i−1 = {Xi}.

For the Streett-Rabin condition defined by {(L1, R1), . . . , (L2m, R2m)} we
have that

F1 =





Z :
Z contains a Literal Xi (or ¬Xi) such that the

complementary literal ¬Xi (respectively Xi) is

not contained in Z





.

The winning strategies used in the proof remain winning for the modi-
fied winning condition.

To prove the upper bounds for the complexity of Streett-Rabin
games we will consider solitaire games first.

Theorem 3.48. Let G be a Streett-Rabin game such that only Player 0
can do non-trivial moves. Then the winning regions W0 and W1 can be
computed in polynomial time.

Proof. Let us assume that the winning condition is given by the collection
P = {(L1, R1), . . . , (Lk, Rk)} of pairs. It is sufficient to prove the claim
for W0 since Streett-Rabin games are determined. Every play π will
ultimately stay in a strongly connected set U ⊆ V such that all positions
in U are seen infinitely often. Therefore, we call a strongly connected set
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U good for Player 0 if for all i ≤ k

Ω(U) ∩ Li ̸= ∅ ⇒ Ω(U) ∩ Ri ̸= ∅.

For every such U, Attr0(U) ⊆ W0. If U is not good for Player 0 then
there is a node in U which violates a pair (Li, Ri). In this case Player 0
wants to find a (strongly connected) subset of U where she can win
nevertheless. We can eliminate the pairs (Li, Ri) where Ω(U) ∩ Li = ∅
since they never violate the winning condition. On the other hand,
Player 0 loses if a node of

Ũ = {u ∈ U | Ω(u) ∈ Li for some i such that Ω(U) ∩ Ri = ∅}

is visited again and again. Thus we will reduce the game from U to U \ Ũ
with the modified winning condition P ′ = {(Li, Ri) ∈ P : Ω(U) ∩ Li ̸=
∅}. This yields Algorithm 3.1.

Algorithm 3.1. A polynomial time algorithm solving solitaire Streett-
Rabin games

Algorithm WinReg(G,P)
Input: Streett-Rabin game with game graph G and pairs condition P .
Output: W0, the winning region for Player 0.

W0 := ∅;
Decompose G into its SCCs;
For every SCC U do

P ′ := {(Li, Ri) : Ω(U) ∩ Li ̸= ∅};
Ũ := {u ∈ U : Ω(u) ∈ Li for some i such that Ω(U) ∩ Ri = ∅};
if Ũ = ∅ then W := W ∪ U;
else W := W ∪ WinReg(G ↾U\(̃U)

,P ′);
enddo;
W0 := Attr0(W);
Output W0;

The SCC decomposition can be computed in linear time. The de-
composition algorithm will be called less than |V| times, the rest are
elementary steps. Therefore, the algorithm runs in polynomial time.
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It remains to show that W0 = WinReg(G,P):
(⊆) Let v ∈ W0. Player 0 can reach from v a strongly connected set

S that satisfies the winning condition. S is a subset of an SCC U of G. If
U satisfies the winning condition, then v ∈ WinReg(G,P). Otherwise,
S ⊆ U \ Ũ, and S is contained in an SCC of G ↾U\Ũ. The repetition of
the argument leads to S ⊆ W and therefore v ∈ WinReg(G,P)

(⊇) Let v ∈ WinReg(G,P). The algorithm finds a strongly con-
nected set U (an SCC of a subgraph) that is reachable from v and that
satisfies the winning condition. By moving from v into U, staying there,
and visiting all positions in U infinitely often, Player 0 wins. Thus
v ∈ W0. q.e.d.

Theorem 3.49. Deciding whether Player σ wins from a given position in
a Streett-Rabin game is

• coNP-complete for σ = 0,
• NP-complete for σ = 1.

Proof. It suffices to prove the claim for Player 1 since W0 is the comple-
ment of W1. Hardness follows from Theorem 3.47. To decide whether
v ∈ W1, guess a positional strategy for Player 1 and construct the in-
duced solitaire game, in which only Player 0 has non-trivial moves.
Then decide in polynomial time whether v is in the winning region of
Player 1 in the solitaire game (according to Theorem 3.48), i.e. whether
the strategy is winning from v. If this is the case, accept; otherwise
reject. q.e.d.

Remark 3.50. The complexity of computing the winning regions in arbi-
trary Muller games depends to a great amount on the representation of
the winning condition. For any reasonable representation, the problem
is in Pspace, and many representations are so succinct as to render the
problem Pspace-hard. Only recently, it was shown that, given an explicit
representation of the winning condition, the problem of deciding the
winner is in P.
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