
Logic and Games
WS 2015/2016

Prof. Dr. Erich Grädel
Notes and Revisions by Matthias Voit

Mathematische Grundlagen der Informatik
RWTH Aachen

cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizenziert unter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2016 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 Reachability Games and First-Order Logic 1
1.1 Model Checking . 1
1.2 Model Checking Games for Modal Logic 2
1.3 Reachability and Safety Games 5
1.4 Games as an Algorithmic Construct: Alternating Algorithms . 10
1.5 Model Checking Games for First-Order Logic 20

2 Parity Games and Fixed-Point Logics 25
2.1 Parity Games . 25
2.2 Algorithms for parity games . 30
2.3 Fixed-Point Logics . 35
2.4 Model Checking Games for Fixed-Point Logics 37
2.5 Defining Winning Regions in Parity Games 42

3 Infinite Games 45
3.1 Determinacy . 45
3.2 Gale-Stewart Games . 47
3.3 Topology . 53
3.4 Determined Games . 59
3.5 Muller Games and Game Reductions 61
3.6 Complexity . 74

4 Basic Concepts of Mathematical Game Theory 79
4.1 Games in Strategic Form . 79
4.2 Nash equilibria . 81
4.3 Two-person zero-sum games . 85
4.4 Regret minimization . 86
4.5 Iterated Elimination of Dominated Strategies 89
4.6 Beliefs and Rationalisability . 95

4.7 Games in Extensive Form . 98
4.8 Subgame-perfect equilibria in infinite games 102

Appendix A 111
4.9 Cardinal Numbers . 119 1 Reachability Games and

First-Order Logic

1.1 Model Checking

One of the fundamental algorithmic tasks in logic is model checking.
For a logic L and a domain D of (finite) structures, the model-checking
problem asks, given a structure A ∈ D and a formula ψ ∈ L, whether
A is a model of ψ. Notice that an instance of the model-checking
problem has two inputs: a structure and a formula. We can measure
the complexity in terms of both inputs, and this is what is commonly
refered to as the combined complexity of the model-checking problem (for
L and D). However, in many cases, one of the two inputs is fixed, and
we measure the complexity only in terms of the other. If we fix the
structure A, then the model-checking problem for L on this structure
amounts to deciding ThL(A) := {ψ ∈ L : A |= ψ}, the L-theory of A.
The complexity of this problem is called the expression complexity of the
model-checking problem (for L on A). For first-order logic (FO) and for
monadic second-order logic (MSO) in particular, such problems have a
long tradition in logic and numerous applications in many fields. Of
great importance in many areas of logic, in particular for finite model
theory or databases, are model-checking problems for a fixed formula
ψ, which amounts to deciding the model class of ψ inside D, that is
ModD(ψ) := {A ∈ D : A |= ψ}. Its complexity is the structure complexity
or data complexity of the model-checking problem (for ψ on D).

One of the important themes in this course is a game-based approach
to model checking. The general idea is to reduce the problem whether
A |= ψ to a strategy problem for a model checking game G(A, ψ) played
by two players called Verifier (or Player 0) and Falsifier (or Player 1). We

1

1 Reachability Games and First-Order Logic

want to have the following relation between these two problems:

A |= ψ iff Verifier has a winning strategy for G(A, ψ).

We can then do model checking by constructing, or proving the existence
of, winning strategies.

To assess the efficiency of games as a solution for model checking
problems, we have to consider the complexity of the resulting model
checking games based on the following criteria:

• Are all plays necessarily finite?

• If not, what are the winning conditions for infinite plays?

• Do the players always have perfect information?

• What is the structural complexity of the game graphs?

• How does the size of the graph depend on different parameters of
the input structure and the formula?

For first-order logic (FO) and modal logic (ML) we have only fi-
nite plays with positional winning conditions, and, as we shall see,
the winning regions are computable in linear time with respect to the
size of the game graph. Model checking games for fixed-point logics
however admit infinite plays, and we use so-called parity conditions to
determine the winner of such plays. It is still an open question whether
winning regions and winning strategies in parity games are computable
in polynomial time.

1.2 Model Checking Games for Modal Logic

The first logic that we discuss is propositional modal logic (ML). Let us
first briefly review its syntax and semantics:

Definition 1.1. Given a set A of actions and a set {Pi : i ∈ I} of atomic
propositions, the set of formulae of ML is inductively defined:

• All atomic propositions Pi are formulae of ML.

• If ψ, φ are formulae of ML, then so are ¬ψ, (ψ ∧ φ) and (ψ ∨ φ).

• If ψ ∈ ML and a ∈ A, then ⟨a⟩ψ ∈ ML and [a]ψ ∈ ML.

2

1.2 Model Checking Games for Modal Logic

Remark 1.2. If there is only one action a ∈ A, we write ♢ψ and □ψ

instead of ⟨a⟩ψ and [a]ψ, respectively.

Definition 1.3. A transition system or Kripke structure with actions from a
set A and atomic properties {Pi : i ∈ I} is a structure

K = (V, (Ea)a∈A, (Pi)i∈I)

with a universe V of states, binary relations Ea ⊆ V × V describing
transitions between the states, and unary relations Pi ⊆ V describing the
atomic properties of states.

A transition system can be seen as a labelled graph where the nodes
are the states of K, the unary relations provide labels of the states, and
the binary transition relations can be pictured as sets of labelled edges.

Definition 1.4. Let K = (V, (Ea)a∈A, (Pi)i∈I) be a transition system,
ψ ∈ ML a formula and v a state of K. The model relationship K, v |= ψ,
i.e., ψ holds at state v of K, is inductively defined:

• K, v |= Pi if and only if v ∈ Pi.

• K, v |= ¬ψ if and only if K, v ̸|= ψ.

• K, v |= ψ ∨ φ if and only if K, v |= ψ or K, v |= φ.

• K, v |= ψ ∧ φ if and only if K, v |= ψ and K, v |= φ.

• K, v |= ⟨a⟩ψ if and only if there exists w such that (v, w) ∈ Ea and
K, w |= ψ.

• K, v |= [a]ψ if and only if K, w |= ψ holds for all w with (v, w) ∈ Ea.

For a transition system K and a formula ψ we define the extension
JψKK := {v : K, v |= ψ} as the set of states of K where ψ holds.

For the game-based approach to model-checking, it is convenient to
assume that modal formulae are written in negation normal form, i.e.
negation is applied to atomic propositions only. This does not reduce
the expressiveness of modal logic since every formula can be efficiently
translated into negation normal form by applying De Morgan’s laws
and the duality of □ and ♢ (i.e. ¬⟨a⟩ψ ≡ [a]¬ψ and ¬[a]ψ ≡ ⟨a⟩¬ψ) to
push negations to the atomic subformulae.

3

1 Reachability Games and First-Order Logic

Syntactically, modal logic is an extension of propositional logic.
However, since ML is evaluated over transition systems, i.e. structures,
it is often useful to see it as a fragment of first-order logic.

Theorem 1.5. For each formula ψ ∈ ML there is a first-order formula
ψ∗(x) (with only two variables), such that for each transition system K
and all its states v we have that K, v |= ψ ⇐⇒ K |= ψ∗(v).

Proof. The transformation is defined inductively, as follows:

Pi 7−→ Pix

¬ψ 7−→ ¬ψ∗(x)

(ψ ◦ φ) 7−→ (ψ∗(x) ◦ φ∗(x)), where ◦ ∈ {∧,∨,→}
⟨a⟩ψ 7−→ ∃y(Eaxy ∧ ψ∗(y))

[a]ψ 7−→ ∀y(Eaxy → ψ∗(y))

where ψ∗(y) is obtained from ψ∗(x) by interchanging x and y every-
where in the formula. q.e.d.

We are now ready to describe the model checking games for ML.
Given a transition system K and a formula ψ ∈ ML, we define a game
G(K, ψ) whose positions are pairs (φ, v) where φ is a subformula of
ψ and v ∈ V is a node of K. From any position (φ, v) in this game,
Verifier’s goal is to show that K, v |= φ, whereas Falsifier tries to establish
that K, v ̸|= φ.

In the game, Verifier moves at positions of the form (φ ∨ ϑ, v), with
the choice to move either to (φ, v) or to (ϑ, v), and at positions (⟨a⟩φ, v),
where she can move to any position (φ, w) with w ∈ vEa. Analogously,
Falsifier moves from positions (φ ∧ ϑ, v) to either (φ, v) or (ϑ, v), and
from ([a]φ, v) to any position (φ, w) with w ∈ vEa. Finally, at literals,
i.e. if φ = Pi or φ = ¬Pi, the position (φ, v) is a terminal position where
Verifier has won if K, v |= φ, and Falsifier has won if K, v ̸|= φ.

The correctness of the construction of G(K, ψ) follows readily by
induction.

Proposition 1.6. For any position (φ, v) of G(K, ψ) we have that

K, v |= φ ⇔ Verifier has a winning strategy for G(K, ψ) from (φ, v).

4

1.3 Reachability and Safety Games

1.3 Reachability and Safety Games

The model-checking games for propositional modal logic, that we have
just discussed, are an instance of reachability games played on graphs or,
more precisely, two-player games with perfect information and positional
winning conditions, played on a game graph (or arena)

G = (V, V0, V1, E)

where the set V of positions is partitioned into sets of positions V0 and
V1 belonging to Player 0 and Player 1, respectively. Player 0 moves from
positions v ∈ V0, while Player 1 moves from positions v ∈ V1. All moves
are along edges, and so the interaction of the players, starting from an
initial position v0, produces a finite or infinite play which is a sequence
v0v1v2 . . . with (vi, vi+1) ∈ E for all i.

The winning conditions of the players are based on a simple posi-
tional principle: Move or lose! This means that Player σ has won at a
position v in the case that position v belongs to his opponent and there
are no moves available from that position. Thus the goal of Player σ is to
reach a position in Tσ := {v ∈ V1−σ : vE = ∅}. We call this a reachability
condition.

But note that this winning condition applies to finite plays only.
If the game graph admits infinite plays (for instance cycles) then we
must either consider these as draws, or introduce a winning condition
for infinite plays. The dual notion of a reachability condition is a safety
condition where Player σ just has the objective to avoid a given set of
‘bad’ positions, which in this case is the set T1−σ, and to remain inside
the safe region V \ T1−σ.

A (positional) strategy for Player σ in such a game G is a (partial)
function f : {v ∈ Vσ : vE ̸= ∅} → V such that (v, f (v)) ∈ E. A finite or
infinite play v0v1v2 . . . is consistent with f if vi+1 = f (vi) for every i such
that vi ∈ Vσ. A strategy f for Player σ is winning from v0 if every play
that starts at initial position v0 and that is consistent with f is won by
Player σ.

We first consider reachability games where both players play with the

5

1 Reachability Games and First-Order Logic

reachability objective to force the play to a position in Tσ. We define
winning regions

Wσ := {v ∈ V : Player σ has a winning strategy from position v}.

If W0 ∪ W1 = V, i.e. for each v ∈ V one of the players has a winning
strategy, the game G is called determined. A play which is not won by
any of the players is considered a draw.

Example 1.7. No player can win from one of the middle two nodes:

□ □

The winning regions of a reachability game G = (V, V0, V1, E) can
be constructed inductively as follows:

W0
σ = Tσ and

W i+1
σ = W i

σ ∪ {v ∈ Vσ : vE ∩ W i
σ ̸= ∅} ∪ {v ∈ V1−σ : vE ⊆ W i

σ}.

Clearly W i
σ is the region of those positions from which Player σ has a

strategy to win in at most i moves, and for finite game graphs, with
|V| = n, we have that Wσ = Wn

σ .

Next we consider the case of a reachability-safety game, where Player
0, as above, plays with the reachability objective to force the play to a
terminal position in T0, whereas player 1 plays with the safety objective
of avoiding T0, i.e. to keep the play inside the safe region S1 := V \ T0.
Notice that there are no draws in such a game.

The winning region W0 of Player 0 can be defined as in the case
above, but the winning region W1 of Player 1 is now the maximal set
W ⊆ S1 such that from all w ∈ W Player 1 has a strategy to remain
inside W, which can be defined as the limit of the descending chain
W0

1 ⊇ W1
1 ⊇ W2

1 ⊇ . . . with

W0
1 = S1 and

W i+1
1 = W i

1 ∩ {v ∈ V : (v ∈ V0 and vE ⊆ W i
1) or

(v ∈ V1 and vE ∩ W i
1 ̸= ∅)}.

6

1.3 Reachability and Safety Games

Again on finite game graphs, with |V| = n, we have that W1 = Wn
σ .

This leads us to two fundamental concepts for the analysis of games
on graphs: attractors and traps. Let G = (V, V0, V1, E) be a game graph
and X ⊆ V.

Definition 1.8. The attractor of X for Player σ, in short Attrσ(X) is the set
of those positions from which Player σ has a strategy to reach X (or to
win because the opponent cannot move anymore). We can inductively
define Attrσ(X) :=

⋃
n∈N Xn, where

X0 = X and

Xi+1 = Xi ∪ {v ∈ Vσ : vE ∩ Xi ̸= ∅} ∪ {v ∈ V1−σ : vE ⊆ Xi}.

For instance, the winning region Wσ in a reachability game is the
attractor of the winning positions: Wσ = Attrσ(Tσ).

A set Y ⊆ V \ T1−σ =: Sσ is called a trap for Player 1 − σ if Player σ

has a strategy to guarantee that from each v ∈ Y the play will remain
inside Y. Note that the complement of an attractor Attrσ(X) is a trap
for player σ. The maximal trap Y of Player 1 − σ can be defined as
Y =

⋂
n∈N Yn, where

Y0 =Sσ and

Yi+1 =Yi ∩ {v : (v ∈ Vσ and vE ∩ Yi ̸= ∅) or

(v ∈ V1−σ and vE ⊆ Yi)}.

The winning region of a Player σ with the safety objective for Sσ is
the maximal trap for player 1 − σ.

We consider several algorithmic problems for a given reachability
game G: The computation of winning regions W0 and W1, the computa-
tion of winning strategies, and the associated decision problem

Game := {(G, v) : Player 0 has a winning strategy for G from v}.

Theorem 1.9. Game is P-complete and decidable in time O(|V|+ |E|).

Note that this remains true for strictly alternating games.

7

1 Reachability Games and First-Order Logic

Algorithm 1.1. A linear time algorithm for Game

Input: A game G = (V, V0, V1, E)
output: Winning regions W0 and W1

for all v ∈ V do (∗ 1: Initialisation ∗)
win[v] := ⊥
P[v] := {u : (u, v) ∈ E}
n[v] := |vE|

end do

for all v ∈ V0 (∗ 2: Calculate win ∗)
if n[v] = 0 then Propagate(v, 1)

for all v ∈ V1
if n[v] = 0 then Propagate(v, 0)

return win

procedure Propagate(v, σ)
if win[v] ̸= ⊥ then return
win[v] := σ (∗ 3: Mark v as winning for player σ ∗)
for all u ∈ P[v] do (∗ 4: Propagate change to predecessors ∗)

n[u] := n[u]− 1
if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)

end do
end

8

1.3 Reachability and Safety Games

The inductive definition of an attractor shows that winning regions
for both players can be computed efficiently. Hence we can also solve
Game in polynomial time. To solve Game in linear time, we use the
slightly more involved Algorithm 1.1. Procedure Propagate will be
called once for every edge in the game graph, so the running time of
this algorithm is linear with respect to the number of edges in G.

Furthermore, we can show that the decision problem Game is equiv-
alent to the satisfiability problem for propositional Horn formulae. We
recall that propositional Horn formulae are finite conjunctions

∧
i∈I Ci of

clauses Ci of the form

X1 ∧ . . . ∧ Xn → X or

X1 ∧ . . . ∧ Xn︸ ︷︷ ︸
body(Ci)

→ 0︸︷︷︸
head(Ci)

.

A clause of the form X or 1 → X has an empty body.
We will show that Sat-Horn and Game are mutually reducible via

logspace and linear-time reductions.

(1) Game ≤log-lin Sat-Horn
For a game G = (V, V0, V1, E), we construct a Horn formula ψG with
clauses

v → u for all u ∈ V0 and (u, v) ∈ E, and

v1 ∧ . . . ∧ vm → u for all u ∈ V1 and uE = {v1, . . . , vm}.

The minimal model of ψG is precisely the winning region of Player 0,
so

(G, v) ∈ Game ⇐⇒ ψG ∧ (v → 0) is unsatisfiable.

(2) Sat-Horn ≤log-lin Game
For a Horn formula ψ(X1, . . . , Xn) =

∧
i∈I Ci, we define a game

Gψ = (V, V0, V1, E) as follows:

V = {0} ∪ {X1, . . . , Xn}︸ ︷︷ ︸
V0

∪ {Ci : i ∈ I}︸ ︷︷ ︸
V1

and

9

1 Reachability Games and First-Order Logic

E = {X → Ci : X = head(Ci)} ∪ {Ci → Xj : Xj ∈ body(Ci)},

i.e., Player 0 moves from a variable to some clause containing the
variable as its head, and Player 1 moves from a clause to some
variable in its body. Player 0 wins a play if, and only if, the play
reaches a clause C with body(C) = ∅. Furthermore, Player 0 has a
winning strategy from position X if, and only if, ψ |= X, so we have

Player 0 wins from position 0 ⇐⇒ ψ is unsatisfiable.

These reductions show that Sat-Horn is also P-complete and, in
particular, also decidable in linear time.

1.4 Games as an Algorithmic Construct: Alternating
Algorithms

Alternating algorithms are algorithms whose set of configurations is
divided into accepting, rejecting, existential and universal configurations.
The acceptance condition of an alternating algorithm A is defined by a
game played by two players ∃ and ∀ on the computation graph G(A, x)
(or equivalently, the computation tree T (A, x)) of A on input x. The
positions in this game are the configurations of A, and we allow moves
C → C′ from a configuration C to any of its successor configurations
C′. Player ∃ moves at existential configurations and wins at accepting
configurations, while Player ∀ moves at universal configurations and
wins at rejecting configurations. By definition, A accepts some input x if
and only if Player ∃ has a winning strategy for the game played on TA,x.

We will introduce the concept of alternating algorithms formally,
using the model of a Turing machine, and we prove certain relation-
ships between the resulting alternating complexity classes and usual
deterministic complexity classes.

1.4.1 Turing Machines

The notion of an alternating Turing machine extends the usual model of
a (deterministic) Turing machine which we introduce first. We consider

10

1.4 Games as an Algorithmic Construct: Alternating Algorithms

Turing machines with a separate input tape and multiple linear work
tapes which are divided into basic units, called cells or fields. Informally,
the Turing machine has a reading head on the input tape and a com-
bined reading and writing head on each of its work tapes. Each of the
heads is at one particular cell of the corresponding tape during each
point of a computation. Moreover, the Turing machine is in a certain
state. Depending on this state and the symbols the machine is currently
reading on the input and work tapes, it manipulates the current fields of
the work tapes, moves its heads and changes to a new state.

Formally, a (deterministic) Turing machine with separate input tape and
k linear work tapes is given by a tuple M = (Q, Γ, Σ, q0, Facc, Frej, δ), where
Q is a finite set of states, Σ is the work alphabet containing a designated
symbol � (blank), Γ is the input alphabet, q0 ∈ Q is the initial state,
F := Facc ∪ Frej ⊆ Q is the set of final states (with Facc the accepting states,
Frej the rejecting states and Facc ∩ Frej = ∅), and δ : (Q \ F)× Γ × Σk →
Q × {−1, 0, 1} × Σk × {−1, 0, 1}k is the transition function.

A configuration of M is a complete description of all relevant facts
about the machine at some point during a computation, so it is a tuple
C = (q, w1, . . . , wk, x, p0, p1, . . . , pk) ∈ Q × (Σ∗)k × Γ∗ × Nk+1 where q
is the current state, wi is the contents of work tape number i, x is the
contents of the input tape, p0 is the position on the input tape and pi is
the position on work tape number i. The contents of each of the tapes
is represented as a finite word over the corresponding alphabet[, i.e., a
finite sequence of symbols from the alphabet]. The contents of each of
the fields with numbers j > |wi| on work tape number i is the blank
symbol (we think of the tape as being infinite). A configuration where x
is omitted is called a partial configuration. The configuration C is called
final if q ∈ F. It is called accepting if q ∈ Facc and rejecting if q ∈ Frej.

The successor configuration of C is determined by the current state and
the k + 1 symbols on the current cells of the tapes, using the transition
function: If δ(q, xp0 , (w1)p1 , . . . , (wk)pk) = (q′, m0, a1, . . . , ak, m1, . . . , mk, b),
then the successor configuration of C is ∆(C) = (q′, w′, p′, x), where for
any i, w′

i is obtained from wi by replacing symbol number pi by ai and
p′i = pi + mi. We write C ⊢M C′ if, and only if, C′ = ∆(C).

The initial configuration C0(x) = C0(M, x) of M on input x ∈ Γ∗ is

11

1 Reachability Games and First-Order Logic

given by the initial state q0, the blank-padded memory, i.e., wi = ε and
pi = 0 for any i ≥ 1, p0 = 0, and the contents x on the input tape.

A computation of M on input x is a sequence C0, C1, . . . of configu-
rations of M, such that C0 = C0(x) and Ci ⊢M Ci+1 for all i ≥ 0. The
computation is called complete if it is infinite or ends in some final con-
figuration. A complete finite computation is called accepting if the last
configuration is accepting, and the computation is called rejecting if the
last configuration is rejecting. M accepts input x if the (unique) complete
computation of M on x is finite and accepting. M rejects input x if the
(unique) complete computation of M on x is finite and rejecting. The
machine M decides a language L ⊆ Γ∗ if M accepts all x ∈ L and rejects
all x ∈ Γ∗ \ L.

1.4.2 Alternating Turing Machines

Now we shall extend deterministic Turing machines to nondeterministic
Turing machines from which the concept of alternating Turing machines
is obtained in a very natural way, given our game theoretical framework.

A nondeterministic Turing machine is nondeterministic in the sense
that a given configuration C may have several possible successor config-
urations instead of at most one. Intuitively, this can be described as the
ability to guess. This is formalised by replacing the transition function
δ : (Q \ F)× Γ × Σk → Q × {−1, 0, 1} × Σk × {−1, 0, 1}k by a transition
relation ∆ ⊆ ((Q \ F) × Γ × Σk) × (Q × {−1, 0, 1} × Σk × {−1, 0, 1}k).
The notion of successor configurations is defined as in the deterministic
case, except that the successor configuration of a configuration C may
not be uniquely determined. Computations and all related notions carry
over from deterministic machines in the obvious way. However, on
a fixed input x, a nondeterministic machine now has several possible
computations, which form a (possibly infinite) finitely branching compu-
tation tree TM,x. A nondeterministic Turing machine M accepts an input
x if there exists a computation of M on x which is accepting, i.e., if there
exists a path from the root C0(x) of TM,x to some accepting configuration.
The language of M is L(M) = {x ∈ Γ∗ | M accepts x}. Notice that for
a nondeterministic machine M to decide a language L ⊆ Γ∗ it is not

12

1.4 Games as an Algorithmic Construct: Alternating Algorithms

necessary that all computations of M are finite. (In a sense, we count
infinite computations as rejecting.)

From a game-theoretical perspective, the computation of a nondeter-
ministic machine can be viewed as a solitaire game on the computation
tree in which the only player (the machine) chooses a path through the
tree starting from the initial configuration. The player wins the game
(and hence, the machine accepts its input) if the chosen path finally
reaches an accepting configuration.

An obvious generalisation of this game is to turn it into a two-player
game by assigning the nodes to the two players who are called ∃ and
∀, following the intuition that Player ∃ tries to show the existence of a
good path, whereas Player ∀ tries to show that all selected paths are bad.
As before, Player ∃ wins a play of the resulting game if, and only if, the
play is finite and ends in an accepting leaf of the game tree. Hence, we
call a computation tree accepting if, and only if, Player ∃ has a winning
strategy for this game.

It is important to note that the partition of the nodes in the tree
should not depend on the input x but is supposed to be inherent to
the machine. Actually, it is even independent of the contents of the
work tapes, and thus, whether a configuration belongs to Player ∃ or to
Player ∀ merely depends on the current state.

Formally, an alternating Turing machine is a nondeterministic Turing
machine M = (Q, Γ, Σ, q0, Facc, Frej, ∆) whose set of states Q = Q∃ ∪ Q∀ ∪
Facc ∪ Frej is partitioned into existential, universal, accepting, and rejecting
states. The semantics of these machines is given by means of the game
described above.

Now, if we let accepting configurations belong to player ∀ and
rejecting configurations belong to player ∃, then we have the usual
winning condition that a player loses if it is his turn but he cannot move.
We can solve such games by determining the winner at leaf nodes and
propagating the winner successively to parent nodes. If at some node,
the winner at all of its child nodes is determined, the winner at this
node can be determined as well. This method is sometimes referred
to as backwards induction and it basically coincides with our method
for solving Game on trees (with possibly infinite plays). This gives the

13

1 Reachability Games and First-Order Logic

following equivalent semantics of alternating Turing machines:
The subtree TC of the computation tree of M on x with root C is

called accepting, if

• C is accepting
• C is existential and there is a successor configuration C′ of C such

that TC′ is accepting or
• C is universal and TC′ is accepting for all successor configurations

C′ of C.

M accepts an input x, if TC0(x) = TM,x is accepting.
For functions T, S : N → N, an alternating Turing machine M is

called T-time bounded if, and only if, for any input x, each computation
of M on x has length less or equal T(|x|). The machine is called S-
space bounded if, and only if, for any input x, during any computation
of M on x, at most S(|x|) cells of the work tapes are used. Notice
that time boundedness implies finiteness of all computations which is
not the case for space boundedness. The same definitions apply for
deterministic and nondeterministic Turing machines as well since these
are just special cases of alternating Turing machines. These notions
of resource bounds induce the complexity classes Atime containing
precisely those languages L such that there is an alternating T-time
bounded Turing machine deciding L and Aspace containing precisely
those languages L such that there is an alternating S-space bounded
Turing machine deciding L. Similarly, these classes can be defined for
nondeterministic and deterministic Turing machines.

We are especially interested in the following alternating complexity
classes:

• ALogspace =
⋃

d∈N Aspace(d · log n),
• APtime =

⋃
d∈N Atime(nd),

• APspace =
⋃

d∈N Aspace(nd).

Observe that Game ∈ Alogspace. An alternating algorithm which
decides Game with logarithmic space just plays the game. The algorithm
only has to store the current position in memory, and this can be done
with logarithmic space. We shall now consider a slightly more involved
example.

14

1.4 Games as an Algorithmic Construct: Alternating Algorithms

Example 1.10. QBF ∈ Atime(O(n)). W.l.o.g we assume that negation
appears only at literals. We describe an alternating procedure Eval(φ, I)
which computes, given a quantified Boolean formula ψ and a valuation
I : free(ψ) → {0, 1} of the free variables of ψ, the value JψKI .

Algorithm 1.2. Alternating algorithm deciding QBF.

Input: (ψ, I) where ψ ∈ QAL and I : free(ψ) → {0, 1}
if ψ = Y then

if I(Y) = 1 then accept
else reject

if ψ = φ1 ∨ φ2 then „∃“ guesses i ∈ {1, 2} , Eval(φi, I)
if ψ = φ1 ∧ φ2 then „∀“ chooses i ∈ {1, 2} , Eval(φi, I)
if ψ = ∃Xφ then „∃“ guesses j ∈ {0, 1} , Eval(φ, I [X = j])
if ψ = ∀Xφ then „∀“ chooses j ∈ {0, 1} , Eval(φ, I [X = j])

1.4.3 Alternating versus Deterministic Complexity Classes

The main results we want to establish in this section concern the re-
lationship between alternating complexity classes and deterministic
complexity classes. We will see that alternating time corresponds to
deterministic space, while by translating deterministic time into alternat-
ing space, we can reduce the complexity by one exponential. Here, we
consider the special case of alternating polynomial time and polynomial
space. We should mention, however, that these results can be generalised
to arbitrary large complexity bounds which are well behaved in a certain
sense.

Lemma 1.11. NPspace ⊆ APtime.

Proof. Let L ∈ NPspace and let M be a nondeterministic nl-space
bounded Turing machine which recognises L for some l ∈ N. The
machine M accepts some input x if, and only if, some accepting config-
uration is reachable from the initial configuration C0(x) in the config-
uration tree of M on x in at most k := 2cnl

steps for some c ∈ N. This
is due to the fact that there are most k different configurations of M on
input x which use at most nl cells of the memory which can be seen

15

1 Reachability Games and First-Order Logic

using a simple combinatorial argument. So if there is some accepting
configuration reachable from the initial configuration C0(x), then there
is some accepting configuration reachable from C0(x) in at most k steps.
This is equivalent to the existence of some intermediate configuration C′

that is reachable from C0(x) in at most k/2 steps and from which some
accepting configuration is reachable in at most k/2 steps.

So the alternating algorithm deciding L proceeds as follows. The ex-
istential player guesses such a configuration C′ and the universal player
chooses whether to check that C′ is reachable from C0(x) in at most k/2

steps or whether to check that some accepting configuration is reachable
from C′ in at most k/2 steps. Then the algorithm (or equivalently, the
game) proceeds with the subproblem chosen by the universal player, and
continues in this binary search like fashion. Obviously, the number of
steps which have to be performed by this procedure to decide whether
x is accepted by M is logarithmic in k. Since k is exponential in nl, the
time bound of M is dnl for some d ∈ N, so M decides L in polynomial
time. q.e.d.

Lemma 1.12. APtime ⊆ Pspace.

Proof. Let L ∈ APtime and let A be an alternating nl-time bounded
Turing machine that decides L for some l ∈ N. Then there is some
r ∈ N such that any configuration of A on any input x has at most r
successor configurations and w.l.o.g. we can assume that any non-final
configuration has precisely r successor configurations. We can think of
the successor configurations of some non-final configuration C as being
enumerated as C1, . . . , Cr. Clearly, for given C and i we can compute Ci.
The idea for a deterministic Turing machine M to check whether some
input x is in L is to perform a depth-first search on the computation tree
TA,x of A on x. The crucial point is that we cannot construct and keep
the whole configuration tree TA,x in memory since its size is exponential
in |x| which exceeds our desired space bound. However, since the length
of each computation is polynomially bounded, it is possible to keep
a single computation path in memory and to construct the successor
configurations of the configuration under consideration on the fly.

Roughly, the procedure M can be described as follows. We start
with the initial configuration C0(x). Given any configuration C under

16

1.4 Games as an Algorithmic Construct: Alternating Algorithms

consideration, we propagate 0 to the predecessor configuration if C is
rejecting and we propagate 1 to the predecessor configuration if C is
accepting. If C is neither accepting nor rejecting, then we construct,
for i = 1, . . . , r the successor configuration Ci of C and proceed with
checking Ci. If C is existential, then as soon as we receive 1 for some i,
we propagate 1 to the predecessor. If we encounter 0 for all i, then we
propagate 0. Analogously, if C is universal, then as soon as we receive
a 0 for some i, we propagate 0. If we receive only 1 for all i, then we
propagate 1. Then x is in L if, and only if, we finally receive 1 at C0(x).
Now, at any point during such a computation we have to store at most
one complete computation of A on x. Since A is nl-time bounded, each
such computation has length at most nl and each configuration has size
at most c · nl for some c ∈ N. So M needs at most c · n2l memory cells
which is polynomial in n. q.e.d.

So we obtain the following result.

Theorem 1.13. (Parallel time complexity = sequential space complexity)

(1) APtime = Pspace.
(2) AExptime = Expspace.

Proposition (2) of this theorem is proved exactly the same way as
we have done it for proposition (1). Now we prove that by translating
sequential time into alternating space, we can reduce the complexity by
one exponential.

Lemma 1.14. Exptime ⊆ APspace

Proof. Let L ∈ Exptime. Using a standard argument from complexity
theory, there is a deterministic Turing machine M = (Q, Σ, q0, δ) with
time bound m := 2c·nk

for some c, k ∈ N with only a single tape (serving
as both input and work tape) which decides L. (The time bound of
the machine with only a single tape is quadratic in that of the original
machine with k work tapes and a separate input tape, which, however,
does not matter in the case of an exponential time bound.) Now if
Γ = Σ ⊎ (Q × Σ) ⊎ {#}, then we can describe each configuration C of M
by a word

17

1 Reachability Games and First-Order Logic

C = #w0 . . . wi−1(qwi)wi+1 . . . wt# ∈ Γ∗.

Since M has time bound m and only one single tape, it has space bound
m. So, w.l.o.g., we can assume that |C| = m+ 2 for all configurations C of
M on inputs of length n. (We just use a representation of the tape which
has a priori the maximum length that will occur during a computation
on an input of length n.) Now the crucial point in the argumentation is
the following. If C ⊢ C′ and 1 ≤ i ≤ m, symbol number i of the word
C′ only depends on the symbols number i − 1, i and i + 1 of C. This
allows us to decide whether x ∈ L(M) with the following alternating
procedure which uses only polynomial space.

Player ∃ guesses some number s ≤ m of steps of which he claims
that it is precisely the length of the computation of M on input x.
Furthermore, ∃ guesses some state q ∈ Facc, a Symbol a ∈ Σ and
a number i ∈ {0, . . . , s}, and he claims that the i-th symbol of the
configuration C of M after the computation on x is (qa). (So players
start inspecting the computation of M on x from the final configuration.)
If M accepts input x, then obviously player ∃ has a possibility to choose
all these objects such that his claims can be validated. Player ∀ wants to
disprove the claims of ∃. Now, player ∃ guesses symbols a−1, a0, a1 ∈ Γ
of which he claims that these are the symbols number i − 1, i and i + 1
of the predecessor configuration of the final configuration C. Now,
∀ can choose any of these symbols and demand that ∃ validates his
claim for this particular symbol. This symbol is now the symbol under
consideration, while i is updated according to the movement of the
(unique) head of M. Now, these actions of the players take place for
each of the s computation steps of M on x. After s such steps, we check
whether the current symbol and the current position are consistent with
the initial configuration C0(x). The only information that has to be
stored in the memory is the position i on the tape, the number s which
∃ has initially guessed and the current number of steps. Therefore, the
algorithm uses space at most O(log(m)) = O(nk) which is polynomial in
n. Moreover, if M accepts input x then obviously player ∃ has a winning
strategy for the computation game. If, conversely, M rejects input x, then
the combination of all claims of player ∃ cannot be consistent and player

18

1.4 Games as an Algorithmic Construct: Alternating Algorithms

∀ has a strategy to spoil any (cheating) strategy of player ∃ by choosing
the appropriate symbol at the appropriate computation step. q.e.d.

Finally, we make the simple observation that it is not possible
to gain more than one exponential when translating from sequential
time to alternating space. (Notice that Exptime is a proper subclass of
2Exptime.)

Lemma 1.15. APspace ⊆ Exptime

Proof. Let L ∈ APspace, and let A be an alternating nk-space bounded
Turing machine which decides L for some k ∈ N. Moreover, for an input
x of A, let Conf(A, x) be the set of all configurations of A on input x. Due
to the polynomial space bound of A, this set is finite and its size is at most
exponential in |x|. So we can construct the graph G = (Conf(A, x),⊢)
in time exponential in |x|. Moreover, a configuration C is reachable from
C0(x) in TA,x if and only if C is reachable from C0(x) in G. So to check
whether A accepts input x we simply decide whether player ∃ has a
winning strategy for the game played on G from C0(x). This can be
done in time linear in the size of G, so altogether we can decide whether
x ∈ L(A) in time exponential in |x|. q.e.d.

Theorem 1.16. (Translating sequential time into alternating space)

(1) ALogspace = P.

(2) APspace = Exptime.

Proposition (1) of this theorem is proved using exactly the same
arguments as we have used for proving proposition (2). An overview
over the relationship between deterministic and alternating complexity
classes is given in Figure 1.1.

Logspace ⊆ Ptime ⊆ Pspace ⊆ Exptime ⊆ Expspace
|| || || ||

ALogspace ⊆ APtime ⊆ APspace ⊆ AExptime

Figure 1.1. Relation between deterministic and alternating complexity classes

19

1 Reachability Games and First-Order Logic

1.5 Model Checking Games for First-Order Logic

Let us first recall the syntax of FO formulae on relational structures.
We have that Ri(x̄), ¬Ri(x̄), x = y and x ̸= y are well-formed valid FO
formulae, and inductively for FO formulae φ and ψ, we have that φ ∨ ψ,
φ ∧ ψ, ∃xφ and ∀xφ are well-formed FO formulae. This way, we allow
only formulae in negation normal form where negations occur only at
atomic subformulae and all junctions except ∨ and ∧ are eliminated.
These constraints do not limit the expressiveness of the logic, but the
resulting games are easier to handle.

For a structure A = (A, R1, . . . , Rm) with Ri ⊆ Ari , we define the
evaluation game G(A, ψ) as follows:

We have positions φ(ā) for every subformula φ(x̄) of ψ and every
ā ∈ Ak.

At a position φ ∨ ϑ, Verifier can choose to move either to φ or to
ϑ, while at positions ∃xφ(x, b̄), he can choose an instantiation a ∈ A of
x and move to φ(a, b̄). Analogously, Falsifier can move from positions
φ ∧ ϑ to either φ or ϑ and from positions ∀xφ(x, b̄) to φ(a, b̄) for an
a ∈ A.

The winning condition is evaluated at positions with atomic or
negated atomic formulae φ, and we define that Verifier wins at φ(ā) if,
and only if, A |= φ(ā), and Falsifier wins if, and only if, A ̸|= φ(ā).

In order to determine the complexity of FO model checking, we
have to consider the process of determining whether A |= ψ. To decide
this question, we have to construct the game G(A, ψ) and check whether
Verifier has a winning strategy from position ψ. The size of the game
graph is bound by |G(A, ψ)| ≤ |ψ| · |A|width(ψ), where width(ψ) is the
maximal number of free variables in the subformulae of ψ. So the game
graph can be exponential, and therefore we can get only exponential time
complexity for Game. In particular, we have the following complexities
for the general case:

• alternating time: O(|ψ|+ qd(ψ) log |A|)
where qd(ψ) is the quantifier-depth of ψ,

• alternating space: O(width(ψ) · log |A|+ log |ψ|),
• deterministic time: O(|ψ| · |A|width(ψ)) and

20

1.5 Model Checking Games for First-Order Logic

• deterministic space: O(|ψ|+ qd(ψ) log |A|).

Efficient implementations of model checking algorithms will con-
struct the game graph on the fly while solving the game.

We obtain that the structural complexity of FO model checking
is ALogtime, and both the expression complexity and the combined
complexity are PSpace.

Fragments of FO with Efficient Model Checking
We have seen that the size of the model checking games for first-

order fomulae is exponential with respect to the width of the formulae,
so we do not obtain polynomial-time model-checking algorithms in the
general case. We now consider appropriate restrictions of FO, that lead
to fragments with small model-checking games and thus to efficient
game-based model-checking algorithms.

The k-variable fragment of FO is

FOk := {ψ ∈ FO : width(ψ) ≤ k}.

Clearly |G(A, ψ)| ≤ |ψ| · |A|k for any finite structure A and any
ψ ∈ FOk.

Theorem 1.17. ModCheck(FOk) is solvable in time O(|ψ| · |A|k) and
P-complete, for every k ≥ 2.

As shown in Theorem 1.5, modal logic can be embedded (efficiently)
into FO2. Hence, also ML model checking has polynomial time complex-
ity.

It is a general observation that modal logics have many convenient
model-theoretic and algorithmic properties. Besides efficient model-
checking the following facts are important in many applications of
modal logic.

• The satisfiability problem for ML is decidable (in PSpace),

• ML has the finite model property: each satisfiable formula has a
finite model,

• ML has the tree model property: each satisfiable formula has a
tree-shaped model,

21

1 Reachability Games and First-Order Logic

• algorihmic problems for ML can be solved by automata-based meth-
ods.

The embedding of ML into FO2 has sometimes been proposed as
an explanation for the good properties of modal logic, since FO2 is a
first-order fragment that shares some of these properties. However, more
recently, it has been seen that this explanation has its limitations and is
not really convincing. In particular, there are many extensions of ML
to temporal and dynamic logics such as LTL, CTL, CTL∗, PDL and the
µ-calculus Lµ that are of great importance for applications in computer
science, and that preserve many of the good algorithmic properties of
ML. Especially the associated satisfiability problems remain decidable.
However this is not at all true for the corresponding extension of FO2.

A better and more recent explanation for the good properties of
modal logic is that modal operators correspond to a restricted form of
quantification, namely guarded quantification. Indeed, in the embedding
of ML into FO2, all quantifiers are guarded by atomic formulae. This can
be vastly generalised beyond two-variable logic and involving formulae
of arbitrary relational vocabularies, leading to the guarded fragment of
FO.

Definition 1.18. The guarded fragment of first-order logic GF is the frag-
ment of first-order logic which allows only guarded quantification

∃ȳ(α(x̄, ȳ) ∧ φ(x̄, ȳ)) and ∀ȳ(α(x̄, ȳ) → φ(x̄, ȳ)),

where the guards α are atomic formulae containing all free variables of φ.

GF is a generalisation of modal logics: ML ⊆ GF ⊆ FO. Indeed, the
modal operators ♢ and □ can be expressed as

⟨a⟩φ ≡ ∃y(Eaxy ∧ φ(y)) and [a]φ ≡ ∀y(Eaxy → φ(y)).

It has turned out that the guarded fragment preserves (and explains
to some extent) essentially all of the good model-theoretic and algorith-
mic properties of modal logics, in a far more expressive setting. In terms
of model-checking games, we can observe that guarded logics have small

22

1.5 Model Checking Games for First-Order Logic

model checking games of size ∥G(A, ψ)∥ = O(|ψ| · ∥A∥), and so there
exist efficient game-based model-checking algorithms for them.

23

2 Parity Games and Fixed-Point
Logics

In the first chapter we have discussed model checking games for first-
order logic and modal logic. These games admit only finite plays and
their winning conditions are specified just by sets of positions, that the
players want to reach. Winning regions in these games can be computed
in linear time with respect to the size of the game graph.

However, in many computer science applications, more expressive
logics are needed, such as temporal logics, dynamic logics, fixed-point
logics and others. Model checking games for these logics admit infinite
plays and their winning conditions must be specified in a more elaborate
way. As a consequence, we have to consider the theory of infinite games.

For fixed-point logics, such as LFP or the modal µ-calculus, the
appropriate evaluation games are parity games. These are games of
possibly infinite duration with a function that assigns to each position
a natural number, called its priority. The winner of an infinite play is
determined according to whether the least priority seen infinitely often
during the play is even or odd.

2.1 Parity Games

Definition 2.1. A parity game is given by a labelled game graph G =

(V, V0, V1, E, Ω) as in Sect. 1.3 with a function Ω : V → N that assigns a
priority to each position. The set V of positions may be finite or infinite,
but |Ω(V)|, the number of different priorities which is called the index
of G, must be finite. As before, a finite play is lost by the player who
gets stuck, i.e. cannot move. For infinite plays v0v1v2 . . ., we have the
parity winning condition: If the least number appearing infinitely often in

25

2 Parity Games and Fixed-Point Logics

the sequence Ω(v0)Ω(v1) . . . of priorities is even, then Player 0 wins the
play, otherwise Player 1 wins.

A strategy (for Player σ) is a function f : V∗Vσ → V such that
f (v0v1 . . . vn) ∈ vnE. We say that a play π = v0v1 . . . is consistent with the
strategy f of Player σ if for each vi ∈ Vσ it holds that vi+1 = f (v0 . . . vi).
The strategy f is winning for Player σ from (or on) a set W ⊆ V if each
play starting in W that is consistent with f is won by Player σ.

In general, a strategy may depend on the entire history played so far,
and can thus be a very complicated object. However, we are interested
in simple strategies that depend only on the current position.

Definition 2.2. A strategy (of Player σ) is called positional (or memoryless)
if it only depends on the current position, but not on the history of the
play, which means that f (hv) = f (h′v) for all h, h′ ∈ V∗, v ∈ V. We can
view positional strategies simply as functions f : Vσ → V.

We shall see that positional strategies suffice to solve parity games.
Before we formulate and prove this Forgetful Determinacy Theorem, we
recall that positional strategies are of course sufficient whenever, as in
the previous chapter, the players have purely positional objectives such
as reachability or safety. Specifically, for every game G = (V, V0, V1, E)
and every X ⊆ V we have defined the attractor

Attrσ(X) = {v ∈ V : Player σ has a strategy from v to reach some

position x ∈ X ∪ Tσ}

and such an attractor strategy can, without loss of generality, assumed
to be positional. Similarly, if Y ⊆ V is a trap for Player σ, then Player
(1 − σ) has a positional trap strategy to keep the play inside Y.

Further we note that positional winning strategies on parts of the
game graph may be combined to positional winning strategies on larger
regions. Indeed, let f and f ′ be positional strategies for Player σ that are
winning on the sets W, W ′, respectively. Let (f + f ′) be the positional
strategy defined by

26

2.1 Parity Games

(f + f ′)(x) :=

f (x) if x ∈ W

f ′(x) otherwise.

Then (f + f ′) is a winning strategy on W ∪ W ′.
We can now turn to the proof of the Forgetful Determinacy Theorem.

Theorem 2.3 (Forgetful Determinacy). In any parity game, the set of
positions can be partitioned into two sets W0 and W1 such that Player 0
has a positional strategy that is winning on W0 and Player 1 has a
positional strategy that is winning on W1.

Proof. Let G = (V, V0, V1, E, Ω) be a parity game with |Ω(V)| = m.
Without loss of generality we can assume that Ω(V) = {0, . . . , m − 1} or
Ω(V) = {1, . . . , m}. We prove the statement by induction over |Ω(V)|.

In the case that |Ω(V)| = 1, i.e., Ω(V) = {0} or Ω(V) = {1}, either
Player 0 or Player 1 wins every infinite play. Her opponent can only win
by reaching a terminal position that does not belong to him. So we have,
for Ω(V) = {σ},

W1−σ = Attr1−σ(T1−σ) and

Wσ = V \ W1−σ.

Computing W1−σ as the attractor of T1−σ is a simple reachability prob-
lem, and thus it can be solved with a positional strategy. For Wσ there is
a positional strategy that avoids leaving this (1 − σ)-trap.

Let now |Ω(v)| = m > 1. We explicitly consider the case that
0 ∈ Ω(V), i.e., Ω(V) = {0, . . . , m − 1}. Otherwise, if the minimal
priority is 1, we can use the same argumentation with switched roles of
the players. We define

X1 := {v ∈ V : Player 1 has a positional winning strategy from v},

and let g be a positional winning strategy for Player 1 on X1.
Our goal is to provide a positional winning strategy f ∗ for Player 0

on X0 := V \ X1, so in particular we have W1 = X1 and W0 = V \ X1.
First of all, observe that X0 is a trap for Player 1. Indeed, if Player 1

could reach X1 from some v ∈ X0, then Player 1 could win with a

27

2 Parity Games and Fixed-Point Logics

positional strategy from v, so v would also be in X1. Thus, there exists a
positional trap strategy t for Player 0 on X0 that guarantees that a play
remains inside X0.

Let Y = Ω−1(0) ∩ X0 and Z = Attr0(Y). Player 0 has positional
attractor strategy a to ensure, from every position z ∈ Z \ Y, that Y (or a
terminal winning position in T0) is reached in finitely many steps.

Let now V′ = V \ (X1 ∪ Z). The restricted game G ′ = G|V′ has
strictly fewer priorities than G (since at least all positions with priority
0 have been removed). Thus, by induction hypothesis, the Forgetful
Determinacy Theorem holds for G ′. This means that V′ = W ′

0 ∪ W ′
1 and

there exist positional winning strategies f ′ for Player 0 on W ′
0 and g′ for

Player 1 on W ′
1 in G ′.

However, it follows that W ′
1 = ∅, since the strategy

(g + g′) : x 7→

g(x) x ∈ X1

g′(x) x ∈ W ′
1

is a positional winning strategy for Player 1 on X1 ∪ W ′
1. Indeed, every

play consistent with (g + g′) either stays in W ′
1 and is consistent with

g′ or reaches X′
1 and is from this point on consistent with g. But X1, by

definition, already contains all positions from which Player 1 can win
with a positional strategy, so W ′

1 = ∅.

X1

YV′ Z

Ω−1(0)

Figure 2.1. Construction of a winning strategy

Knowing that W ′
1 = ∅, let f ∗ = f ′ + a + t, i.e.

28

2.1 Parity Games

f ∗(x) =

f ′(x) if x ∈ W ′
0

a(x) if x ∈ Z \ Y

t(x) if x ∈ Y

We claim that f ∗ is a positional winning strategy for Player 0 from X0.
Note that if π is a play that is consistent with f ∗, then π remains inside
X0. We distinguish two cases.
Case (a): π hits Z only finitely often. Then π eventually stays in W ′

0 and
is consistent with f ′ from this point onwards. Hence Player 0 wins π.
Case (b): π hits Z infinitely often. Then π also hits Y infinitely often,
which implies that priority 0 is seen infinitely often. Thus, Player 0
wins π. q.e.d.

The following theorem is a consequence of positional determinacy.

Theorem 2.4. It can be decided in NP ∩ coNP whether a given position
in a parity game is a winning position for Player 0.

Proof. A node v in a parity game G = (V, V0, V1, E, Ω) is a winning
position for Player σ if there exists a positional strategy f : Vσ → V
which is winning from position v. It therefore suffices to show that the
question whether a given strategy f : Vσ → V is a winning strategy for
Player σ from position v can be decided in polynomial time. We prove
this for Player 0; the argument for Player 1 is analogous.

Given G and f : V0 → V, we obtain a reduced game graph G f =

(W, F) by retaining only those moves that are consistent with f , i.e.,

F = {(v, w) : (v ∈ W ∩ Vσ ∧ w = f (v)) ∨
(v ∈ W ∩ V1−σ ∧ (v, w) ∈ E)}.

In this reduced game, only the opponent, Player 1, makes non-trivial
moves. We call a cycle in (W, F) odd if the least priority of its nodes
is odd. Clearly, Player 0 wins G from position v via strategy f if, and
only if, in G f no odd cycle and no terminal position w ∈ V0 is reachable
from v. Since the reachability problem is solvable in polynomial time,
the claim follows. q.e.d.

29

2 Parity Games and Fixed-Point Logics

2.2 Algorithms for parity games

It is an open question whether winning sets and winning strategies for
parity games can be computed in polynomial time. The best algorithms
known today are polynomial in the size of the game, but exponential
with respect to the number of priorities. On an class of parity games
with bounded index, such algorithms run in polynomial time.

One way to intuitively understand an algorithm solving a parity
game is to imagine a referee who watches the players playing the game.
At some point, the referee is supposed to say “Player 0 wins”, and
indeed, whenever the referee does so, there should be no question that
Player 0 wins. We shall first give a formal definition of a certain kind
of referee with bounded memory, and later use this notion to construct
algorithms for parity games.

Definition 2.5. A referee M = (M, m0, δ, F) for a parity game G =

(V, V0, V1, E, Ω) consists of a set of states M with a distinguished initial
state m0 ∈ M, a set of final states F ⊆ M, and a transition function
δ : V × M → M. Note that a referee is thus formally the same as an
automaton reading words over the alphabet V. But to be called a referee,
two further conditions must be satisfied, for any play v0v1 . . . of G, and
and the corresponding sequence m0m1 . . . of states of M, where m0 is
the initial state of M and mi+1 = δ(vi, mi):

(1) If v0 . . . is winning for Player 0, then there is a k such that mk ∈ F,
(2) If mk ∈ F for some k, then there exist i < j ≤ k such that vi = vj and

min{Ω(vi+1), Ω(vi+2), . . . , Ω(vj)} is even.

To illustrate the second condition in the above definition, note that
in the play v0v1 . . . the sequence vivi+1 . . . vj forms a cycle. Assuming
that both players use a positional strategy the decision of the referee is
correct. Indeed, if a cycle with even priority appears, then this cycle will
be repeated forever, Player 0 can be declared as the winner. To capture
this intuition formally, we define the following reachability game, which
emerges as the product of the original game G and the referee M.

Definition 2.6. Let G = (V, V0, V1, E, Ω) be a parity game and M =

(M, m0, δ, F) an automaton reading words over V. We associate with G

30

2.2 Algorithms for parity games

and M a reachability game

G ×M = (V × M, V0 × M, V1 × M, E′, V × F),

where ((v, m), (v′, m′)) ∈ E′ iff (v, v′) ∈ E and m′ = δ(v, m), and V × F
is the set of positions which are immediately winning for Player 0 (the
goal of Player 0 is to reach such a position). Plays that do not reach a
position in V × F are won by Player 1.

Note that M in the definition above is a deterministic automaton,
i.e., δ is a function. Therefore, in G and in G ×M the players have the
same choices, and thus it is possible to translate strategies between G
and G ×M. Formally, for a strategy f in G we define the strategy f in
G ×M as

f ((v0, m0)(v1, m1) . . . (vn, mn)) = (f (v0v1 . . . vn), δ(vn, mn)).

Conversely, given a strategy f in G ×M we define the strategy f in G
such that f (v0v1 . . . vn) = vn+1 if and only if

f ((v0, m0)(v1, m1) . . . (vn, mn)) = (vn+1, mn+1),

where m0m1 . . . is the unique sequence corresponding to v0v1
With G ×M we are ready to prove that the definition of a referee

indeed makes sense for parity games.

Theorem 2.7. Let G be a parity game and M a referee for G. Then
Player 0 wins G from v0 if, and only if, she wins G ×M from (v0, m0).

Proof. (⇒) Let f be a winning strategy for Player 0 in G from v0. Assume
that Player 0 does not have a winning strategy for G ×M from (v0, m0).
By determinacy of reachability games, there exists a winning strategy g
for Player 1. Consider the unique play πG = v0v1 . . . that is consistent
with f and g and the unique play πG×M = (v0, m0)(v1, m1) . . . which
is consistent with f and g. Observe that the positions of G appearing
in both plays are indeed the same due to the way f and g are defined.
Since Player 0 wins πG , by Property (1) in the definition of a referee
there must be an mk ∈ F. But this contradicts the fact that Player 1 wins
πG×M.

31

2 Parity Games and Fixed-Point Logics

(⇐) Let f be a winning strategy for Player 0 in G ×M, and assume
that Player 1 has a positional winning strategy g in G. Again, we consider
the unique plays piG = v0v1 . . . and πG×M = (v0, m0)(v1, m1) . . . such
that πG is consistent with f and g, and πG×M is consistent with f and
g. Since πG×M is won by Player 0, there is an mk ∈ F appearing in this
play.

By Property (2) in the definition of a referee, there exist two indices
i < j such that vi = vj and the minimum priority appearing between vi

and vj is even. Let us now consider the following strategy f ′ for Player 0
in G:

f ′(w0w1 . . . wn) =

f (w0w1 . . . wn) if n < j,

f (w0w1 . . . wm) otherwise,

where m = i + [(n − i) mod (j − i)]. Intuitively, the strategy f ′ makes
the same choices as f up to the (j − 1)st step, and then repeats the
choices of f from steps i, i + 1, . . . , j − 1.

We claim that the unique play π′ in G that is consistent with both
f ′ and g is won by Player 0. Since in the first j steps f ′ is the same as f ,
we have that π[n] = vn for all n ≤ j. Now observe that π[j + 1] = vi+1.
Since g is positional, if vj is a position of Player 1, then π[j + 1] = vi+1,
and if vj is a position of Player 0, then π[j+ 1] = vi+1 because we defined
f ′(v0 . . . vj) = f (v0 . . . vi). By induction we get that the play π repeats
the cycle vivi+1 . . . vj infinitely often, i.e.

π = v0 . . . vi−1(vivi+1 . . . vj−1)
ω.

Thus, the minimal priority occurring infinitely often in π is the same as
min{Ω(vi), Ω(vi+1), . . . Ω(vj−1)}, and thus is even. Therefore Player 0
wins π, which contradicts the fact that g was a winning strategy for
Player 1. q.e.d.

This theorem allows us, if a referee is known, to reduce the problem
of solving a parity game to the problem of solving a reachability game,
which we already tackled with the Game algorithm. But to make use of
it, we first need to construct a referee for a given parity game.

32

2.2 Algorithms for parity games

The most naïve way to build a referee for a parity game is to just
remember, for each position v visited during the play, the minimal
priority seen since the last occurrence of v. If it happens that a position
v is repeated, and the minimal priority seen since the last occurrence of
v is even, the referee decides that Player 0 wins the play.

It is easy to check that an automaton defined in this way is indeed a
referee for G, but such a referee can be very big. Since for each of the
|V| = n positions we need to store one of |Ω(V)| = d colours, the size
of the referee is in the order of O(dn). We shall present a referee that is
much better for small d.

Definition 2.8. A progress-measuring referee MP = (MP, m0, δP, FP) for
a parity game G = (V, V0, V1, E, Ω) is constructed as follows. If ni =

|Ω−1(i)| is the number of positions with priority i, then

MP = {0, 1, . . . , n0 + 1} × {0} × {0, 1, . . . , n2 + 1} × {0} × . . .

and this product ends in · · · × {0, 1, . . . , nm + 1} if the maximal priority
m is even, or in · · · × {0} if it is odd. The initial state is m0 = (0, . . . , 0),
and the transition function δ(v, c) with c = (c0, 0, c2, 0, . . . , cm) is given
by

δ(v, c) =

(c0, 0, c2, 0, . . . , cΩ(v) + 1, 0, . . . , 0) if Ω(v) is even,

(c0, 0, c2, 0, . . . , cΩ(v)−1, 0, 0, . . . , 0) otherwise.

The set FP contains all tuples (c0, 0, c2, . . . , cm) in which some counter
cj = nj + 1 reached the maximum possible value.

The intuition behind MP is that it counts, for each even priority p,
how many positions with priority p were seen without any lower priority
in between. If more than np such positions are seen, then at least one
must have been repeated, which guarantees that MP is a referee.

Lemma 2.9. For each finite parity game G the automaton MP con-
structed above is a referee for G.

Proof. We need to show that MP exhibits the two properties characteris-
ing a referee:

33

2 Parity Games and Fixed-Point Logics

(1) if v0 . . . is winning for Player 0, then there is a k such that mk ∈ F,

(2) if, for some k, mk ∈ F, then there exist i < j ≤ k such that vi = vj

and min{Ω(vi+1), Ω(vi+2), . . . , Ω(vj)} is even.

To see (1), assume that v0v1 . . . is a play winning for Player 0. Let
k be such an index that Ω(vk) is even, appears infinitely often in
Ω(vk)Ω(vk+1) . . ., and no priority higher than Ω(vk) appears in this
play suffix. Then, starting from vk, the counter cΩ(vk)

will never be
decremented, but it will be incremented infinitely often. Thus, for a
finite game G, it will reach nΩ(vk)

+ 1 at some point, i.e. a state in FP.

To prove (2), let v0v1 . . . vk be such a prefix of a play that after vk

some counter cp is set to np + 1 for an even priority p. Let vi0 be the last
position at which this counter was 0, and vim the subsequent positions
at which it was incremented, up to inp = k. All positions vi0 , vi1 , . . . , vinp

have priority p, but since there are only np different positions with
priority p, we get that, for some k < l, vik = vil . Now ik and il are the
positions required to witness (2), because indeed the minimum priority
between ik and il is p since cp was not reset in between. q.e.d.

For a parity game G with an even number of priorities d, the above
presented referee has size n0 · n2 · · · nd, which is at most (n

d/2)
d/2. We

get the following corollary.

Corollary 2.10. Parity games can be solved in time O((n
d/2)

d/2).

Notice that the algorithm using a referee has high space demand:
Since the product game G ×MP must be explicitly constructed, the space
complexity of this algorithm is the same as its time complexity. There is a
method to improve the space complexity by storing the maximal counters
the referee MP uses in each position and lifting such annotations. This
method is called game progress measures for parity games. We will not
define it here, but the equivalence to modal µ-calculus proven in the
next chapter will provide another algorithm for solving parity games
with polynomial space complexity.

34

2.3 Fixed-Point Logics

2.3 Fixed-Point Logics

We will define two fixed-point logics, the modal µ-calculus, Lµ, and the
first-order least fixed-point logic, LFP, which extend modal logic and
first-order logic, respectively, with the operators for least and greatest
fixed-points.

The syntax of Lµ is analogous to modal logic, with two additional
rules for building least and greatest fixed-point formulas:

µX.φ(X) and νX.φ(X)

are Lµ formulas if φ(X) is, where X is a variable that can be used in φ

the same way as predicates are used, but must occur positively in φ, i.e.
under an even number of negations (or, if φ is in negation normal form,
simply non-negated).

The syntax of LFP is analogous to first-order logic, again with two
additional rules for building fixed-points, which are now syntactically
more elaborate. Let φ(T, x1, x2, . . . xn) be a LFP formula where T stands
for an n-ary relation and occurs only positively in φ. Then both

[lfp Tx̄.φ(T, x̄)](ā) and [gfp Tx̄.φ(T, x̄)](ā)

are LFP formulas, where a = a1 . . . an.

To define the semantics of Lµ and LFP, observe that each formula
φ(X) of Lµ or φ(T, x̄) of LFP defines an operator Jφ(X)K : P(V) →
P(V) on states V of a Kripke structure K and Jφ(T, x̄)K : P(An) →
P(An) on tuples from the universe of a structure A. The operators
are defined in the natural way, mapping a set (or relation) to a set or
relation of all these elements, which satisfy φ with the former set taken
as argument:

Jφ(X)K(B) = {v ∈ K : K, v |= φ(B)}, and

Jφ(T, x̄)K(R) = {ā ∈ A : A |= φ(R, ā)}.

An argument B is a fixed-point of an operator f if f (X) = X, and to
complete the definition of the semantics, we say that µX.φ(X) defines

35

2 Parity Games and Fixed-Point Logics

the smallest set B that is a fixed-point of Jφ(X)K, and νX.φ(X) defines the
largest such set. Analogously, [lfp Tx̄.φ(T, x̄)](x̄) and [gfp Tx̄.φ(T, x̄)](x̄)
define the smallest and largest relations being a fixed-point of Jφ(T, x̄)K,
respectively. In a few paragraphs, we will give an alternative characteri-
sation of least and greatest fixed-points, which is better tailored towards
an algorithmic computation.

To justify this definition, we have to assure that all notions are well-
defined, i.e., in particular, we have to show that the operators actually
have fixed-points, and that least and greatest fixed-points always exist.
In fact, this relies on the monotonicity of the operators used.

Definition 2.11. An operator F is monotone if

X ⊆ Y =⇒ F(X) ⊆ F(Y).

The operators Jφ(X)K and Jφ(T, x̄)K are monotone because we as-
sumed that X (or T) occurs only positively in φ, and, except for negation,
all other logical operators are monotone (the fixed-point operators as
well, as we will see). Each monotone operator not only has unique least
and greatest fixed-points, but these can be calculated iteratively, as stated
in the following theorem.

Remark 2.12. A formal definiton of ordinal numbers can be found in
appendix A. For the moment, we think of them as a generalisation
of the naturals numbers which allow to count beyond the finite. The
first ordinal numbers are the natural numbers 0, 1, 2, . . . itself. The least
infinite ordinal number is the set of all natural numbers, written as ω,
followed by ω + 1, ω + 2, . . . , ω · 2, ω · 2 + 1, . . . , ω2, . . . , ωω,

Definition 2.13. Let A be a set, and F : P(Ak) → P(Ak) be a monotone
operator. We define the stages Xα of an inductive fixed-point process:

X0 := ∅

Xα+1 := f (Xα)

Xλ :=
⋃

α<λ

Xα for limit ordinals λ.

Due to the monotonicity of F, the sequence of stages is increasing, i.e.

36

2.4 Model Checking Games for Fixed-Point Logics

Xα ⊆ Xβ for α < β, and hence for some γ, called the closure ordinal,
we have Xγ = Xγ+1 = F(Xγ). This fixed-point is called the inductive
fixed-point and denoted by X∞.

Analogously, we can define the stages of a similar process:

X0 := Ak

Xα+1 := F(Xα)

Xλ :=
⋂

α<λ

Xα for limit ordinals λ.

which yields a decreasing sequence of stages Xα that leads to the induc-
tive fixed-point X∞ := Xγ for the smallest γ such that Xγ = Xγ+1.

Theorem 2.14 (Knaster, Tarski). Let F be a monotone operator. Then
the least fixed-point lfp(F) and the greatest fixed-point gfp(F) of F
exist, they are unique and correspond to the inductive fixed-points, i.e.
lfp(F) = X∞, and gfp(F) = X∞.

To understand the inductive evaluation let us consider an example.
We will evaluate the formula µX.(P ∨ ♢X) on the following Kripke
structure:

K = ({0, . . . , n}, {(i, i + 1) | i < n}, {n}).

The structure K represents a path of length n + 1 ending in a position
marked by the predicate P. The evaluation of this least fixed-point
formula starts with X0 = ∅ and X1 = P = {n}, and in step i + 1 all
nodes having a successor in Xi are added. Therefore, X2 = {n − 1, n},
X3 = {n − 2, n − 1, n}, and in general Xk = {n − k + 1, . . . , n}. Finally,
Xn+1 = Xn+2 = {0, . . . , n}. As you can see, the formula µX.(P ∨ ♢X)

describes the set of nodes from which P is reachable. This example
shows one motivation for the study of fixed-point logics: It is possible
to express transitive closures of various relations in such logics.

2.4 Model Checking Games for Fixed-Point Logics

In this section we will see that parity games are the model checking
games for LFP and Lµ.

37

2 Parity Games and Fixed-Point Logics

We will construct a parity game G(A, Ψ(ā)) from a formula Ψ(x̄) ∈
LFP, a structure A and a tuple ā by extending the FO game with the
moves

[fp Tx̄.φ(T, x̄)](ā) → φ(T, ā)

and

Tb̄ → φ(T, b̄).

We assign priorities Ω(φ(ā)) ∈ N to every instantiation of a subformula
φ(x̄). Therefore, we need to make some assumptions on Ψ:

• Ψ is given in negation normal form, i.e. negations occur only in
front of atoms.

• Every fixed-point variable T is bound only once in a formula
[fp Tx̄.φ(T, x̄)].

• In a formula [fp Tx̄.φ(T, x̄)] there are no other free variables besides
x̄ in φ.

Then we can assign the priorities using the following schema:

• Ω(Tā) is even if T is a gfp-variable, and Ω(Tā) is odd if T is an
lfp-variable.

• If T′ depends on T (i.e. T occurs freely in [fp T′ x̄.φ(T, T′, x̄)]), then
Ω(Tā) ≤ Ω(T′b̄) for all ā, b̄.

• Ω(φ(ā)) is maximal if φ(ā) is not of the form Tā.

Remark 2.15. The minimal number of different priorities in the game
G(A, Ψ(ā)) corresponds to the alternation depth of Ψ.

Before we provide the proof that parity games are in fact the appro-
priate model checking games for LFP and Lµ, we introduce the notion
of an unfolding of a parity game.

Let G = (V, V0, V1, E, Ω) be a parity game. We assume that the
minimal priority in G is 0 and that all positions v ∈ V with Ω(v) = 0
have a unique successor, i.e., vE = {s(v)}.

Let T = {v ∈ V : Ω(v) = 0}. We define a modified game G− =

(V, V0, V1, E−, Ω) with E− = E \ (T × V), i.e., positions in T are made
terminal positions in G−. Further, we define a sequence of games Gα that
only differ from G− in the assignment of the terminal positions in T to
the players. For this purpose, we use a sequence of partitions (Tα

0 , Tα
1) of

38

2.4 Model Checking Games for Fixed-Point Logics

T such that in Gα, Player σ wins at final positions v ∈ Tα
σ . The sequence

of partitions is inductively defined depending on the winning regions
Wα

σ of the players in the games Gα as follows:

• T0
0 := T,

• Tα+1
0 := {v ∈ T : s(v) ∈ Wα

0 } for any ordinal α,

• Tλ
0 :=

⋃
α<λ Tα

0 if λ is a limit ordinal,

• Tα
1 = T \ Tα

0 for any ordinal α.

We have

• W0
0 ⊇ W1

0 ⊇ W2
0 ⊇ . . . ⊇ Wα

0 ⊇ Wα+1
0 . . .

• W0
1 ⊆ W1

1 ⊆ W2
1 ⊆ . . . ⊆ Wα

1 ⊆ Wα+1
1 . . .

So there exists an ordinal α ≤ |V| such that Wα
0 = Wα+1

0 = W∞
0 and

Wα
1 = Wα+1

1 = W∞
1 .

Lemma 2.16 (Unfolding Lemma).

W0 = W∞
0 and W1 = W∞

1 .

Proof. Let α be such that W∞
0 = Wα

0 and let f α be a positional winning
strategy for Player 0 from Wα

0 in G. Define:

f : V0 → V : v 7→

f α(v) if v ∈ V0 \ T,

s(v) if v ∈ V0 ∩ T.

A play π consistent with f that starts in W∞
0 never leaves W∞

0 :

• If π(i) ∈ W∞
0 \ T, then π(i + 1) = f α(π(i)) ∈ Wα

0 = W∞
0 (fα is a

winning strategy in Gα).

• If π(i) ∈ W∞
0 ∩ T = Wα

0 ∩ T = Wα+1
0 ∩ T, then π(i) ∈ Tα+1

0 , i.e. π(i)
is a terminal position in Gα from which Player 0 wins, so by the
definition of Tα+1

0 we have π(i + 1) = s(v) ∈ Wα
0 = W∞

0 .

Thus, we can conclude that Player 0 wins π:

• If π hits T only finitely often, then from some point onwards π is
consistent with f α and stays in Wα

0 which results in a winning play
for Player 0.

39

2 Parity Games and Fixed-Point Logics

• Otherwise, π(i) ∈ T for infinitely many i. Since we had Ω(t) = 0 ≤
Ω(v) for all v ∈ V, t ∈ T, the lowest priority seen infinitely often is
0, so Player 0 wins π.

For v ∈ W∞
1 , we define ρ(v) = min{β : v ∈ Wβ

1 } and let gβ be
a positional winning strategy for Player 1 on Wβ

1 in Gβ. We define a
positional strategy g of Player 1 in G∞ by:

g : V1 → V, v 7→

gρ(v)(v) if v ∈ W∞
1 \ T ∩ V1

s(v) if v ∈ T ∩ V1

arbitrary otherwise

Let π = π(0)π(1) . . . be a play consistent with g and π(0) ∈ W∞
1 .

Claim 2.17. Let π(i) ∈ W∞
1 . Then

(1) π(i + 1) ∈ W∞
1 ,

(2) ρ(π(i + 1)) ≤ ρ(π(i))
(3) π(i) ∈ T ⇒ ρ(π(i + 1)) < ρ(π(i)).

Proof. Case (1): π(i) ∈ W∞
1 \ T, ρ(π(i)) = β (so π(i) ∈ Wβ

1). We have
π(i + 1) = g(π(i)) = gβ(π(i)), so π(i + 1) ∈ Wβ

1 ⊆ W∞
1 and ρ(π(i +

1)) ≤ β = ρ(π(i)).
Case (2): π(i) ∈ W∞

1 ∩ T, ρ(π(i)) = β. Then we have π(i) ∈ W∞
1 , β = γ+

1 for some ordinal γ, and π(i + 1) = s(π(i)) ∈ Wγ
1 , so π(i + 1) ∈ W∞

1
and ρ(π(i + 1)) ≤ γ < β = ρ(π(i)). q.e.d.

As there is no infinite descending chain of ordinals, there exists an
ordinal β such that ρ(π(i)) = ρ(π(k)) = β for all i ≥ k, which means
that π(i) ̸∈ T for all i ≥ k. As π(k)π(k + 1) . . . is consistent with gβ and
π(k) ∈ Wβ

1 , so π is won by Player 1.
Therefore we have shown that Player 0 has a winning strategy

from all vertices in W∞
0 and Player 1 has a winning strategy from all

vertices in W∞
1 . As V = W∞

0 ∪ W∞
1 , this shows that W0 = W∞

0 and
W1 = W∞

1 . q.e.d.

We can now give the proof that parity games are indeed appropriate
model checking games for LFP and Lµ.

40

2.4 Model Checking Games for Fixed-Point Logics

Theorem 2.18. If A |= Ψ(ā), then Player 0 has a winning strategy in the
game G(A, Ψ(ā)) starting at position Ψ(ā).

Proof. By structural induction over Ψ(ā). We will only consider the inter-
esting cases Ψ(ā) = [gfp Tx̄.φ(T, x̄)](ā) and Ψ(ā) = [lfp Tx̄.φ(T, x̄)](ā).

Let Ψ(ā) = [gfp Tx̄.φ(T, x̄)](ā). In the game G(A, Ψ(ā)), the posi-
tions Tb̄ have priority 0. Every such position has a unique successor
φ(T, b̄), so the unfoldings Gα(A, Ψ(ā)) are well defined.

Let us take the chain of steps of the gfp-induction of φ(x̄) on A.

X0 ⊇ X1 ⊇ . . . ⊇ Xα ⊇ Xα+1 ⊇ . . .

We have

A |= Ψ(ā) ⇔ ā ∈ gfp(φA)

⇔ ā ∈ Xα for all ordinals α

⇔ ā ∈ Xα+1 for all ordinals α

⇔ (A, Xα) |= φ(ā) for all ordinals α.

Induction hypothesis: For every X ⊂ Ak

(A, X) |= φ(b̄) iff Player 0 has a winning strategy in

G((A, X), φ(ā)) from φ(ā).

We show: If Player 0 has a winning strategy in G((A, Xα), φ(ā)) starting
at position φ(ā), then Player 0 has a winning strategy in Gα(A, Ψ(ā))
starting at position φ(ā).

By the unfolding lemma, the second statement is true for all ordinals
α if and only if Player 0 has a winning strategy in G(A, Ψ(ā)) starting at
φ(ā).

As φ(ā) is the only successor of Ψ(ā) = [gfp Tx̄.φ(T, x̄)](ā), this
holds exactly if Player 0 has a winning strategy in G(A, Ψ(ā)) starting at
Ψ(ā).

It remains to show that Player 0 has indeed a winning strategy in
the game G((A, Xα), φ(ā)) starting at the position φ(ā).

41

2 Parity Games and Fixed-Point Logics

There are few differences between G((A, Xα), φ(ā)) and the unfold-
ing Gα(A, Ψ(ā)):

• In Gα(A, Ψ(ā)), there is an additional position Ψ(ā), but this position
is not reachable.

• The assignment of the atomic propositions Tb̄:

– Player 0 wins at position Tb̄ in G((A, Xα), φ(ā)) if and only if
b̄ ∈ Xα.

– Player 0 wins at position Tb̄ in Gα(A, Ψ(ā)) if and only if Tb̄ ∈
Tα

0 .

So we need to show using an induction over α that

b̄ ∈ Xα iff Tb̄ ∈ Tα
0 .

Base case α = 0: X0 = Ak and T0
α = T = {Tb̄ : b̄ ∈ Ak}.

Induction step α = γ + 1: Then b̄ ∈ Xα = Xα+1 if and only if (A, Xγ) |=
φ(b̄), which in turn holds if Player 0 wins G((A, Xγ), φ(b̄)) starting
at φ(b̄). By induction hypothesis, this holds if and only if Player 0
wins the unfolding Gγ(A, Ψ(ā)) starting at φ(b̄) = s(Tb̄) if and only if
Tb̄ ∈ Tγ+1

0 = Tα
0 .

Induction step with α being a limit ordinal: We have that b̄ ∈ Xα if b̄ ∈ Xγ

for all ordinals γ < α, which holds, by induction hypothesis, if and only
if Tb̄ ∈ Tγ

0 for all γ < α, which is equivalent to Tb̄ ∈ Tα
0 .

The proof for Ψ(ā) = [lfp Tx̄.φ(T, x̄)](ā) is analogous. q.e.d.

2.5 Defining Winning Regions in Parity Games

To conclude this chapter, we consider the converse question—whether
winning regions in a parity game can be defined in fixed-point logic—
and show that, given an appropriate representation of parity games as
structures, winning regions are definable in the µ-calculus.

A parity game G = (V, V0, V1, E, Ω) with priorities Ω(V) =

{0, 1, . . . , d − 1}, can be described by the Kripke structure KG =

(V, V0, V1, E, P0, . . . , Pd−1) with atomic propositions Pj = {v ∈ V :
Ω(v) = j}.

42

2.5 Defining Winning Regions in Parity Games

Given the above representation, the µ-calculus formula

φWin
d = νX0.µX1.νX2. . . . λXd−1

d−1∨

j=0

(
(V0 ∧ Pj ∧♢Xj)∨
(V1 ∧ Pj ∧□Xj)

)
,

where λ = ν if d is odd, and λ = µ otherwise, defines the winning
region of Player 0 in the sense of the following theorem.

Theorem 2.19. KG , v |= φWin
d if and only if Player 0 has a winning

strategy from v0 in G.

Proof. The model checking game for φWin
d on KG is essentially the same

as the game G itself, up to the elimination of ‘stupid moves’:

• Eliminate moves after which the opponent wins in at most two steps.
For instance, Player 0 would never move to a position (V0 ∧ Pj ∧
♢Xj, v) if v was not a vertex of Player 0 or did not have priority j.
Similarly, Player 1 would not move to a position (Pj, v) or (Vσ, v) if
v ∈ Pj or v ∈ Vσ.

• Contract sequences of trivial moves and remove the intermediate
positions.

A schematic view of a model checking game for φWin
d is sketched in

Figure 2.2. q.e.d.

43

2 Parity Games and Fixed-Point Logics

µX
0 ...

νX
1 ...

µX
2 ...

...
µX

k ...

...

λ
X

d−
1 ∨

...

∨
d−

1
j=

0
((V

0 ∧
P

j ∧
♢

X
j)∨

(V
1 ∧

P
j ∧

□
X

j))∨
Λ

V
0 ∧

P
0 ∧

♢
X

0

V
1 ∧

P
0 ∧

□
X

0

...
V

0 ∧
P

k ∧
♢

X
k

V
1 ∧

P
k ∧

□
X

k
...

V
0 ∧

P
d−

1 ∧
♢

X
d−

1

V
1 ∧

P
d−

1 ∧
□

X
d−

1

V
0

♢
X

k
P

k
V

1
□

X
k

X
k

...

...

...

Figure
2.2.Part

of
a

m
odelchecking

gam
e

for
φ

W
in

d
.

44

3 Infinite Games

After our treatment of reachability (and safety) games in the first, and
parity games in the second chapter, we now discuss infinite games in
more general setting. More precisely, the games that we study are two-
player, zero-sum games of perfect information, played on game graphs and
admitting infinite plays.

Formally, a graph game is a pair G = (G, Win) where G =

(V, V0, V1, E, Ω) is a directed graph with V = V0 ·∪ V1 and Ω : V → C for
a set C of colours (or priorities) and a set Win ⊆ Cω of infinite sequences
of colours. We call G the arena of G and Win the winning condition of G.

As before a play of G is a finite or infinite sequence π = v0v1v2 . . . ∈
V≤ω such that (vi, vi+1) ∈ E for all i. A finite play is lost by the player
who cannot move any more, and an infinite play π is won by Player 0
if Ω(π) = Ω(v0)Ω(v1) . . . ∈ Win, otherwise Player 1 wins (there are no
draws). Let Plays(G) denote the set of all plays of G and Pfin(G) be set
of all initial segments x ∈ V∗ of a play in Plays(G)

3.1 Determinacy

A strategy for Player σ in a game G = (G, Win) is a function f : V∗Vσ →
V such that (v, f (xv)) ∈ E for all x ∈ V∗ and v ∈ Vσ. Thus, a strategy
maps prefixes of plays which end in a position in Vσ to legal moves of
Player σ. A play π = v0v1 . . . is consistent with a strategy f for Player σ if
for all proper prefixes v0 . . . vn of π such that vn ∈ Vσ we have vn+1 =

f (v0 . . . vn). We say that f is a winning strategy from position v0 if every
play starting in v0 that is consistent with f is won by Player σ. The set

Wσ = {v ∈ V : Player σ has a winning strategy from v}

45

3 Infinite Games

is the winning region of Player σ. In zero-sum games it always holds that
W0 ∩ W1 = ∅. We call a game G determined if W0 ∪ W1 = V, i.e. if from
each position one player has a winning strategy.

We can generalize the notion of winning regions from initial posi-
tions to arbitrary initial segments of plays. Let W̃σ be the set of those
initial segments x ∈ V∗ of plays for which Player σ has a strategy f to
prolong x to a wining play (i.e. every play of form xπ ∈ Plays(G) that is
consistent with f is won by Player σ). Clearly if Pfin(G) = W̃0 ∪ W̃1 then
G is determined.

For determinacy questions it suffices to consider games played on
trees and forests. Indeed, for an arena G with a node v0, let T (G, v0)

be the tree obtained by unraveling G from v0. Obviously, a player has
a winning strategy for (G, Win) from v0 if, and only if she has one for
(T (G, v0), Win) for the root v0. For the forest F (G) :=

⋃
v∈G T (G, v) we

then have that (F (G), Win) is determined if, and only if, (G, Win) is
determined. Notice further that, on trees and forests, all strategies are
positional so in this case there is no difference between determinacy and
determinacy via positional strategies.

A classical and very old determinacy theorem is due to Zermelo
who proved that a game of this kind is always determined if it only
admits finite plays. A slightly stronger variant of this result, applying to
games with infinite plays, is the following.

Theorem 3.1 (Zermelo). Let G be a game such that in every play the
winner is determined after finitely many moves. Then G is determined.

Proof. The condition that the winner of every play is determined after
finitely many moves means that every infinite play π of G has a finite
initial segment x < π such that every play of form xπ′ is won by the
same player. We claim that this implies that Pfin(G) = W̃0 ∪ W̃1 and
hence the determinacy of G.

Let X = Pfin(G) \ (W̃0 ∪ W̃1), and assume, towards a contradiction,
that X ̸= ∅. Take some x = yv ∈ X , with v ∈ Vσ.

For all w ∈ vE it follows that xw = yvw ̸∈ W̃σ (because otherwise
x ∈ W̃σ). Further, if we had that xw ∈ W̃1−σ for all w ∈ vE, then also
x ∈ W̃1−σ. Thus there exists some prolongation xw of x with xw ∈ X.

46

3.2 Gale-Stewart Games

By induction, there exists an infinite play xπ such that xy ∈ X for
all finite y. In particular the winner of xπ is not determined after any
finite initial segment, which contradicts our initial assumption. q.e.d.

The game that Zermelo originally wanted to study is Chess, which
does not quite satisfy our definition of a game given above, since it ad-
mits draws. One thus has to slightly modify the determinacy statement
for Chess.

Corollary 3.2. For Chess one of the following three possibilities holds:

• White has a winning strategy.

• Black has a winning strategy.

• Both players have a strategy to enforce at least a draw.

In the previous chapter, we proved a strong determinacy theorem
for parity games. We now look for general properties of Win that guar-
antee determinacy. To answer this question we shall need topological
arguments. But before we develop them, we introduce the notion of a
Gale-Stewart game and prove the existence of non-determined games.

3.2 Gale-Stewart Games

In this chapter we will show that, using the Axiom of Choice, one
can construct a non-determined game. Later, we will mention which
topological properties guarantee determinacy and how this is related to
logic.

Let B be an alphabet (for instance B = {0, 1} or B = ω). In a
Gale-Stewart game the players alternately choose symbols from B in
an infinite sequence of moves and thus create an infinite word π ∈ Bω.
Gale-Stewart games can be described as graph games in different ways.
For B = {0, 1}, for example, as a game on the infinite binary tree

T 2 = ({0, 1}∗, V0, V1, E, Ω),

where

V0 =
⋃

n∈ω

{0, 1}2n,

47

3 Infinite Games

V1 =
⋃

n∈ω

{0, 1}2n+1,

E = {(x, xi) : x ∈ {0, 1}∗, i ∈ {0, 1}},

and Ω : {0, 1}∗ → {0, 1, ε} : ε 7→ ε, xi 7→ i. Alternatively, it can be
described as a game on the graph depicted in Figure 3.1. Similar game
graphs can be defined for arbitrary B.

0 0

1 1

Figure 3.1. Game graph for Gale-Stewart game over B = {0, 1}

Theorem 3.3 (Gale-Stewart). There exists a non-determined Gale-Stewart
game.

We shall present two proofs. The first one uses enumerations of the
strategy spaces of the two player via ordinals (see Appendix A) up to
2ω. The second uses ultrafilters. Both rely on the Axiom of Choice (AC).

Proof. For any countable alphabet B with at least two symbols, let T0 =

{x ∈ B∗ : |x| even} and T1 = {x ∈ B∗ : |x| odd}. Then

F = { f : T0 → B} and G = {g : T1 → B}

are the sets of strategies for Player 0 and for Player 1. Since B is countable,
|F| = |G| = |P(ω)| =: 2ω. Thus, using the well-ordering principle
(which is equivalent to AC) we can enumerate the strategies by ordinals
up to 2ω:

F = { fα : α < 2ω} and G = {gα : α < 2ω}.

For strategies f and g let f ˆg ∈ Bω be the uniquely determined play
arising from f and g. We shall construct two increasing sequences of
sets Xα, Yα ⊆ Bω for α < 2ω such that

(1) Xα ∩ Yα = ∅,

48

3.2 Gale-Stewart Games

(2) |Xα|, |Yα| < 2ω,

Let X0 = Y0 = ∅. For a successor ordinal α = β + 1 consider the
strategy fβ. The cardinality of Xβ and Yβ is smaller than 2ω but there
are 2ω different strategies g ∈ G and thus 2ω different plays that are
consistent with fβ. Hence there exists one that is not in Xβ. Choose such
a play fβˆg (AC again) and add it to Yβ to construct Yα : Yβ ∪ { fβˆg}.
Analogously, choose a play f ˆgβ that is consistent with gβ and which
is not in Yα, and construct Xα := Xβ ∪ { f ˆgβ}. For limit ordinals λ let
Xλ :=

⋃
β<λ Xβ and Yλ :=

⋃
β<λ Yβ.

We claim that the Gale-Stewart game with winning condition Win :=
⋃

α<2ω Xα is not determined.
Indeed, assume that f = fα, for some α < 2ω, is a winning strategy

for Player 0. By the construction of Win, there is a strategy g ∈ G such
that fαˆg ∈ Yα+1 and thus fαˆg /∈ Win, a contradiction.

Now assume that g = gα, for some α < 2ω, is a winning strategy for
Player 1. Analogously, there is a strategy f ∈ F such that f ˆgα ∈ Xα+1 ⊆
Win, a contradiction as well. q.e.d.

The second proof that we shall present uses the concept of an
ultrafilter. We first recall the definition of a filter.

Definition 3.4. Let I be a non-empty set. A non-empty set F ⊆ P(I) is
a filter if

(1) ∅ /∈ F,
(2) x ∈ F, y ∈ F ⇒ x ∩ y ∈ F, and
(3) x ∈ F, y ⊇ x ⇒ y ∈ F.

The intuition behind a filter is that it is a family of large sets.

Example 3.5. The set {x ⊆ ω : ω \ x is finite} is a filter. We call it the
Fréchet filter.

Definition 3.6. An ultrafilter is a filter that satisfies the additional re-
quirement:

(4) for all x ⊆ I either x ∈ F or I \ x ∈ F.

Example 3.7. Fix n ∈ ω. Then Un = {a ⊆ ω : n ∈ a} is an ultrafilter.
Ultrafilters of this form are called principal ultrafilters.

49

3 Infinite Games

Every ultrafilter U that contains a finite set must be principal. Oth-
erwise U would contain a smallest set a which is not a singleton. Pick
some n ∈ a. Since {n} ̸∈ U, the complement ω \ {n} is in U, and hence
also its intersection with a. But a∩ (ω \ {n}) = a \ {n} ⊊ a contradicting
the minimality of a in U.

On the other side, an ultrafilter that does not contain a finite set
must contain all co-finite ones, and thus extend the Fréchet filter. But
the Fréchet filter is not an ultrafilter and it is not obvious that it can be
extended to one in a consistent way. The proof that this is possible uses
Zorn’s Lemma or the Compactness Theorem for propositional logic. It
holds for every set F ⊆ P(ω) such that a1 ∩ · · · ∩ am ̸= ∅ for all m ∈ N,
a1, . . . , am ∈ F.

Theorem 3.8. The Fréchet filter F can be expanded to an ultrafilter
U ⊃ F.

Proof. Let F be the Fréchet filter. We use propositional variables Xa for
every a ∈ P(ω). Let Φ = ΦU ∪ ΦF where

ΦU = {¬X∅}
∪ {Xa ∧ Xb → Xa∩b : a, b ⊆ ω}
∪ {Xa → Xb : a ⊆ b, a, b ⊆ ω}
∪ {Xa ↔ ¬Xω\a : a ⊆ ω}

and

ΦF = {Xa : a ∈ F}.

Every model I of Φ defines an ultrafilter U which expands F,
namely U = {a ⊆ ω : I(Xa) = 1}. It remains to show that Φ is
satisfiable.

By the compactness theorem, it suffices to show that every finite
subset of Φ is satisfiable. Hence, let Φ0 be a finite subset of Φ. Then the
set F0 = {a ∈ F : Xa ∈ Φ0} is also finite. Now consider the following
two cases:

• F0 = ∅. Define the interpretation I by

50

3.2 Gale-Stewart Games

I(Xa) =

1 if 0 ∈ a,

0 otherwise.

Then I |= Φ0.

• F0 = {a1, . . . , am}. Since F is a filter, there exists n0 ∈ a1 ∩ · · · ∩ am.
Define the interpretation I by

I(Xa) =

1 if n0 ∈ a

0 otherwise

Again, we have I |= Φ0.

Hence, Φ0 is satisfiable. q.e.d.

We are now able to give an alternative construction for non-
determined games. Let U be an ultrafilter that expands the Fréchet
filter. We construct a Gale-Stewart game over B = ω with winning
condition WinU as follows. Player 0 wins a play x = x0x1 . . . ∈ ωω if

• Player 1 has played a number that is not higher than the previously
played one, i.e. min{j : xj+1 ≤ xj} exists and is even, or

• x0 < x1 < x2 < . . . and

A(x) := [0, x0) ∪
⋃

i∈ω

[x2i+1, x2i+2) ∈ U

0 x0 x1 x2 x3 x4 x5 x6

Figure 3.2. The winning condition of the ultrafilter game

Proposition 3.9. The Gale-Stewart game with winning condition WinU

is not determined.

Proof. Towards a contradiction, assume that Player 0 has a winning
strategy f . We construct two plays x and x′, both of which are consistent
with f .

51

3 Infinite Games

• In the first play the opening move x0 = f (ε) of Player 0 is answered
by Player 1 with an arbitrary number x1 > x0. The second move of
Player 0 is then x2 = f (x0x1).

• In the second play x′, Player 1 uses x2 as her answer to the opening
move x0 = f (ε) by Player 0. The second move of Player 0 in the play
x′ is then x3 = f (x0x2), and Player 1 uses this in the play x as her
answer to x0x1x2.

• This is the iterated. In play x, Player 1 extends in her (i + 1)st move
the sequence x0x1 . . . x2i by x2i+1 = f (x0x2x3 . . . x2i), i.e. she just
copies the (i + 1)st move of Player 0 in play x′.

• Similarly, in play x′, Player 1 answers the initial segment
x0x2x3 . . . x2i+1 by x2i+2 = f (x0x1 . . . x2i+1), i.e she copies the i + 1st
move of Player 1 in x.

Thus, in both plays, Player 1 essentially uses the strategy f itself as a
counterstrategy against f .

0

1

0

1

x0

x1

x2

x3

x4

x5

x0

x2

x3

x4

x5

f f

f f

Figure 3.3. Playing the Ultrafilter game

This results in two plays x = x0x1x2 . . . and x′ = x0x2x3x4 . . . , where
x2i+2 = f (x0x1 . . . x2i+1) but also x2i+1 = f (x0x1 . . . x2i). Both plays
are consistent with the winning strategy f for Player 0. Thus we have
A(x) ∈ U and A(x′) ∈ U. But

A(x) = [0, x0) ∪
⋃

i∈ω

[x2i+1,x2i+2)

and

A(x′) = [0, x0) ∪
⋃

i∈ω

[x2i+2,x2i+3).

Thus A(x) ∩ A(x′) = [0, x0) ∈ U. However, since U expands the Fréchet

52

3.3 Topology

filter, the co-finite set ω \ [0, x0) is in U and thus [0, x0) ̸∈ U, a contradic-
tion.

Analogously, one derives a contradiction from the assumption that
Player 1 has a winning strategy. q.e.d.

3.3 Topology

Definition 3.10. A topology on a set S is defined by a collection of open
subsets of S. It is required that

• ∅, and S are open;
• if X and Y are open, then X ∩ Y is open;
• if {Xi : i ∈ I} is a family of open sets, then

⋃
i∈I Xi is open.

If O ⊆ P(S) is a collection of open sets, we call the pair (S,O) a
topological space.

Often, a topology is defined by its base: A set B of open subsets of S
such that every open set can be represented as a union of sets in B.

Example 3.11. The standard topology on R is defined by the base consist-
ing of all open intervals (a, b) ⊆ R.

In our setting, we will only be concerned with the following topol-
ogy on Bω, which is due to Cantor. Its base consists of all sets of the form
z↑ := z · Bω for z ∈ B∗. Consequently, a set X ⊆ Bω is open if it is the
union of sets z↑, i.e. if there exists a set W ⊆ B∗ such that X = W · Bω.
Moreover, a set X ⊆ Bω is closed if its complement Bω \ X is open. For
B = {0, 1}, this topology is called the Cantor space, and for B = ω it is
called the Baire space.

B∗z

z↑ Bω

Figure 3.4. Base sets in the Cantor space

53

3 Infinite Games

Example 3.12.

• The base sets z↑ are both open and closed (clopen) since we have
Bω \ z↑ = Wz · Bω where Wz = {y ∈ B∗ | y ̸≤ z and z ̸≤ y}. (Here,
u ≤ v means that u is a prefix of v.)

• 0∗1{0, 1}ω is open. The complement {0ω} is closed, but not open.
• Ld = {x ∈ ωω : x contains d infinitely often} =

⋂

n∈ω

(ω∗ · d)n · ωω is

a countable intersection of open sets.

Next, we will give another useful characterisation of closed sets. A
tree T ⊆ B∗ is a prefix-closed set of finite words, i.e., z ∈ T and y ≤ z
implies y ∈ T. For a tree T let [T] be the set of infinite paths through T
(note: T ⊆ B∗, but [T] ⊆ Bω).

Example 3.13. Let T = 0∗ = {0n : n ∈ ω}. Then [T] = {0ω}.

Lemma 3.14. X ⊆ Bω is closed if and only if there exists a tree T ⊆ B∗

such that X = [T].

Proof.
(⇒) Let X be closed. Then there is a W ⊆ B∗ such that Bω \ X = W · Bω.
Let T := {w ∈ B∗ | ∀z(z ≤ w ⇒ z /∈ W)}. T is closed under prefixes
and [T] = X.

(⇐) Let X = [T]. For every x /∈ [T] there exists a smallest prefix
wx ≤ x such that wx /∈ T. Let W := {wx : x /∈ X}. Then Bω \ X = W · Bω

is open, thus X is closed. q.e.d.

We call a set W ⊆ B∗ prefix-free if there is no pair x, y ∈ W such that
x < y.

Lemma 3.15.

(1) For every open set A ⊆ Bω there is a prefix-free set W ⊆ B∗ such
that A = W · Bω.

(2) Let B be a finite alphabet. A ⊆ Bω is clopen if and only if there is a
finite set W ⊆ B∗ such that A = W · Bω.

Proof. For (1), let A = U · Bω for some open U ⊆ B∗. Define

W := {w ∈ U : U contains no proper prefix of w}.

54

3.3 Topology

W is prefix-free and W · Bω = U · Bω = A.
For (2) let A ⊆ Bω be clopen. Thus there exist prefix-free sets

U, V ⊆ B∗ such that A = U · Bω and Bω \ A = V · Bω. We will show
that U ∪ V is finite. Let T = {w ∈ B∗ | w has no prefix in U ∪ V}. If T
is finite, then U ∪ V is also finite. If U (or V) is infinite, then T is also
infinite since it contains all proper prefixes of elements of U (respectively
V). Hence it suffices to show that T is finite. Notice that T is a finitely
branching tree (since B is finite) that contains no infinite path, since
otherwise there exists an infinite word x ∈ Bω corresponding to this
path with x /∈ U · Bω ∪V · Bω = A ∪ (Bω \ A) = Bω. By König’s Lemma,
this implies that T is finite.

For the converse, let A = W · Bω where W ⊆ B∗ is finite. Let
l = max{|w| : w ∈ W}. Then Bω \ A = Z · Bω where

Z = {z ∈ B∗ : |z| = l and no prefix of z is in W}.

Thus, A is clopen. q.e.d.

Notice that (2) does not hold for infinite alphabets B.

Definition 3.16. Let T = (S,O) be a topological space. The class of Borel
sets is the smallest class B ⊆ P(S) that contains all open sets and is
closed under countable unions and complementation:

• O ⊆ B;
• If X ∈ B then S \ X ∈ B;
• If {Xn : n ∈ ω} ⊆ B then

⋃
n∈ω Xn ∈ B.

Most of the ω-languages L ⊆ Bω occurring in Computer Science
are Borel sets. Borel sets form a natural hierarchy of sets Σ0

α and Π0
α for

0 ≤ α < ω1, where ω1 is the first uncountable ordinal number.

• Σ0
1 = O;

• Π0
α = coΣ0

α := {S \ X : X ∈ Σ0
α} for every α;

• Σ0
α = {⋃n∈ω Xn : Xn ∈ Π0

β for β < α} for α > 0.

We are especially interested in the first levels of the Borel hierarchy:

• Σ0
1: Open sets

• Π0
1: Closed sets

55

3 Infinite Games

• Σ0
2: Countable unions of closed sets

• Π0
2: Countable intersections of open sets

• Σ0
3: Countable unions of Π0

2-sets
• Π0

3: Countable intersections of Σ0
2-sets

Example 3.17. Let d ∈ B.

Ld = {x ∈ Bω : x contains d infinitely often} =
⋂

n∈ω

(B∗ · d)n · Bω

︸ ︷︷ ︸
∈Σ0

1

.

Hence, Ld ∈ Π0
2.

To determine the membership of an ω-language in a class Σ0
α or

Π0
α of the Borel hierarchy and to relate the classes, we need a notion of

reducibility between ω-languages.

Definition 3.18. A function f : Bω → Cω is called continuous if f−1(Y)
is open for every open set Y ⊆ Cω.

Let X ⊆ Bω, Y ⊆ Cω. We say that X is Wadge reducible to Y, X ≤ Y,
if there exists a continuous function f : Bω → Cω such that f−1(Y) = X,
i.e. x ∈ X iff f (x) ∈ Y for all x ∈ Bω. For any such function f , we write
f : X ≤ Y.

Exercise 3.1. Prove that the relation ≤ satisfies the following properties:

• X ≤ Y and Y ≤ Z imply X ≤ Z;
• X ≤ Y implies Bω \ X ≤ Cω \ Y.

Theorem 3.19. Let X ≤ Y for Y ∈ Σ0
α (or Y ∈ Π0

α). Then X ∈ Σ0
α

(respectively X ∈ Π0
α).

Proof. The claim is true by definition for Σ0
1 (the open sets) and thus also

for Π0
1.

For α > 1, let f : X ≤ Y and Y ∈ Σ0
α. We have that Y =

⋃
n∈ω Yn

where Yn ∈ ⋃
β<α Π0

β. Define Xn := f−1(Yn). Then Xn ≤ Yn for all
n ∈ ω, and thus, by induction hypothesis, Xn ∈ ⋃β<α Π0

β. We have:

x ∈ X ⇔ f (x) ∈ Y

⇔ f (x) ∈ Yn for some n ∈ ω

⇔ x ∈ Xn for some n ∈ ω.

Hence, X =
⋃

n∈ω Xn ∈ Σ0
α. q.e.d.

56

3.3 Topology

In the following we will present a game-theoretic characterisation
of the relation ≤ in terms of the so-called Wadge game.

Definition 3.20. Let X ⊆ Bω, Y ⊆ Cω. The Wadge game W(X, Y) is an
infinite game between two players 0 and 1 who move in alternation. In
the i-th round, Player 0 chooses a symbol xi ∈ B, and afterwards Player 1
chooses a (possibly empty) word yi ∈ C∗. After ω rounds, Player 0 has
produced an ω-word x = x0x1x2 · · · ∈ Bω, and Player 1 has produced
a finite or infinite word y = y0y1y2 · · · ∈ C≤ω. Player 1 wins the play
(x, y) if, and only if, y ∈ Cω and x ∈ X ⇔ y ∈ Y.

Example 3.21. Let B = C = {0, 1}.

• Player 1 wins W(0∗1{0, 1}ω, (0∗1)ω).
Winning strategy for Player 1: Choose 0 until Player 0 chooses 1 for
the first time. Afterwards, always choose 1.

• Player 0 wins W((0∗1)ω, 0∗1{0, 1}ω).
Winning strategy for Player 0: Choose 1 until Player 1 chooses a
word containing 1 for the first time. Afterwards, always choose 0.

Theorem 3.22 (Wadge). Let X ⊆ Bω, Y ⊆ Cω. Then X ≤ Y if and only if
Player 1 has a winning strategy for W(X, Y).

Proof.
(⇐) A winning strategy of Player 1 for W(X, Y) induces a mapping
f : Bω → Cω such that x ∈ X iff y ∈ Y. It remains to show that f is
continuous. Let Z = U · Cω be open. For every u ∈ U denote by Vu the
set of all words v = x0x1 . . . xn ∈ B∗ such that u is the answer of Player 1
to v, i.e. u = f (x0) f (x1) . . . f (xn). Then f−1(U · Cω) = V · Bω where
V :=

⋃
u∈U Vu.

(⇒) Let f : X ≤ Y. We construct a strategy for Player 1 as fol-
lows. Player 1 has to answer Player 0’s moves x0x1x2 . . . by an ω-word
y0y1y2 . . . , but Player 1 can delay choosing yi until he knows x0x1 . . . xn

for some appropriate n ≥ i.
Choice of y0: Consider the partition Bω = ·⋃c∈C f−1(c · Cω). Since

c · Cω is clopen, f−1(c · Cω) is also clopen. For every x ∈ Bω there exists
c ∈ C such that x ∈ f−1(c · Cω), and since f−1(c · Cω) is clopen, there
is a prefix wx ≤ x such that wx · Bω ⊆ f−1(c · Cω). So Player 1 can

57

3 Infinite Games

wait until Player 0 has chosen a prefix w ∈ B∗ that determines the set
f−1(c · Cω) the word x will belong to and choose y0 = c.

The subsequent choices are done analogously. Let y0 . . . yi ∈ C∗ be
Player 1’s answer to x0 . . . xn ∈ B∗. For the choice of yi+1 we consider
the partition

x0 · · · xn · Bω = ·
⋃

c∈C
f−1(y0 · · · yi · c · Cω).

Since the sets f−1(y0 · · · yi · c · Cω) are clopen, after finitely many moves,
by choosing a prolongation x0 · · · xnxn+1 · · · xk, Player 0 has determined
in which set f−1(y0 · · · yi · c · Cω) the word x will be. Player 1 then
chooses yi+1 = c.

By using this strategy, Player 1 constructs the answer y = f (x) for
the sequence x chosen by Player 0. Otherwise, there would be a smallest
i such that yi ̸= f (xi). This is impossible since x ∈ f−1(y0 · · · yi · Cω).
Since f : X ≤ Y, we have x ∈ X iff y ∈ Y. q.e.d.

Definition 3.23. A set Y ⊆ Cω is Σ0
α-complete if:

• Y ∈ Σ0
α;

• X ≤ Y for all X ∈ Σ0
α.

Π0
α-completeness is defined analogously.

Note that Y is Σ0
α-complete if, and only if, Cω \ Y is Π0

α-complete.

Proposition 3.24. Let B = {0, 1}. Then:

• 0∗1{0, 1}ω is Σ0
1-complete;

• {0ω} is Π0
1-complete;

• {0, 1}∗0ω is Σ0
2-complete;

• (0∗1)ω is Π0
2-complete.

Proof. By the above remark, it suffices to show that 0∗1{0, 1}ω and (0∗1)ω

are Σ0
1-complete and Π0

2-complete, respectively.

• We know that 0∗1{0, 1}ω ∈ Σ0
1. Let X = W · Bω be open. We

describe a winning strategy for Player 1 in W(X, 0∗1{0, 1}ω): Pick 0
until Player 0 has completed a word contained in W; from this point
onwards, pick 1. Hence, X ≤ 0∗1{0, 1}ω.

58

3.4 Determined Games

• We know that (0∗1)ω ∈ Π0
2. Let X =

⋂
n∈ω Wn · Bω ∈ Π0

2. We
describe a winning strategy for Player 1 in W(X, {0, 1}∗0ω): Start
with i := 0; for arbitrary i, answer with 1 and set i := i + 1 if the
sequence x0 . . . xk of symbols chosen by Player 0 so far has a prefix
in Wi, otherwise answer with 0 and leave i unaffected. q.e.d.

3.4 Determined Games

We call a game G = (V, V0, V1, E, Win) clopen, open, closed, etc., or sim-
ply a Borel game, if the winning condition Win ⊆ Vω has the respective
property.

Clopen games are basically finite games: If A ⊆ Bω is clopen, then
for every x ∈ Bω there exists a finite prefix wx ≤ x such that:

• If x ∈ A then wx↑ ⊆ A;
• If x /∈ A then wx↑ ⊆ Bω \ A.

Thus, by Zermelo’s Theorem, clopen games are determined.
A stronger result is the following:

Theorem 3.25. Every open game, and thus every closed game, is deter-
mined.

Proof. Let G = (V, V0, V1, E, Win) where Win = U · Vω is open. First, we
consider finite plays: Let Tσ = {v ∈ V1−σ : vE = ∅} and Aσ = Attrσ(Tσ).
From every position v ∈ Aσ Player σ wins after finitely many moves
with the attractor strategy.

For the infinite plays consider

G ′ := G ↾ V \ (A0 ∪ A1)

with positions V′ := V \ (A0 ∪ A1). In G ′ every play is infinite, and
Player 0 wins π = v0v1v2 . . . if and only if π ∈ U · Vω. Obviously,
Player 0 wins in G ′ starting from v0 if she can enforce a sequence
v0v1 . . . vn ∈ U. Then every infinite prolongation of this sequence is a
play in U · Vω.

Instead of G ′ we consider again the equivalent game on the trees
T (v) = TG(v), the unfolding of G from v ∈ V. Positions in T (v) are

59

3 Infinite Games

words over V: T (v) ⊆ V∗. Now consider the set

B0 = {v ∈ V′ : v ∈ AttrT (v)
0 (U · V∗)}

of positions from where player 0 can enforce a play prefix in U · V∗.
From every position in V′ \ A0, Player 1 has a strategy to guarantee
that the play never reaches U · V∗ since V′ \ A0 is a trap for Player 0.
But a play that never reaches U · V∗ is won by Player 1. It follows that
W0 = A0 ∪ B0 and W1 = A1 ∪ (V′ \ B0), and thus V = W0 ∪ W1. q.e.d.

A much stronger result was established by Donald Martin in 1975. Its
proof is beyond the scope of these lecture notes.

Theorem 3.26 (Martin). All Borel games are determined.

Here are some winning conditions for frequently used games in
Computer Science:

• Muller conditions: Let B be finite, F0 ⊆ P(B), F1 = P(B) \ F0.
Player σ wins π ∈ Bω if and only if

Inf(π) := {b ∈ B : b appears infinitely often in π} ∈ Fσ.

Hence, the winning condition is the set

{x ∈ Bω : Inf(π) ∈ Fσ} =
⋃

X∈F0

(⋂

d∈X

Ld ∩
⋃

d/∈X

(Bω \ Ld)
)
,

a finite Boolean combination of Π0
2-sets.

• Parity conditions (see previous chapter) are special cases of Muller
conditions and thus also finite Boolean combinations of Π0

2-sets.
• Every ω-regular language is a Boolean combination of Π0

2-sets.
This follows from the recognisability of ω-regular languages by
Muller automata and the fact that Muller conditions are Boolean
combinations of Π0

2-sets.

In practice, winning conditions are often specified in a suitable logic:
ω-words x ∈ Bω are interpreted as structures Ax = (ω,<, (Pb)b∈B) with
unary predicates Pb = {i ∈ ω : xi = b}. A sentence ψ (for example

60

3.5 Muller Games and Game Reductions

in FO, MSO, etc.) over the signature {<} ∪ {Pb : b ∈ B} defines the
ω-language (winning condition) L(ψ) = {x ∈ Bω : Ax |= ψ}.

Example 3.27. Let B = {0, . . . , m}. The parity condition is specified by
the FO sentence

ψ :=
∧

b≤m
b odd

(
∃y∀z (y < z → ¬Pbz) ∨

∧

c<b

∀y∃z (y < z ∧ Pcz)

)
.

We have:

• FO and LTL define the same ω-languages (winning conditions);

• MSO defines exactly the ω-regular languages;

• There are ω-languages that are definable in MSO but not in FO;

• ω-regular languages are Boolean combinations of Π0
2-sets.

In particular, graph games with winning conditions specified in LTL,
FO, MSO, etc. are Borel games and therefore determined.

3.5 Muller Games and Game Reductions

Muller games are infinite games played over an arena G = (V0, V1, E, Ω :
V → C) with a winning condition depending only on the set of priorities
seen infinitely often in a play. It is specified by a partition P(C) =

F0 ·∪ F1, and a play π = v0v1v2 . . . is won by Player σ if

Inf(π) = {c : Ω(vi) = c for infinitely many i ∈ ω} ∈ Fσ.

We will only consider the case that the set C of priorities is finite. Then
Muller games are Borel games specified by the FO sentence

∨

X∈Fσ

(
∧

c∈X
∀x∃y(x < y ∧ Pcy) ∧

∧

c/∈X

∃x∀y(x < y → ¬Pcy)

)
.

So Muller games are determined. Parity conditions are special Muller
conditions, and we have seen that games with parity winning conditions
are even positionally determined. The question arises what kind of
strategies are needed to win Muller games. Unfortunately, there are

61

3 Infinite Games

simple Muller games that are not positionally determined, even solitaire
games.

Example 3.28. Consider the game arena depicted in Figure 3.5 with the
winning condition F0 = {{1, 2, 3}}, i.e. all positions have to be visited
infinitely often. Obviously, player 0 has winning a winning strategy, but
no positional one: Any positional strategy of player 0 will either visit
only positions 1 and 2 or positions 2 and 3.

1 2 3

Figure 3.5. A solitaire Muller game

Although Muller games are, in general, not positionally determined,
we will see that Muller games are determined via winning strategies
that can be implemented using finite memory. To this end, we introduce
the notions of a memory structure and of a memory strategy. Although
we will not require that the memory is finite, we will use finite memory
in most cases.

Definition 3.29. A memory structure for a game G with positions in V
is a triple M = (M, update, init), where M is a set of memory states,
update : M × V → M is a memory update function and init : V → M is a
memory initialisation function. The size of the memory is the cardinality of
the set M.

A strategy with memory M for Player σ is given by a next-move
function F : Vσ × M → V such that F(v, m) ∈ vE for all v ∈ Vσ, m ∈ M.
If a play, from starting position v0, has gone through positions v0v1 . . . vn,
the memory state is m(v0 . . . vn), defined inductively by m(v0) = init(v0),
and m(v0 . . . vivi+1) = update(m(v0 . . . vi), vi+1), and in case vn ∈ Vσ the
strategy leads to position F(vn, m(v0 . . . , vn)).

Remark 3.30. In case |M| = 1, the strategy is positional, and it can be
described by a function F : Vσ → V.

Definition 3.31. A game G is determined via memory M if it is deter-
mined and both players have winning strategies with memory M on
their winning regions.

62

3.5 Muller Games and Game Reductions

Example 3.32. In the game from Example 3.28, Player 0 wins with a
strategy with memory M = ({1, 3}, update, init) where

• init(1) = init(2) = 1, init(3) = 3 and

• update(m, v) =

v if v ∈ {1, 3},

m if v = 2.

The corresponding strategy is defined by

F(v, m) =

2 if v ∈ {1, 3},

3 if v = 2, m = 1,

1 if v = 2, m = 3.

Let us consider a more interesting example now.

Example 3.33. Consider the game DJW2 with its arena depicted in Fig-
ure 3.6. Player 0 wins a play π if the maximal number in Inf(π) is equal
to the number of letters in Inf(π). Formally:

F0 = {X ⊆ {1, 2, a, b} : |X ∩ {a, b}| = max(X ∩ {1, 2})}.

a 1

b 2

Figure 3.6. Muller game G = DJW2

Player 0 has a winning strategy from every position, but no po-
sitional one. Assume that f : {a, b} → {1, 2} is a positional winning
strategy for Player 0. If f (a) = 2 (or f (b) = 2), then Player 1 always
picks a (respectively b) and wins, since this generates a play π with
Inf(π) = {a, 2} (respectively Inf(π) = {b, 2}). If f (a) = f (b) = 1, then
Player 1 alternates between a and b and wins, since this generates a play
π with Inf(π) = {a, b, 1}. However, Player 0 has a winning strategy that
uses the memory depicted in Figure 3.7. The corresponding strategy is

63

3 Infinite Games

defined as follows:

F(c, m) =

1 if m = c#d,

2 if m = #cd.

b#a

#ab #ba

a#b

a, 1, 2

b

1, 2

b

b, 1, 2

a

a

1, 2
a

b

Figure 3.7. Memory for Player 0

Why is this strategy winning? If from some point onwards Player 1
picks only a or only b, then, from this point onwards, the memory state
is always b#a or a#b, respectively, and according to F Player 0 always
picks 1 and wins. In the other case, Player 1 picks a and b again and
again and the memory state is #ab or #ba infinitely often. Thus Player 0
picks 2 infinitely often and wins as well.

The memory structure used in this example is a special case of the
LAR memory structure, which we will use for arbitrary Muller games.
But first, let us look at a Muller game with infinitely many priorities that
allows no winning strategy with finite memory but one with a simple
infinite memory structure:

Example 3.34. Consider the game with its arena depicted in Figure 3.8
and with winning condition F0 = {{0}}. It is easy to see that every
finite-memory strategy of Player 0 (the player who moves at position 0) is
losing. A winning strategy with infinite memory is given by the memory
structure M = (ω, init, update) where init(v) = v and update(m, v) =
max(m, v) together with the strategy F defined by F(0, m) = m + 1.

64

3.5 Muller Games and Game Reductions

0

1 2 · · · n · · ·

Figure 3.8. A game where finite-memory strategies do not suffice

Given a game graph G = (V, V0, V1, E) and a memory structure
M = (M, update, init), we obtain a new game graph

G ×M = (V × M, V0 × M, V1 × M, Eupdate)

where

Eupdate = {
(
(v, m), (v′, m′)

)
: (v, v′) ∈ E and m′ = update(m, v′)}.

Obviously, every play (v0, m0)(v1, m1) . . . in G ×M has a unique
projection to the play v0v1 . . . in G. Conversely, every play v0, v1, . . . in
G has a unique extension to a play (v0, m0)(v1, m1) . . . in G ×M with
m0 = init(v0).

Definition 3.35. For games G = (G, Ω, Win) and G ′ = (G′, Ω′, Win′), we
say that G reduces to G ′ via memory M, G ≤M G ′, if G′ = G ×M and
every play in G ′ is won by the same player as the projected play in G.

Given a memory structure M for G and a memory structure M′ for
G ×M, we obtain a memory structure M∗ = M×M′ for G. The set of
memory locations is M × M′, and we have memory initialisation

init∗(v) = (init(v), init′(v, init(v)))

with the update function

update∗((m, m′), v) =

(update(m, v), update′(m′, (v, update(m, v)))).

Theorem 3.36. Suppose that G reduces to G ′ via memory M and that

65

3 Infinite Games

Player σ has a winning strategy for G ′ with memory M′ from position
(v0, init(v0))). Then Player σ has a winning strategy for G with memory
M×M′ from position v0.

Proof. Given a strategy F′ : (Vσ × M) × M′ → (V × M) for Player σ

in G ′, we have to construct a strategy F : (Vσ × (M × M′)) → V for
Player σ in G. For any v ∈ Vσ and any pair (m, m′) ∈ M × M′ we
have that F′((v, m), m′) = (w, update(m, w)) for some w ∈ vE. We put
F(v, (m, m′)) = w. If a play in G that is consistent with F proceeds from
position v with current memory location (m, m′) to a new position w,
then the memory is updated to (n, n′) with n = update(m, w) and n′ =
update′(m′, (w, n)). In the extended play in G ′, we have an associated
move from (v, m) to (w, n) with memory update from m′ to n′. Thus,
every play in G from initial position v0 that is consistent with F is the
projection of a play in G ′ from (v0, init(v0)) that is consistent with F′.
Therefore, if F′ is a winning strategy from (v0, init(v0)), then F is a
winning strategy from v0. q.e.d.

Corollary 3.37. Every game that reduces via memory M to a positionally
determined game is determined via memory M.

Obviously, memory reductions between games can be composed.
If G reduces to G ′ with memory M = (M, update, init) and G ′ reduces
to G ′′ with memory M′ = (M′, update′, init′) then G reduces to G ′′ with
memory (M × M′, update′′, init′′) where

init′′(v) = (init(v), init′(v, init(v)))

and
update′′((m, m′), v) =

(update(m, v), update′(m′, (v, update(m, v)))).

The classical example of a game reduction with finite memory is
the reduction of Muller games to parity games via latest appearance
records. Intuitively, a latest appearance record (LAR) is a list of priorities
ordered by their latest occurrence. More formally, for a finite set C of
priorities, LAR(C) is the set of sequences c1 . . . ck#ck+1 . . . cl of elements
from C ·∪ {#} in which each priority c ∈ C occurs at most once and
occurs precisely once. At a position v, the LAR c1 . . . ck#ck+1 . . . cl is

66

3.5 Muller Games and Game Reductions

updated by moving the priority Ω(v) to the end, and moving # to the
previous position of Ω(v) in the sequence. For instance, at a position
with priority c2, the LAR c1c2c3#c4c5 is updated to c1#c3c4c5c2. (If Ω(v)
did not occur in the LAR, we simply append Ω(v) at the end). Thus,
the LAR memory for an arena with priority labelling Ω : V → C is the
triple (LAR(C), update, init) with init(v) = #Ω(v) and

update(c1 . . . ck#ck+1 . . . cl, v) =

c1 . . . ck#ck+1 . . . clΩ(v) if Ω(v) ̸∈ {c1, . . . cl},

c1 . . . cm−1#cm+1 . . . clcm if Ω(v) = cm.

The hit set of an LAR c1 . . . ck#ck+1 . . . cl is the set {ck+1 . . . cl} of
priorities occurring after the symbol #. Note that if in a play π = v0v1 . . .
the LAR at position vn is c1 . . . ck#ck+1 . . . cl, then Ω(vn) = cl and the hit
set {ck+1 . . . cl} is the set of priorities that have been visited since the
latest previous occurrence of cl in the play.

Lemma 3.38. Let π be a play of a Muller game G with finitely many
priorities, and let Inf(π) be the set of priorities occurring infinitely often
in π. Then the hit set of the latest appearance record is, from some point
onwards, always a subset of Inf(π) and infinitely often coincides with
Inf(π).

Proof. For each play π = v0v1v2 . . . there is a position vm such that
Ω(vn) ∈ Inf(π) for all n ≥ m. Since no priority outside Inf(π) is
seen after position vm, the hit set will, from that position onwards, al-
ways be contained in Inf(π), and the LAR will always have the form
c1 . . . cj−1cj . . . ck#ck+1 . . . cl where c1, . . . cj−1 remains fixed and
Inf(π) = {cj, . . . , cl}. Since all priorities in Inf(π) are seen again and
again, it happens infinitely often that, among these, the one occurring
leftmost in the LAR is hit. At such positions, the LAR is updated to
c1, . . . , cj−1#cj+1 . . . clcj, and the hit set coincides with Inf(π). q.e.d.

Theorem 3.39. Every Muller game with finitely many priorities reduces
via LAR memory to a parity game.

Proof. Let G be a Muller game with game graph G, priority labelling
Ω : V → C and winning condition (F0,F1). We have to prove that

67

3 Infinite Games

G ≤LAR G ′ for a parity game G ′ with game graph G × LAR(C) and an
appropriate priority labelling Ω′ on V × LAR(C), which is defined as
follows:

Ω′(v, c1c2 . . . ck#ck+1 . . . cl) =

2k if {ck+1, . . . , cl} ∈ F0,

2k + 1 if {ck+1, . . . , cl} ∈ F1.

Let π = v0v1v2 . . . be a play on G and fix a number m such that,
for all n ≥ m, Ω(vn) ∈ Inf(π) and the LAR at position vn has the form
c1 . . . cjcj+1 . . . ck#ck+1 . . . cl where Inf(π) = {cj+1, . . . cl} and the prefix
c1 . . . cj remains fixed. In the corresponding play π′ = (v0, r0)(v1, r1) . . .
in G ′, all nodes (vn, rn) for n ≥ m have a priority 2k + ρ with k ≥ j and
ρ ∈ {0, 1}. Assume that the play π is won by Player σ, i.e., Inf(π) ∈ Fσ.
Since the hit set of the LAR coincides with Inf(π) infinitely often, the
minimal priority seen infinitely often on the extended play is 2j + σ.
Thus the extended play in the parity game G ′ is won by the same player
as the original play in G. q.e.d.

Corollary 3.40. Muller games are determined via finite memory strate-
gies. The size of the memory is bounded by (|C|+ 1)!.

The question arises which Muller conditions (F0,F1) guarantee
positional winning strategies for arbitrary game graphs? One obvious
answer are parity conditions. But there are others:

Example 3.41. Let C = {0, 1}, F0 = {C} and F1 = P(C) \ {C} =

{{0}, {1}, ∅}. (F0,F1) is not a parity condition, but every Muller game
with winning condition (F0,F1) is positionally determined.

Definition 3.42. The Zielonka tree for a Muller condition (F0,F1) over
C is a tree Z(F0,F1) whose nodes are labelled with pairs (X, σ) such
that X ∈ Fσ. We define Z(F0,F1) inductively as follows. Let C ∈ Fσ

and C0, . . . , Ck−1 be the maximal sets in {X ⊆ C : X ∈ F1−σ}. Then
Z(F0,F1) consists of a root, labelled with (C, σ), to which we attach as
subtrees the Zielonka trees Z(F0 ∩ P(Ci),F1 ∩ P(Ci)), i = 0, . . . , k − 1.

Example 3.43. Let C = {0, 1, 2, 3, 4} and F0 = {{0, 1}, {2, 3, 4}, {2, 3},
{2, 4}, {3}, {4}}, F1 = P(C) \ F0. The Zielonka tree Z(F0,F1) is de-
picted in Figure 3.9.

68

3.5 Muller Games and Game Reductions

C, 1

{0, 1}, 0

{0}, 1 {1}, 1

{2, 3, 4}, 0

{2}, 1 {3, 4}, 1

{3}, 0

∅, 1

{4}, 0

∅, 1

Figure 3.9. A Zielonka tree

A set Y ⊆ C belongs to Fσ if there is a node of Z(F0,F1) that is
labelled with (X, σ) for some X ⊇ Y and for all children (Z, 1 − σ) of
(X, σ) we have Y ̸⊆ Z.

Example 3.44. Consider again the tree Z(F0,F1) from Example 3.43. It is
the case that {2, 3} ∈ F0, since ({2, 3, 4}, 0) is a node of Z(F0,F1) and

• {2, 3} ⊆ {2, 3, 4};
• {2, 3} ̸⊆ {2};
• {2, 3} ̸⊆ {3, 4}.

The Zielonka tree of a parity-condition is especially simple, as
Figure 3.10 shows.

Besides parity games there are other important special cases of
Muller games. Of special relevance are games with Rabin and Streett
conditions because these admit positional winning strategies for one
player.

Definition 3.45. A Streett-Rabin condition is a Muller condition
(F0,F1) such that F0 is closed under union.

In the Zielonka tree for a Streett-Rabin condition, the nodes labelled
with (X, 1) have only one successor. It follows that if both F0 and F1 are
closed under union, then the Zielonka tree Z(F0,F1) is a path, which
implies that (F0,F1) is equivalent to a parity condition.

69

3 Infinite Games

{0, . . . , m − 1}, 0

{1, . . . , m − 1}, 1

{2, . . . , m − 1}, 0

{m − 2, m − 1}, σ

{m − 1}, 1 − σ

Figure 3.10. The Zielonka tree of a parity-condition with m priorities

In a Streett-Rabin game, Player 1 has a positional winning strategy
on his winning region. On the other hand, Player 0 can win on his
winning region via a finite-memory strategy, and the size of the memory
can be directly read off from the Zielonka tree. We present an elementary
proof of this result.

Theorem 3.46. Let G = (V, V0, V1, E, Ω) be a game with a Streett-Rabin
winning condition (F0,F1). Then G is determined, i.e. V = W0 ∪
W1, with a finite memory winning strategy for Player 0 on W0, and a
positional winning strategy for Player 1 on W1. The size of the memory
required by the winning strategy for Player 0 is bounded by the number
of leaves of the Zielonka tree Z(F0,F1).

Proof. We proceed by induction on the number of priorities in C or,
equivalently, the depth of the Zielonka tree Z(F0,F1). Let l be the
number of leaves of Z(F0,F1). We distinguish two cases.

Case 1: C ∈ F1. Let

X0 :=

{
v :

Player 0 has a winning strategy with memory

of size ≤ l from v

}
,

and X1 = V \ X0. It suffices to prove that Player 1 has a positional
winning strategy on X1. To construct this strategy, we combine three

70

3.5 Muller Games and Game Reductions

positional strategies of Player 1: A trap strategy, an attractor strategy,
and a winning strategy on a subgame with fewer priorities.

At first, we observe that X1 is a trap for Player 0. This means that
Player 1 has a positional trap strategy t on X1 to enforce that the play
stays within X1.

Since F0 is closed under union, there is a unique maximal subset
C′ ⊆ C with C′ ∈ F0. Let Y := X1 ∩ Ω−1(C \ C′), and let Z = Attr1(Y) \
Y. Observe that Player 1 has a positional attractor strategy a, by which
he can force, from any position z ∈ Z, that the play reaches Y.

Finally, let V′ = X1 \ (Y ∪Z) and let G ′ be the subgame of G induced
by V′, with winning condition (F0 ∩P(C′),F1 ∩P(C′)) (see Figure 3.11).
Since this game has fewer priorities, the induction hypothesis applies,
i.e. we have V′ = W ′

0 ∪ W ′
1, and Player 0 has a winning strategy with

memory ≤ l on W ′
0, whereas Player 1 has a positional winning strategy g′

on W ′
1. However, W ′

0 = ∅: Otherwise we could combine the strategies of
Player 0 to obtain a winning strategy with memory ≤ l on X0 ∪W ′

0 ⊋ X0,
a contradiction to the definition of X0. Hence W ′

1 = V′.

X0

X1V′ Z Y

Ω−1(C′) Ω−1(C \ C′)

Figure 3.11. Constructing a winning strategy for Player 1

We can now define a positional strategy g for Player 1 on X1 by

g(x) =

g′(x) if x ∈ V′,

a(x) if x ∈ Z,

t(x) if x ∈ Y.

Consider any play π that starts at a position v ∈ X1 and is consistent
with g. We have to show that π is won by Player 1. Obviously, π stays

71

3 Infinite Games

within X1. If it hits Y ∪ Z only finitely often, then from some point
onwards it stays within V′ and coincides with a play consistent with
g′. It is therefore won by Player 1. Otherwise, π hits Y ∪ Z, and hence
also Y, infinitely often. Thus, Inf(π)∩ (C \ C′) ̸= ∅ and Inf(π) ∈ F1. So
Player 1 has a positional winning strategy on X1.

Case 2: C ∈ F0. There exist maximal subsets C0, . . . , Ck−1 ⊆ C with
Ci ∈ F1 (see Figure 3.12). Observe that if D ∩ (C \ Ci) ̸= ∅ for all i < k
then D ∈ F0. Now let

X1 := {v ∈ V : Player 1 has a positional winning strategy from v},

and X0 = V \ X1. We claim that Player 0 has a finite memory winning
strategy of size ≤ l on X0. To construct this strategy, we proceed in a
similar way as above, for each of the sets C \Ci. We will obtain strategies
f0, . . . , fk−1 for Player 0 such that each fi has finite memory Mi, and
we will use these strategies to build a winning strategy f on X0 with
memory M0 ∪ · · · ∪ Mk−1.

(C, 0)

(C0, 1) (C1, 1) . . . (Ck−1, 1)

Figure 3.12. The top of the Zielonka tree Z(F0,F1)

For i = 0, . . . , k − 1, let Yi = X0 ∩ Ω−1(C \ Ci), and Zi = Attr0(Yi) \
Yi, and let ai be a positional attractor strategy by which Player 0 can
force a play from any position in Zi to reach Yi. Furthermore, let
Ui = X0 \ (Yi ∪ Zi), and let Gi be the subgame of G induced by Ui with
winning condition (F0 ∩ P(Ci),F1 ∩ P(Ci)). The winning region of
Player 1 in Gi is empty: Indeed, if Player 1 could win Gi from v, then,
by the induction hypothesis, he could win with a positional winning
strategy. By combining this strategy with the positional winning strategy
of Player 1 on X1, this would imply that v ∈ X1, but v ∈ Ui ⊆ V \ X1.

Hence, by the induction hypothesis, Player 0 has a winning strategy
fi with finite memory Mi on Ui. Let (fi + ai) be the combination of fi

72

3.5 Muller Games and Game Reductions

with the attractor strategy ai, defined by

(fi + ai)(v) :=

fi(v) if v ∈ Ui,

ai(v) if v ∈ Zi.
.

From any position v ∈ Ui ∪ Zi this strategy ensures that the play either
remains inside Ui and is winning for Player 1, or that it eventually
reaches a position in Yi.

We now combine the strategies (f0 + a0), . . . , (fk−1 + ak−1) to a win-
ning strategy f on X0, which ensures that either the play ultimately
remains within one of the regions Ui and coincides with a play ac-
cording to fi, or that it cycles infinitely often through all the regions
Y0, . . . , Yk−1.

At positions in Ỹ :=
⋂

i<k Yi, Player 0 just plays with a (positional)
trap strategy t ensuring that the play remains in X0. At the first position
v ̸∈ Ỹ, Player 0 takes the minimal i such that v ̸∈ Yi, i.e. v ∈ Ui ∪ Zi,
and uses the strategy (fi + ai) until a position w ∈ Yi is reached. At this
point, Player 0 switches from i to j = i + l (mod k) for the minimal l
such that w ̸∈ Yj. Hence w ∈ Uj ∪ Zj; Player 0 now plays with strategy
(f j + aj) until a position in Yj is reached. There Player 0 again switches
to the appropriate next strategy, as he does every time he reaches Ỹ.

Assuming that Mi ∩ Mj = ∅ for i ̸= j, it is not difficult to see that f
can be implemented with memory M = M0 ∪ · · · ∪ Mk−1. We leave the
formal definition of f as an exercise.

Note that, by the induction hypothesis, the size of the memory Mi

is bounded by the number of leaves of the Zielonka subtrees Z(F0 ∩
P(Ci),F1 ∩ P(Ci)). Consequently, the size of M is bounded by the
number of leaves of Z(F0,F1).

It remains to prove that f is winning on X0. Let π be a play that
starts in X0 and is consistent with f . If π eventually remains inside
some Ui, then from some point onwards it coincides with a play that is
consistent with fi and is therefore won by Player 0. Otherwise, it is easy
to see that π hits each of the sets Y0, . . . , Yk−1 infinitely often. But this
means that Inf(π) ∩ (C \ Ci) ̸= ∅ for all i ≤ k; as observed above this
implies that Inf(π) ∈ F0. q.e.d.

73

3 Infinite Games

An immediate consequence of Theorem 3.46 is that parity games
are positionally determined.

3.6 Complexity

We will now determine the complexity of computing the winning regions
for games over finite game graphs. The associated decision problem is

Given: Game graph G, winning condition (F0,F1), v ∈ V,
σ ∈ {0, 1}.
Question: v ∈ Wσ?

For parity games, we already know that this problem is in NP ∩ coNP,
and it is conjectured to be in P. Moreover, for many special cases, we
know that it is indeed in P. Now we will examine the complexity of
Streett-Rabin games and games with arbitrary Muller conditions.

Theorem 3.47. Deciding whether Player σ wins from a given position in
a Streett-Rabin game is

• coNP-hard for σ = 0,
• NP-hard for σ = 1.

Proof. It is sufficient to prove the claim for σ = 1 since Streett-Rabin
games are determined. We will reduce the satisfiability problem for
Boolean formulae in CNF to the given problem. For every formula

Ψ =
∧

i

Ci, Ci =
∨

j

Yij

in CNF, we define the game GΨ as follows: Positions for Player 0 are the
literals X1, . . . , Xk,¬X1, . . . ,¬Xk occurring in Ψ; positions for Player 1
are the clauses C1, . . . , Cn. Player 1 can move from a clause C to a literal
Y ∈ C; Player 0 can move from Y to any clause. The winning condition
is given by

F0 = {Z : {X,¬X} ⊆ Z for at least one variable X}.

Obviously, (F0,F1) is a Streett-Rabin condition.

74

3.6 Complexity

We claim that Ψ is satisfiable if and only if Player 1 wins GΨ (from
any initial position).

(⇒) Assume that Ψ is satisfiable. There exists a satisfying interpre-
tation I : {X1, . . . , Xk} → {0, 1}. Player 1 moves from a clause C to a
literal Y ∈ C such that JYKI = 1. In the resulting play only literals with
JYKI = 1 are seen, and thus Player 1 wins.

(⇐) Assume that Ψ is unsatisfiable. It is sufficient to show that
Player 1 has no positional winning strategy. Every positional strategy f
for Player 1 chooses a literal Y = f (C) ∈ C for every clause C. Since Ψ is
unsatisfiable, there exist clauses C, C′ and a variable X such that f (C) =
X, f (C′) = ¬X. Otherwise, f would define a satisfying interpretation
for Ψ. Player 0’s winning strategy is to move from ¬X to C and from
any other literal to C′. Then X and ¬X are seen infinitely often, and
Player 0 wins. Thus, f is not a winning strategy for Player 1. If Player 1
has no positional winning strategy, he has no winning strategy at all.

Is Ψ 7→ GΨ a polynomial reduction? The problem that arises is
the winning condition: Both F0 and F1 contain exponentially many
sets. Moreover, the Zielonka tree Z(F0,F1) has exponential size. On
the other hand, F0 and F1 can be represented in a very compact way
using a Boolean formula in the following sense: Let (F0,F1) be a Muller
condition over C. A Boolean formula Ψ with variables in C defines the
set FΨ = {Y ⊆ C : IY |= Ψ} where

IY(c) =

1 if c ∈ Y

0 if c /∈ Y.

Ψ defines (F0,F1) if FΨ = F0 (and thus F¬Ψ = F1). Representing
the winning condition by a Boolean formula makes the reduction a
polynomial reduction. q.e.d.

Another way of defining Streett-Rabin games is by a collection of
pairs (L, R) with L, R ⊆ C. The collection {(L1, R1), . . . , (Lk, Rk)} defines
the Muller condition (F0,F1) given by:

F0 = {X ⊆ C : X ∩ Li ̸= ∅ ⇒ X ∩ Ri ̸= ∅ for all i ≤ k}.

75

3 Infinite Games

We have:

• Every Muller condition defined by a collection of pairs is a Streett-
Rabin condition.

• Every Streett-Rabin condition is definable by a collection of pairs.

• Representing a Streett-Rabin condition by a collection of pairs can
be exponentially more succinct than a representation by its Zielonka
tree or an explicit enumeration of F0 or F1: There are Streett-
Rabin conditions definable with k pairs such that the corresponding
Zielonka tree has k! leaves.

The reduction Ψ 7→ GΨ can be modified such that the winning
condition is given by 2m pairs, where m is the number of variables in Ψ:

L2i = {Xi}, R2i = {¬Xi}, L2i−1 = {¬Xi}, R2i−1 = {Xi}.

For the Streett-Rabin condition defined by {(L1, R1), . . . , (L2m, R2m)} we
have that

F1 =

Z :
Z contains a Literal Xi (or ¬Xi) such that the

complementary literal ¬Xi (respectively Xi) is

not contained in Z

.

The winning strategies used in the proof remain winning for the modi-
fied winning condition.

To prove the upper bounds for the complexity of Streett-Rabin
games we will consider solitaire games first.

Theorem 3.48. Let G be a Streett-Rabin game such that only Player 0
can do non-trivial moves. Then the winning regions W0 and W1 can be
computed in polynomial time.

Proof. Let us assume that the winning condition is given by the collection
P = {(L1, R1), . . . , (Lk, Rk)} of pairs. It is sufficient to prove the claim
for W0 since Streett-Rabin games are determined. Every play π will
ultimately stay in a strongly connected set U ⊆ V such that all positions
in U are seen infinitely often. Therefore, we call a strongly connected set

76

3.6 Complexity

U good for Player 0 if for all i ≤ k

Ω(U) ∩ Li ̸= ∅ ⇒ Ω(U) ∩ Ri ̸= ∅.

For every such U, Attr0(U) ⊆ W0. If U is not good for Player 0 then
there is a node in U which violates a pair (Li, Ri). In this case Player 0
wants to find a (strongly connected) subset of U where she can win
nevertheless. We can eliminate the pairs (Li, Ri) where Ω(U) ∩ Li = ∅
since they never violate the winning condition. On the other hand,
Player 0 loses if a node of

Ũ = {u ∈ U | Ω(u) ∈ Li for some i such that Ω(U) ∩ Ri = ∅}

is visited again and again. Thus we will reduce the game from U to U \ Ũ
with the modified winning condition P ′ = {(Li, Ri) ∈ P : Ω(U) ∩ Li ̸=
∅}. This yields Algorithm 3.1.

Algorithm 3.1. A polynomial time algorithm solving solitaire Streett-
Rabin games

Algorithm WinReg(G,P)
Input: Streett-Rabin game with game graph G and pairs condition P .
Output: W0, the winning region for Player 0.

W0 := ∅;
Decompose G into its SCCs;
For every SCC U do

P ′ := {(Li, Ri) : Ω(U) ∩ Li ̸= ∅};
Ũ := {u ∈ U : Ω(u) ∈ Li for some i such that Ω(U) ∩ Ri = ∅};
if Ũ = ∅ then W := W ∪ U;
else W := W ∪ WinReg(G ↾U\(̃U)

,P ′);
enddo;
W0 := Attr0(W);
Output W0;

The SCC decomposition can be computed in linear time. The de-
composition algorithm will be called less than |V| times, the rest are
elementary steps. Therefore, the algorithm runs in polynomial time.

77

3 Infinite Games

It remains to show that W0 = WinReg(G,P):
(⊆) Let v ∈ W0. Player 0 can reach from v a strongly connected set

S that satisfies the winning condition. S is a subset of an SCC U of G. If
U satisfies the winning condition, then v ∈ WinReg(G,P). Otherwise,
S ⊆ U \ Ũ, and S is contained in an SCC of G ↾U\Ũ. The repetition of
the argument leads to S ⊆ W and therefore v ∈ WinReg(G,P)

(⊇) Let v ∈ WinReg(G,P). The algorithm finds a strongly con-
nected set U (an SCC of a subgraph) that is reachable from v and that
satisfies the winning condition. By moving from v into U, staying there,
and visiting all positions in U infinitely often, Player 0 wins. Thus
v ∈ W0. q.e.d.

Theorem 3.49. Deciding whether Player σ wins from a given position in
a Streett-Rabin game is

• coNP-complete for σ = 0,
• NP-complete for σ = 1.

Proof. It suffices to prove the claim for Player 1 since W0 is the comple-
ment of W1. Hardness follows from Theorem 3.47. To decide whether
v ∈ W1, guess a positional strategy for Player 1 and construct the in-
duced solitaire game, in which only Player 0 has non-trivial moves.
Then decide in polynomial time whether v is in the winning region of
Player 1 in the solitaire game (according to Theorem 3.48), i.e. whether
the strategy is winning from v. If this is the case, accept; otherwise
reject. q.e.d.

Remark 3.50. The complexity of computing the winning regions in arbi-
trary Muller games depends to a great amount on the representation of
the winning condition. For any reasonable representation, the problem
is in Pspace, and many representations are so succinct as to render the
problem Pspace-hard. Only recently, it was shown that, given an explicit
representation of the winning condition, the problem of deciding the
winner is in P.

78

4 Basic Concepts of Mathematical
Game Theory

Up to now we considered finite or infinite games

• with two players,
• played on finite or infinite graphs,
• with perfect information (the players know the whole game, the

history of the play and the actual position),
• with qualitative (win or loss) winning conditions (zero-sum games),
• with ω-regular winning conditions (or Borel winning conditions)

specified in a suitable logic or by automata, and
• with asynchronous interaction (turn-based games).

Those games are used for verification or to evaluate logic formulae.
In this section we move to concurrent multi-player games in which

players get real-valued payoffs. The games will still have perfect infor-
mation and additionally throughout this chapter we assume that the set
of possible plays is finite, so there exist only finitely many strategies for
each of the players.

4.1 Games in Strategic Form

Definition 4.1. A game in strategic form is described by a tuple Γ =

(N, (Si)i∈N, (pi)i∈N) where

• N = {1, . . . , n} is a finite set of players
• Si is a set of strategies for Player i
• pi : S → R is a payoff function for Player i

and S := S1 × · · · × Sn is the set of strategy profiles. Γ is called a zero-sum
game if ∑i∈N pi(s) = 0 for all s ∈ S.

79

4 Basic Concepts of Mathematical Game Theory

The number pi(s1, . . . , sn) is called the value or utility of the strategy
profile (s1, . . . , sn) for Player i. The intuition for zero-sum games is that
the game is a closed system.

Many important notions can best be explained by two-player games,
but are defined for arbitrary multi-player games.

In the sequel, we will use the following notation: Let Γ be a game.
Then S−i := S1 × · · · × Si−1 × Si+1 × · · · × Sn is the set of all strategy
profiles for the players except i. For s ∈ Si and s−i ∈ S−i, (s, s−i) is
the strategy profile where Player i chooses the strategy s and the other
players choose s−i.

Definition 4.2. Let s, s′ ∈ Si. Then s dominates s′ if

• for all s−i ∈ S−i we have pi(s, s−i) ≥ pi(s′, s−i), and
• there exists s−i ∈ S−i such that pi(s, s−i) > pi(s′, s−i).

A strategy s is dominant if it dominates every other strategy of the player.

Definition 4.3. An equilibrium in dominant strategies is a strategy profile
(s1, . . . , sn) ∈ S such that all si are dominant strategies.

Definition 4.4. A strategy s ∈ Si is a best response to s−i ∈ S−i if
pi(s, s−i) ≥ pi(s′, s−i) for all s′ ∈ Si.

Obviously, a dominant strategy is a best response to all strategy
profiles of the other players.

Example 4.5. The Prisoner’s Dilemma.
Two suspects are arrested, but there is insufficient evidence for a

conviction. Both prisoners are questioned separately, and are offered
the same deal: if one testifies for the prosecution against the other and
the other remains silent, the betrayer goes free and the silent accomplice
receives the full 10-year sentence. If both stay silent, both prisoners are
sentenced to only one year in jail for a minor charge. If both betray
each other, each receives a five-year sentence. So this dilemma poses the
question: How should the prisoners act?

stay silent betray

stay silent (−1,−1) (−10, 0)

betray (0,−10) (−5,−5)

80

4.2 Nash equilibria

An entry (a, b) at position i, j of the matrix means that if profile (i, j) is
chosen, Player 1 (who chooses the rows) receives payoff a and Player 2
(who chooses the columns) receives payoff b.

Betraying is a dominant strategy for every player, call this strategy
b. Therefore, (b, b) is an equilibrium in dominant strategies. Problem:
The payoff (−5,−5) of the dominant equilibrium is not optimal.

The Prisoner’s Dilemma is an important metaphor for many deci-
sion situations, and there exists extensive literature concerned with the
problem. Especially interesting is the situation, where the Prisoner’s
Dilemma is played repeatedly, possibly infinitely often.

Example 4.6. Battle of the sexes.

meat fish

red wine (2, 1) (0, 0)

white wine (0, 0) (1, 2)

There are no dominant strategies, and thus there is no dominant equi-
librium. The pairs (red wine, meat) and (white wine, fish) are distin-
guished since every player plays with a best response against the strategy
of the other player: No player would change his or her strategy unilater-
ally.

4.2 Nash equilibria

Definition 4.7. A strategy profile s = (s1, . . . , sn) ∈ S is a Nash equilib-
rium in Γ if for all i ∈ N and all strategies s′i ∈ Si

pi(si, s−i︸ ︷︷ ︸
s

) ≥ pi(s′, s−i).

Thus, in a Nash equilibrium, every player plays with a best response
to the profile of his opponents, and thus has no incentive to deviate
unilaterally to a different strategy. Is there a Nash equilibrium in every
game? The following example shows that this is not always the case, at
least not in pure strategies.

81

4 Basic Concepts of Mathematical Game Theory

Example 4.8. Rock, paper, scissors.

rock scissors paper

rock (0, 0) (1,−1) (−1, 1)

scissors (−1, 1) (0, 0) (1,−1)

paper (1,−1) (−1, 1) (0, 0)

There are no dominant strategies and no Nash equilibria: For every pair
(f , g) of strategies one of the players can change to a better strategy.
Note that this game is a zero-sum game.

Although there are no Nash equilibria in pure strategies in rock,
paper, scissors, there is of course an obvious good method to play this
game: Randomly pick one of the three actions with equal probability.
This observation leads us to the notion of mixed strategies, where the
players are allowed to randomise over strategies.

Definition 4.9. A mixed strategy of Player i in Γ is a probability distribu-
tion µi : Si → [0, 1] on Si (so that ∑s∈Si

µ(s) = 1).
∆(Si) denotes the set of probability distributions on Si. ∆(S) :=
∆(S1) × · · · × ∆(Sn) is the set of all strategy profiles in mixed strate-
gies.
The expected payoff is p̂i : ∆(S) → R,

p̂i(µ1, . . . , µn) = ∑
(s1,...,sn)∈S

(
∏
j∈N

µj(sj)

)
· pi(s1, . . . , sn)

For every game Γ = (N, (Si)i∈N, (pi)i∈N) we define the mixed expansion
Γ̂ = (N, (∆(Si))i∈N, (p̂i)i∈N).

Definition 4.10. A Nash equilibrium of Γ in mixed strategies is a Nash
equilibrium in Γ̂, i.e. a Nash equilibrium in Γ in mixed strategies is
a mixed strategy profile µ = (µ1, . . . , µn) ∈ ∆(S) such that, for every
player i and every µ′

i ∈ ∆(S), p̂i(µi, µ−i) ≥ p̂i(µ
′
i, µ−i).

Nash equilibria (in mixed strategies) provide the arguably most
important solution concept in classical game theory (although, as we
shall point out later, this concept is not without problems). An important

82

4.2 Nash equilibria

reason for the success of Nash equilibrium as a solution concept is the
fact that every finite game has one. To prove this, we shall use a well-
known classical fixed-point theorem.

Theorem 4.11 (Brouwer’s Fixed-Point Theorem). Let X ⊆ Rn be compact
(i.e., closed and bounded) and convex. Then every continuous function
f : X → X has a fixed point.

We do not prove this here but remark that, interestingly, the Brouwer
Fixed-Point Theorem can itself be proved via a game-theoretic result,
namely the determinacy of HEX.

Theorem 4.12 (Nash). Every finite game Γ in strategic form has at least
one Nash equilibrium in mixed strategies.

Proof. Let Γ = (N, (Si)i∈N, (pi)i∈N). Every mixed strategy of Player i
is a tuple µi = (µi,s)s∈Si ∈ [0, 1]|Si| such that ∑s∈Si

µi,s = 1. Thus,
∆(Si) ⊆ [0, 1]|Si| is a compact and convex set, and the same applies to
∆(S) = ∆(S1)× · · · × ∆(Sn) for N = {1, . . . , n}. For every i ∈ N, every
pure strategy s ∈ Si and every mixed strategy profile µ ∈ ∆(S) let

gi,s(µ) := max
(

p̂i(s, µ−i)− p̂i(µ), 0
)

be the gain of Player i if he unilaterally changes from the mixed profile
µ to the pure strategy s (only if this is reasonable).

Note that if gi,s(µ) = 0 for all i and all s ∈ Si, then µ is a Nash
equilibrium. We define the function

f : ∆(S) → ∆(S)

µ 7→ f (µ) = (ν1, . . . , νn)

where νi : Si → [0, 1] is a mixed strategy defined by

νi,s =
µi,s + gi,s(µ)

1 + ∑s∈Si
gi,s(µ)

.

For every Player i and all s ∈ Si, µ 7→ νi,s is continuous since p̂i is
continuous and thus gi,s, too. f (µ) = (ν1, . . . , νn) is in ∆(S): Every

83

4 Basic Concepts of Mathematical Game Theory

νi = (νi,s)s∈Si is in ∆(Si) since

∑
s∈Si

νi,s =
∑s∈Si

µi,s + ∑s∈Si
gi,s(µ)

1 + ∑s∈Si
gi,s(µ)

=
1 + ∑s∈Si

gi,s(µ)

1 + ∑s∈Si
gi,s(µ)

= 1.

By the Brouwer fixed point theorem f has a fixed point. Thus, there is a
µ ∈ ∆(S) such that

µi,s =
µi,s + gi,s(µ)

1 + ∑s∈Si
gi,s(µ)

for all i and all s.

Case 1: There is a Player i such that ∑s∈Si
gi,s(µ) > 0.

Multiplying both sides of the fraction above by the denominator, we get
µi,s · ∑s∈Si

gi,s(µ) = gi,s(µ). This implies µi,s = 0 ⇔ gi,s(µ) = 0, and
thus gi,s(µ) > 0 for all s ∈ Si where µi,s > 0.

But this leads to a contradiction: gi,s(µ) > 0 means that it is prof-
itable for Player i to switch from (µi, µ−i) to (s, µ−i). This cannot be true
for all s where µi,s > 0 since the payoff for (µi, µ−i) is the mean of the
payoffs (s, µ−i) with arbitrary µi,s. However, the mean cannot be smaller
than all components:

p̂i(µi, µ−i) = ∑
s∈Si

µi,s · p̂i(s, µ−i)

= ∑
s∈Si

µi,s>0

µi,s · p̂i(s, µ−i)

> ∑
s∈Si

µi,s>0

µi,s · p̂i(µi, µ−i)

= p̂i(µi, µ−i)

which is a contradiction.

Case 2: gi,s(µ) = 0 for all i and all s ∈ Si, but this already means that µ

is a Nash equilibrium as stated before. q.e.d.

The support of a mixed strategy µi ∈ ∆(Si) is supp(µi) = {s ∈ Si :
µi(s) > 0}.

84

4.3 Two-person zero-sum games

Theorem 4.13. Let µ∗ = (µ1, . . . , µn) be a Nash equilibrium in mixed
strategies of a game Γ. Then for every Player i and every pure strategy
s, s′ ∈ supp(µi)

p̂i(s, µ−i) = p̂i(s′, µ−i).

Proof. Assume p̂i(s, µ−i) > p̂i(s′, µ−i). Then Player i could achieve a
higher payoff against µ−i if she played s instead of s′: Define µ̃i ∈ ∆(Si)

as follows:

• µ̃i(s) = µi(s) + µi(s′),
• µ̃i(s′) = 0,

• µ̃i(t) = µi(t) for all t ∈ Si − {s, s′}.

Then

p̂i(µ̃i, µ−i) = p̂i(µi, µ−i) + µi(s′)︸ ︷︷ ︸
>0

·
(

p̂i(s, µ−i)− p̂i(s′, µ−i)
)

︸ ︷︷ ︸
>0

> p̂i(µi, µ−i)

which contradicts the fact that µ is a Nash equilibrium. q.e.d.

4.3 Two-person zero-sum games

We want to apply Nash’s Theorem to two-person games. First, we note
that in every game Γ = ({0, 1}, (S0, S1), (p0, p1))

max
f∈∆(S0)

min
g∈∆(S1)

p0(f , g) ≤ min
g∈∆(S1)

max
f∈∆(S0)

p0(f , g).

The maximal payoff which one player can enforce cannot exceed the
minimal payoff the other player has to cede. This is a special case of the
general observation that for every function f : X × Y → R

sup
x

inf
y

h(x, y) ≤ inf
y

sup
x

h(x, y).

(For all x′, y: h(x′, y) ≤ supx h(x, y). Thus infy h(x′, y) ≤ infy supx
h(x, y) and supx infy h(x, y) ≤ infy supx h(x, y).)

85

4 Basic Concepts of Mathematical Game Theory

Remark 4.14. Another well-known special case from mathematical logic
is that ∃x ∀y Rxy |= ∀y ∃x Rxy.

Theorem 4.15 (v. Neumann, Morgenstern).
Let Γ = ({0, 1}, (S0, S1), (p,−p)) be a two-person zero-sum game. For
every Nash equilibrium (f ∗, g∗) in mixed strategies

max
f∈∆(S0)

min
g∈∆(S1)

p(f , g) = p(f ∗, g∗) = min
g∈∆(S1)

max
f∈∆(S0)

p(f , g).

In particular, all Nash equilibria have the same payoff which is called
the value of the game. Furthermore, both players have optimal strategies
to realise this value.

Proof. Since (f ∗, g∗) is a Nash equilibrium, for all f ∈ ∆(S0), g ∈ ∆(S1)

p(f ∗, g) ≥ p(f ∗, g∗) ≥ p(f , g∗).

Thus

min
g∈∆(S1)

p(f ∗, g) = p(f ∗, g∗) = max
f∈∆(S1)

p(f , g∗).

So

max
f∈∆(S0)

min
g∈∆(S1)

p(f , g) ≥ p(f ∗, g∗) ≥ min
g∈∆(S1)

max
f∈∆(S0)

p(f , g)

and

max
f∈∆(S0)

min
g∈∆(S1)

p(f , g) ≤ min
g∈∆(S1)

max
f∈∆(S0)

p(f , g)

imply the claim. q.e.d.

4.4 Regret minimization

To motivate the concept of regret minimization we consider

Example 4.16. Traveller’s Dilemma. This is a symmetric two-player game
Γ = ({1, 2}, (S1, S2), (p1, p2)) with S1 = S2 = {2, . . . , 100} and

86

4.4 Regret minimization

p1(x, y) =

x + 2 if x < y,

y − 2 if y < x, p2(x, y) = p1(y, x)

x if x = y,

The only Nash equilibrium in pure strategies is (2, 2) since for each
(i, j) with i ̸= j the player that has chosen the greater number, say i,
can do better by switching to j − 1, and also, for every (i, i) with i > 2
each player can do better by playing i − 1 (and getting the payoff i + 1
then). Also most other solution concepts from game theory (such as
the iterated elimination of dominated strategies discussed in the next
section) suggest that the players should choose 2.

However, experiments show that people (even game theorists!) tend
to select large numbers, in the range between 90 and 100; moreover they
seem right to do so, since they perform much better in these experiments
than those who follow what game theory proposes and select strategy 2.

The question arises whether there are alternative solution concepts
that justify the choice of large strategies in the Traveller’s Dilemma, and
if yes, which one. A relatively recent proposal that seems to achieve
this is regret minimization. When a player uses this concept, he wants to
minimize the lost payoff (which he would “regret”) due to not playing
with the best response to the strategies of the other players.

This idea was formulated in the context of decision theory, con-
cerned with the choices of individual agents rather than the interaction
of different agents as in game theory. Accordingly, the payoff is de-
termined by a binary function p : S × Z → R, where S is the set of
strategies of the player we are considering, and Z is an abstract set of
possible states.

Before we can introduce regret minimization, we need several defi-
nitions. In state z ∈ Z, the maximal payoff for our player is

p∗(z) := max
s∈S

p(s, z),

and if the player chooses the strategy s ∈ S, he will miss the following
payoff:

87

4 Basic Concepts of Mathematical Game Theory

regretp(s, z) := p∗(z)− p(s, z).

The overall maximal regret for the strategy s is

maxregp(s) := max
z∈Z

regretp(s, z).

Now, the decision with respect to regret minimization would be: Choose
s ∈ S such that maxregp(s) is minimal.

Let us reconsider Example 4.16. Since it belongs to game theory, Z
is the set of strategy profiles of the other players. We claim that exactly
the strategies s ∈ {96, . . . , 100} minimize the maximal regret. To see this,
note that for those s, we have that maxregp(s) = 3, since

• if t ≤ s, then p(s, t) ≥ t − 2 and p∗(t) ≤ t + 1, thus regretp(s, t) =
p∗(t)− p(s, t) ≤ t + 1 − (t − 2) = 3,

• if t > s, then p(s, t) = s + 2 and p∗(t) ≤ 101, thus regretp(s, t) ≤
101 − (s + 2) = 99 − s ≤ 3,

and on the other hand,

• regretp(96, 100) = 101 − 98 = 3,
• for s ∈ {97, . . . , 100}, regretp(s, 96) = 97 − 94 = 3.

Also, for s ≤ 95, we have that maxregp(s) ≥ 4, as maxregp(s) ≥
regretp(s, 100) = 101 − (s + 2) = 99 − s ≥ 4.

Consequently, regret minimization suggests a strategy s with 96 ≤
s ≤ 100. We will now iterate this idea. If both players eliminate strategies
which do not minimize the regret, we obtain a subgame with strategies
{96, . . . , 100}. In this game, we have that

• maxregp(97) = 2, since

– regretp(97, 100) = 101 − 99 = 2,
– regretp(97, 99) = 100 − 99 = 1,
– regretp(97, 98) = 99 − 99 = 0,
– regretp(97, 97) = 98 − 97 = 1,
– regretp(97, 96) = 96 − 95 = 2.

• maxregp(100) ≥ regretp(100, 99) = 100 − 97 = 3.
• maxregp(99) ≥ regretp(99, 98) = 99 − 96 = 3.
• maxregp(98) ≥ regretp(98, 97) = 98 − 95 = 3.

88

4.5 Iterated Elimination of Dominated Strategies

• maxregp(96) ≥ regretp(96, 100) = 101 − 98 = 3.

Hence, 97 is the unique strategy which minimizes the regret in this sub-
game and thus is the choice of a player who assumes that his opponent
wants to minimize his regret as well.

4.5 Iterated Elimination of Dominated Strategies

Besides Nash equilibria and (iterated) regret minimization, the iterated
elimination of dominated strategies is a promising solution concept for
strategic games which is inspired by the following ideas. Assuming
that each player behaves rational in the sense that he will not play a
strategy that is dominated by another one, dominated strategies may
be eliminated. Assuming further that it is common knowledge among
the players that each player behaves rational, and thus discards some of
her strategies, such elimination steps may be iterated as it is possible
that some other strategies become dominated due to the elimination
of previously dominated strategies. Iterating these elimination steps
eventually yields a fixed point where no strategies are dominated.

Example 4.17.

L R L R

T (1, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 0)

B (1, 1, 1) (0, 0, 1) (1, 1, 1) (1, 0, 0)

X Y

Player 1 picks rows, Player 2 picks columns, and Player 3 picks matrices.

• No row dominates the other (for Player 1);
• no column dominates the other (for Player 2);
• matrix X dominates matrix Y (for Player 3).

Thus, matrix Y is eliminated.

• In the remaining game, the upper row dominates the lower one (for
Player 1).

Thus, the lower row is eliminated.

• Of the remaining two possibilities, Player 2 picks the better one.

89

4 Basic Concepts of Mathematical Game Theory

The only remaining profile is (T, R, X).

There are different variants of strategy elimination that have to be
considered:

• dominance by pure or mixed strategies;

• (weak) dominance or strict dominance;

• dominance by strategies in the local subgame or by strategies in the
global game.

The possible combinations of these parameters give rise to eight different
operators for strategy elimination that will be defined more formally in
the following.

Let Γ = (N, (Si)i∈N, (pi)i∈N) such that Si is finite for every Player i.
A subgame is defined by T = (T1, . . . , Tn) with Ti ⊆ Si for all i. Let
µi ∈ ∆(Si), and si ∈ Si. We define two notions of dominance:

(1) Dominance with respect to T:
µi >T si if and only if

• pi(µi, t−i) ≥ pi(si, t−i) for all t−i ∈ T−i

• pi(µi, t−i) > pi(si, t−i) for some t−i ∈ T−i.

(2) Strict dominance with respect to T:
µi ≫T si if and only if pi(µi, t−i) > pi(si, t−i) for all t−i ∈ T−i.

We obtain the following operators on T = (T1, . . . , Tn), Ti ⊆ Si, that
are defined component-wise:

ML(T)i := {ti ∈ Ti : ¬∃µi ∈ ∆(Ti) µi >T ti},

MG(T)i := {ti ∈ Ti : ¬∃µi ∈ ∆(Si) µi >T ti},

PL(T)i := {ti ∈ Ti : ¬∃t′i ∈ Ti t′i >T ti}, and

PG(T)i := {ti ∈ Ti : ¬∃si ∈ Si si >T ti}.

MLS, MGS, PLS, PGS are defined analogously with ≫T instead of >T.
For all T we have the following obvious inclusions:

• Every M-operator eliminates more strategies than the corresponding
P-operator.

90

4.5 Iterated Elimination of Dominated Strategies

• Every operator considering (weak) dominance eliminates more
strategies than the corresponding operator considering strict domi-
nance.

• With dominance in global games more strategies are eliminated
than with dominance in local games.

MG(T) MGS(T)

ML(T) MLS(T)

PG(T) PGS(T)

PL(T) PLS(T)

Figure 4.1. Inclusions between the eight strategy elimination operators

Each of these operators is deflationary, i.e. F(T) ⊆ T for every T
and every operator F. We iterate an operator beginning with T = S,
i.e. F0 := S and Fα+1 := F(Fα). Obviously, F0 ⊇ F1 ⊇ · · · ⊇ Fα ⊇ Fα+1.
Since S is finite, we will reach a fixed point Fα such that Fα = Fα+1 =: F∞.
We expect that for the eight fixed points MG∞, ML∞, etc. the same
inclusions hold as for the operators MG(T), ML(T), etc. But this is not
the case: For the following game Γ = ({0, 1}, (S0, S1), (p0, p1)) we have
ML∞ ⊈ PL∞.

X Y Z

A (2, 1) (0, 1) (1, 0)

B (0, 1) (2, 1) (1, 0)

C (1, 1) (1, 0) (0, 0)

D (1, 0) (0, 1) (0, 0)

We have:

• Z is dominated by X and Y.
• D is dominated by A.
• C is dominated by 1

2 A + 1
2 B.

Thus:

91

4 Basic Concepts of Mathematical Game Theory

ML(S) = ML1 = ({A, B}, {X, Y}) ⊂ PL(S) = PL1

= ({A, B, C}, {X, Y}).

ML(ML1) = ML1 since in the following game there are no domi-
nated strategies:

X Y

A (2, 1) (0, 1)

B (0, 1) (2, 1)

PL(PL1) = ({A, B, C}, {X}) = PL2 ⫋ PL1 since Y is dominated by
X (here we need the presence of C). Since B and C are now dominated
by A, we have PL3 = ({A}, {X}) = PL∞. Thus, PL∞ ⫋ ML∞ although
ML is the stronger operator.

We are interested in the inclusions of the fixed points of the different
operators. But we only know the inclusions for the operators. So
the question arises under which assumptions can we prove, for two
deflationary operators F and G on S, the following claim:

If F(T) ⊆ G(T) for all T, then F∞ ⊆ G∞?

The obvious proof strategy is induction over α: We have F0 = G0 = S,
and if Fα ⊆ Gα, then

Fα+1 = F(Fα) ⊆ G(Fα)

F(Gα) ⊆ G(Gα) = Gα+1

If we can show one of the inclusions F(Fα) ⊆ F(Gα) or G(Fα) ⊆
G(Gα), then we have proven the claim. These inclusions hold if the
operators are monotone: H : S → S is monotone if T ⊆ T′ implies
H(T) ⊆ H(T′). Thus, we have shown:

Lemma 4.18. Let F, G : P(S) → P(S) be two deflationary operators
such that F(T) ⊆ G(T) for all T ⊆ S. If either F or G is monotone, then
F∞ ⊆ G∞.

Corollary 4.19. PL and ML are not monotone on every game.

92

4.5 Iterated Elimination of Dominated Strategies

Which operators are monotone? Obviously, MGS and PGS are
monotone: If µi ≫T si and T′ ⊆ T, then also µi ≫T′ si. Let T′ ⊆ T and
si ∈ PGS(T′)i. Thus, there is no µi ∈ Si such that µi ≫T′ si, and there
is also no µi ∈ Si such that µi ≫T si and we have si ∈ PGS(T)i. The
reasoning for MGS is analogous if we replace Si by ∆(Si).

MLS and PLS are not monotone. Consider the following simple
game:

X

A (1, 0)

B (0, 0)

MLS({A, B}, {X}) = PLS({A, B}, {X}) = ({A}, {X}) and

MLS({B}, {X}) = PLS({B}, {X}) = ({B}, {X}),

but ({B}, {X}) ̸⊆ ({A}, {X}).
Thus, none of the local operators (those which only consider domi-

nant strategies in the current subgame) is monotone. We will see that
also MG and PG are not monotone in general. The monotonicity of
the global operators MGS and PGS will allow us to prove the expected
inclusions ML∞ ⊆ MLS∞ ⊆ PLS∞ and PL∞ ⊆ PLS∞ between the local
operators. To this end, we will show that the fixed points of the local
and corresponding global operators coincide (although the operators are
different).

Lemma 4.20. MGS∞ = MLS∞ and PGS∞ = PLS∞.

Proof. We will only prove PGS∞ = PLS∞. Since PGS(T) ⊆ PLS(T) for
all T and PGS is monotone, we have PGS∞ ⊆ PLS∞. Now we will
prove by induction that PLSα ⊆ PGSα for all α. Only the induction step
α 7→ α + 1 has to be considered: Let si ∈ PLSα+1

i . Therefore, si ∈ PLSα
i

and there is no s′i ∈ PLSα
i such that s′i ≫PLSα si. Assume si /∈ PGSα+1

i , i.e.

A = {s′i ∈ Si : s′i ≫PGSα si} ̸= ∅

(note: By induction hypothesis PGSα = PLSα). Pick an s∗i ∈ A which
is maximal with respect to ≫PLSα . Claim: s∗i ∈ PLSα. Otherwise, there

93

4 Basic Concepts of Mathematical Game Theory

exists a β ≤ α and an si′ ∈ Si with s′i ≫PLSβ si∗ . Since PLSβ ⊇ PLSα,
it follows that s′i ≫PLSα s∗i ≫PLSα si. Therefore, s′i ∈ A and s∗i is not
maximal with respect to ≫PLSα in A. Contradiction.

But if s∗i ∈ PLSα and s∗i ≫PLSα si, then si /∈ PLSα+1 which again
constitutes a contradiction.

The reasoning for MGS∞ and MLS∞ is analogous. q.e.d.

Corollary 4.21. MLS∞ ⊆ PLS∞.

Lemma 4.22. MG∞ = ML∞ and PG∞ = PL∞.

Proof. We will only prove PG∞ = PL∞ by proving PGα = PLα for all α

by induction. Let PGα = PLα and si ∈ PGα+1
i . Then si ∈ PGα

i = PLα
i and

hence there is no s′i ∈ Si such that s′i >PGα si. Thus, there is no s′i ∈ PLα
i

such that s′i >PLα si and si ∈ PLα+1. So, PGα+1 ⊆ PLα+1.
Now, let si ∈ PLα+1

i . Again we have si ∈ PLα
i = PGα

i . Assume
si /∈ PGα+1

i . Then

A = {s′i ∈ Si : s′i >PLα si} ̸= ∅.

For every β ≤ α let Aβ = A ∩ PLβ
i . Pick the maximal β such that Aβ ̸= ∅

and a s∗i ∈ Aβ which is maximal with respect to >PLβ .

Claim: β = α. Otherwise, s∗i ̸∈ PLβ+1
i . Then there exists an s′i ∈ PLβ

i
with s′i >PLβ s∗i . Since PLβ ⊇ PLα and s∗i >PLα si, we have s′i >PLα si, i.e.
s′i ∈ Aβ which contradicts the choice of s∗i . Therefore, s∗i ∈ PLα

i . Since
s∗i >PLα si, we have si /∈ PLα+1

i . Contradiction, hence the assumption
is wrong, and we have si ∈ PGα+1. Altogether PGα = PLα. Again, the
reasoning for MG∞ = ML∞ is analogous. q.e.d.

Corollary 4.23. PL∞ ⊆ PLS∞ and ML∞ ⊆ MLS∞.

Proof. We have PL∞ = PG∞ ⊆ PGS∞ = PLS∞ where the inclusion
PG∞ ⊆ PGS∞ holds because PG(T) ⊆ PGS(T) for any T and PGS is
monotone. Analogously, we have ML∞ = MG∞ ⊆ MGS∞ = MLS∞.

q.e.d.

This implies that MG and PG cannot be monotone. Otherwise, we
would have ML∞ = PL∞. But we know that this is wrong.

94

4.6 Beliefs and Rationalisability

4.6 Beliefs and Rationalisability

Let Γ = (N, (Si)i∈N , (pi)i∈N) be a game. A belief of Player i is a probabil-
ity distribution over S−i.

Remark 4.24. A belief is not necessarily a product of independent proba-
bility distributions over the individual Sj (j ̸= i). A player may believe
that the other players play correlated.

A strategy si ∈ Si is called a best response to a belief γ ∈ ∆(S−i) if
p̂i(si, γ) ≥ p̂i(s′i, γ) for all s′i ∈ Si. Conversely, si ∈ Si is never a best
response if si is not a best response for any γ ∈ ∆(S−i).

Lemma 4.25. For every game Γ = (N, (Si)i∈N , (pi)i∈N) and every si ∈ Si,
si is never a best response if and only if there exists a mixed strategy
µi ∈ ∆(Si) such that µi ≫S si.

Proof. If µi ≫S si, then p̂i(µi, s−i) > p̂i(si, s−i) for all s−i ∈ S−i. Thus,
p̂i(µi, γ) > p̂i(si, γ) for all γ ∈ ∆(S−i). Then, for every belief γ ∈ ∆(S−i),
there exists an s′i ∈ supp(µi) such that p̂i(s′i, γ) > p̂i(si, γ). Therefore, si

is never a best response.
Conversely, let s∗i ∈ Si be never a best response in Γ. We define a

two-person zero-sum game Γ′ = ({0, 1}, (T0, T1), (p,−p)) where T0 =

Si − {s∗i }, T1 = S−i and p(si, s−i) = pi(si, s−i)− pi(s∗i , s−i). Since s∗i is
never a best response, for every mixed strategy µ1 ∈ ∆(T1) = ∆(S−i)

there is a strategy s0 ∈ T0 = Si − {s∗i } such that p̂i(s0, µ1) > p̂i(s∗i , µ1)

(in Γ), i.e. p(s0, µ1) > 0 (in Γ′). So, in Γ′

min
µ1∈∆(T1)

max
s0∈T0

p(s0, µ1) > 0,

and therefore

min
µ1∈∆(T1)

max
µ0∈∆(T0)

p(µ0, µ1) > 0.

By Nash’s Theorem, there is a Nash equilibrium (µ∗
0, µ∗

1) in Γ′. By von
Neumann and Morgenstern we have

min
µ1∈∆(T1)

max
s0∈∆(T0)

p(µ0, µ1) = p(µ∗
0 , µ∗

1)

95

4 Basic Concepts of Mathematical Game Theory

= max
s0∈∆(T0)

min
µ1∈∆(T1)

p(µ0, µ1) > 0.

Thus, 0 < p(µ∗
0, µ∗

1) ≤ p(µ∗
0, µ1) for all µ1 ∈ ∆(T1) = ∆(S−i). So,

we have in Γ p̂i(µ
∗
0, s−i) > pi(s∗i , s−i) for all s−i ∈ S−i which means

µ∗
0 ≫S s∗i . q.e.d.

Definition 4.26. Let Γ = (N, (Si)i∈N, (pi)i∈N) be a game. A strategy
si ∈ Si is rationalisable in Γ if for any Player j there exists a set Tj ⊆ Sj

such that

• si ∈ Ti, and
• every sj ∈ Tj (for all j) is a best response to a belief γj ∈ ∆(S−j)

where supp(γj) ⊆ T−j.

Theorem 4.27. For every finite game Γ we have: si is rationalisable if
and only if si ∈ MLS∞

i . This means, the rationalisable strategies are
exactly those surviving iterated elimination of strategies that are strictly
dominated by mixed strategies.

Proof. Let si ∈ Si be rationalisable by T = (T1, . . . , Tn). We show T ⊆
MLS∞. We will use the monotonicity of MGS and the fact that MLS∞ =

MGS∞. This implies MGS∞ = gfp(MGS) and hence, MGS∞ contains
all other fixed points. It remains to show that MGS(T) = T. Every
sj ∈ Tj is a best response (among the strategies in Sj) to a belief γ

with supp(γ) ⊆ T−j. This means that there exists no mixed strategy
µj ∈ ∆(Sj) such that µj ≫T sj. Therefore, sj is not eliminated by MGS:
MGS(T) = T.

Conversely, we have to show that every strategy si ∈ MLS∞
i is

rationalisable by MLS∞. Since MLS∞ = MGS∞, we have MGS(MLS∞) =

MLS∞. Thus, for every si ∈ MLS∞
i there is no mixed strategy µi ∈

∆(Si) such that µi ≫MLS∞ si. So, si is a best response to a belief in
MLS∞

i . q.e.d.

Intuitively, the concept of rationalisability is based on the idea that
every player keeps those strategies that are a best response to a possible
combined rational action of his opponents. As the following example
shows, it is essential to also consider correlated actions of the players.

96

4.6 Beliefs and Rationalisability

Example 4.28. Consider the following cooperative game in which every
player receives the same payoff:

L R L R L R L R
T 8 0 4 0 0 0 3 3
B 0 0 0 4 0 8 3 3

1 2 3 4

Matrix 2 is not strictly dominated. Otherwise there were p, q ∈ [0, 1]
with p + q ≤ 1 and

8 · p + 3 · (1 − p − q) > 4 and

8 · q + 3 · (1 − p − q) > 4.

This implies 2 · (p + q) + 6 > 8, i.e. 2 · (p + q) > 2, which is impossible.
So, matrix 2 must be a best response to a belief γ ∈ ∆({T, B} ×

{L, R}). Indeed, the best responses to γ = 1
2 · ((T, L) + (B, R)) are

matrices 1, 2 or 3.
On the other hand, matrix 2 is not a best response to a belief of

independent actions γ ∈ ∆({T, B})× ∆({L, R}). Otherwise, if matrix 2
were a best response to γ = (p · T + (1 − p) · B, q · L + (1 − q) · R), we
would have that

4pq + 4 · (1 − p) · (1 − q) ≥ max{8pq, 8 · (1 − p) · (1 − q), 3}.

We can simplify the left side: 4pq + 4 · (1− p) · (1− q) = 8pq − 4p − 4q +
4. Obviously, this term has to be greater than each of the terms from
which we chose the maximum:

8pq − 4p − 4q + 4 ≥ 8pq ⇒ p + q ≥ 1

and

8pq − 4p − 4q + 4 ≥ 8 · (1 − p) · (1 − q) ⇒ p + q ≤ 1.

So we have p + q = 1, or q = 1 − p. But this allows us to substitute q by
1 − p, and we get

8pq − 4p − 4q + 4 = 8p · (1 − p).

97

4 Basic Concepts of Mathematical Game Theory

However, this term must still be greater or equal than 3, so we get

8p · (1 − p) ≥ 3

⇔ p · (1 − p) ≥ 3
8

,

which is impossible since max(p · (1 − p)) = 1
4 (see Figure 4.2).

1
4

3
8

−1
4

−1
4

1
4

1
2

3
4

1 11
4

Figure 4.2. Graph of the function p 7→ p · (1 − p)

4.7 Games in Extensive Form

A game in extensive form (with perfect information) is described by a
game tree. For two-person games this is a special case of the games on
graphs which we considered in the earlier chapters. The generalisation
to n-person games is obvious: G = (V, V1, . . . , Vn, E, p1, . . . , pn) where
(V, E) is a directed tree (with root node w), V = V1 ⊎ · · · ⊎ Vn, and the
payoff function pi : Plays(G) → R for Player i, where Plays(G) is the
set of paths through (V, E) beginning in the root node, which are either
infinite or end in a terminal node.

A strategy for Player i in G is a function f : {v ∈ Vi : vE ̸= ∅} → V
such that f (v) ∈ vE. Si is the set of all strategies for Player i. If all
players 1, . . . , n each fix a strategy fi ∈ Si, then this defines a unique play
f1ˆ · · · ˆ fn ∈ Plays(G).

We say that G has finite horizon if the depth of the game tree (the
length of the plays) is finite.

For every game G in extensive form, we can construct a game
S(G) = (N, (Si)i∈N, (pi)i∈N) with N = {1, . . . , n} and pi(f1, . . . , fn) =

pi(f1ˆ · · · ˆ fn). Hence, we can apply all solution concepts for strategic

98

4.7 Games in Extensive Form

games (Nash equilibria, iterated elimination of dominated strategies,
etc.) to games in extensive form. First, we will discuss Nash equilibria
in extensive games.

Example 4.29. Consider the game G (of finite horizon) depicted in Fig-
ure 4.3 presented as (a) an extensive-form game and as (b) a strategic-
form game. The game has two Nash equilibria:

• The natural solution (b, d) where both players win.
• The second solution (a, c) which seems to be irrational since both

players pick an action with which they lose.

What seems irrational about the second solution is the following ob-
servation. If Player 0 picks a, it does not matter which strategy her
opponent chooses since the position v is never reached. Certainly, if
Player 0 switches from a to b, and Player 1 still responds with c, the
payoff of Player 0 does not increase. But this threat is not credible since
if v is reached after action a, then action d is better for Player 1 than c.
Hence, Player 0 has an incentive to switch from a to b.

w

(0, 1)

a

v

(0, 0)

c

(1, 1)

d

b

(a) extensive form

c d
a (0, 1) (0, 1)
b (0, 0) (1, 1)

(b) strategic form

Figure 4.3. A game of finite horizon

This example shows that the solution concept of Nash equilibria
is not sufficient for games in extensive form since they do not take the
sequential structure into account. Before we introduce a stronger notion
of equilibrium, we will need some more notation: Let G be a game in
extensive form and v a position of G. G ↾v denotes the subgame of G
beginning in v (defined by the subtree of G rooted at v). Payoffs: Let
hv be the unique path from w to v in G. Then pG↾v

i (π) = pGi (hv · π). For
every strategy f of Player i in G let f ↾v be the restriction of f to G ↾v.

99

4 Basic Concepts of Mathematical Game Theory

Definition 4.30. A subgame perfect equilibrium of G is a strategy profile
(f1, . . . , fn) such that, for every position v, (f1 ↾v, . . . , fn ↾v) is a Nash
equilibrium of G ↾v. In particular, (f1, . . . , fn) itself is a Nash equilibrium.

In the example above, only the natural solution (b, d) is a subgame
perfect equilibrium. The second Nash equilibrium (a, c) is not a subgame
perfect equilibrium since (a↾v, c↾v) is not a Nash equilibrium in G ↾v.

Let G be a game in extensive form, f = (f1, . . . , fn) be a strategy
profile, and v a position in G. We denote by f̃ (v) the play in G ↾v that is
uniquely determined by f1 . . . , fn.

Lemma 4.31. Let G be a game in extensive form with finite horizon.
A strategy profile f = (f1, . . . , fn) is a subgame perfect equilibrium of
G if and only if for every Player i, every v ∈ Vi, and every w ∈ vE:
pi(f̃ (v)) ≥ pi(f̃ (w)).

Proof. Let f be a subgame perfect equilibrium. If pi(f̃ (w)) > pi(f̃ (v))
for some v ∈ Vi, w ∈ vE, then it would be better for Player i in G ↾v to
change her strategy in v from fi to f ′i with

f ′i (u) =

fi(u) if u ̸= v

w if u = w .

This is a contradiction.
Conversely, if f is not a subgame perfect equilibrium, then there is a

Player i, a position v0 ∈ Vi and a strategy f ′i ̸= fi such that it is better for
Player i in G ↾v0 to switch from fi to f ′i against f−i. Let g := (f ′i , f−i). We
have q := pi(g̃(v0)) > pi(f̃ (v0)). We consider the path g̃(v0) = v0 . . . vt

and pick a maximal m < t with pi(g̃(v0)) > pi(f̃ (vm)). Choose v = vm

and w = vm+1 ∈ vE. Claim: pi(f̃ (v)) < pi(f̃ (w)) (see Figure 4.4):

pi(f̃ (v)) = pi(f̃ (vm)) < pi(g̃(vm)) = q

pi(f̃ (w)) = pi(f̃ (vm+1)) ≥ pi(g̃(vm+1)) = q q.e.d.

If f is not a subgame perfect equilibrium, then we find a subgame
G ↾v such that there is a profitable deviation from fi in G ↾v, which only
differs from fi in the first move.

100

4.7 Games in Extensive Form

v0

< q

vm = v

< q

vm+1 = w

≥ q
q

g̃(v0)
f̃ (v0)

f̃ (vm)

f̃ (vw)

Figure 4.4. pi(f̃ (v)) < pi(f̃ (w))

In extensive games with finite horizon we can directly define the
payoff at the terminal nodes (the leaves of the game tree). We obtain a
payoff function pi : T → R for i = 1, . . . , n where T = {v ∈ V : vE = ∅}.

Backwards induction: For finite games in extensive form we define
a strategy profile f = (f1, . . . , fn) and values ui(v) for all positions v and
every Player i by backwards induction:

• For terminal nodes t ∈ T we do not need to define f , and ui(t) :=
pi(t).

• Let v ∈ V \ T such that all ui(w) for all i and all w ∈ vE are already
defined. For i with v ∈ Vi define fi(v) = w for some w with
ui(w) = max{ui(w′) : w′ ∈ vE} and uj(v) := uj(fi(v)) for all j.

We have pi(f̃ (v)) = ui(v) for every i and every v.

Theorem 4.32. The strategy profile defined by backwards induction is a
subgame perfect equilibrium.

Proof. Let f ′i ̸= fi. Then there is a node v0 ∈ Vi with minimal height
in the game tree such that f ′i (v) ̸= fi(v). Especially, for every w ∈ vE,
˜(f ′i , f−i)(w) = f̃ (w). For w = f ′i (v) we have

pi(˜(f ′i , f−i)(v)) = pi(˜(f ′i , f−i)(w))

= pi(f̃ (w))

= ui(w) ≤ max
w′∈vE

{ui(w′)}

101

4 Basic Concepts of Mathematical Game Theory

= ui(v)

= pi(f̃ (v)).

Therefore, f ↾v is a Nash equilibrium in G ↾v. q.e.d.

Corollary 4.33. Every finite game in extensive form has a subgame
perfect equilibrium (and thus a Nash equilibrium) in pure strategies.

4.8 Subgame-perfect equilibria in infinite games

We now consider cases of infinite games in extensive form, for which
we can establish the existence of subgame-perfect equilibria. General-
izing the model of infinite two-person zero-sum games on graphs, we
consider multi-player, turn-based games on graphs with arbitrary (not
necesssarily antagonistic) qualitative objectives.

Definition 4.34. An infinite (turn-based, qualitative) multiplayer game is
a tuple G = (N, V, (Vi)i∈N, E, Ω, (Wini)i∈N) where N is a finite set of
players, (V, E) is a (finite or infinite) directed graph (Vi)i∈N is a partition
of V into the position sets for each player, Ω : V → C is a colouring
of the positions by some finite set C of colours, and Wini ⊆ Cω is the
winning condition for Player i.

For the sake of simplicity, we assume that uE := {v ∈ V : (u, v) ∈
E} ̸= ∅ for all u ∈ V, i.e. each vertex of G has at least one outgoing
edge. We call G a zero-sum game if the sets Wini define a partition of Cω.

A play of G is an infinite path through the graph (V, E), and a
history is a finite initial segment of a play. We say that a play π is
won by Player i if Ω(π) ∈ Wini. A (pure) strategy of Player i in G is
a function f : V∗Vi → V assigning to each sequence xv ending in a
position v of Player i a next position f (xv) ∈ vE. We say that a play
π = π(0)π(1) . . . of G is consistent with a strategy f of Player i if
π(k + 1) = f (π(0) . . . π(k)) for all k < ω with π(k) ∈ Vi. A strategy
profile of G is a tuple (fi)i∈N where fi is a strategy of Player i.

It is sometimes convenient to designate an initial vertex v0 ∈ V
of the game. We call the tuple (G, v0) an initialized infinite multiplayer
game. A play (history) of (G, v0) is a play (history) of G starting with v0.

102

4.8 Subgame-perfect equilibria in infinite games

A strategy (strategy profile) of (G, v0) is just a strategy (strategy profile)
of G. A strategy f of some player i in (G, v0) is winning if every play of
(G, v0) consistent with σ is won by player i. A strategy profile (fi)i∈N

of (G, v0) determines a unique play of (G, v0) consistent with each fi,
called the outcome of (fi)i∈N and denoted by ⟨(fi)i∈N⟩ or, in the case that
the initial vertex is not understood from the context, ⟨(fi)i∈N⟩v0 . In the
following we will often use the term game to denote an (initialized) infinite
multiplayer game according to Definition 4.34.

For turn-based (non-stochastic) games with qualitative winning
conditions, mixed strategies play no relevant role. Nash equilibria in
pure strategies take the following form:

A strategy profile (fi)i∈N of a game (G, v0) is a Nash equilibrium if
for every player i and all her possible strategies f ′i in (G, v0) the play
⟨ f ′i , (f j)j∈N\{i}⟩ is won by player i only if the play ⟨(f j)j∈N⟩ is also won
by her.

Despite the importance and popularity of Nash equilibria, there are
several problems with this solution concept, in particular for games that
extend over time. This is due to the fact that Nash equilibria do not take
into account the sequential nature of games and all the consequences of
this. After any initial segment of a play, the players face a new situation
and may change their strategies. Choices made because of a threat by
the other players may no longer be rational, because the opponents have
lost their power of retaliation in the remaining play.

Example 4.35. Consider a two-player Büchi game with its arena depicted
in Figure 4.5; round vertices are controlled by player 1; boxed vertices are
controlled by player 2; both players win if and only if vertex 3 is visited
(infinitely often); the initial vertex is 1. Intuitively, the only rational
outcome of this game should be the play 123ω. However, the game has
two Nash equilibria:

(1) Player 1 moves from vertex 1 to vertex 2, and player 2 moves from
vertex 2 to vertex 3. Hence, both players win.

(2) Player 1 moves from vertex 1 to vertex 4, and player 2 moves from
vertex 2 to vertex 5. Both players lose.

The second equilibrium certainly does not describe a rational be-
haviour. Indeed both players move according to a strategy that is always

103

4 Basic Concepts of Mathematical Game Theory

losing (whatever the other player does), and once player 1 has moved
from vertex 1 to vertex 2, then the rational behaviour of player 2 would
be to change her strategy and move to vertex 3 instead of vertex 5 as this
is then the only way for her to win.

1 2 3

4 5

Figure 4.5. A two-player Büchi game.

This example can be modified in many ways. Indeed we can con-
struct games with Nash equilibria in which every players moves infinitely
often according to a losing strategy, and only has a chance to win if she
deviates from the equilibrium strategy. The following is an instructive
example with quantitative objectives.

Example 4.36. Let Gn be an n-player game with positions 0, . . . , n − 1.
Position n is the initial position, and position 0 is the terminal position.
Player i moves at position i and has two options. Either she loops at
position i (and stays in control) or moves to position i − 1 (handing
control to the next player). For each player, the value of a play π is
n/|π|. Hence, for all players, the shortest possible play has value 1,
and all infinite plays have value 0. Obviously, the rational behaviour
for each player i is to move from i to i − 1. This strategy profile, which
is of course a Nash equilibrium, gives value 1 to all players. However,
the ‘most stupid’ strategy profile, where each player loops forever at his
position, i.e. moves forever according to a losing strategy, is also a Nash
equilibrium.

For a game G = (N, V, (Vi)i∈N, E, Ω, (Wini)i∈Π) and a history h of
G, let the game G|h = (N, V, (Vi)i∈N, E, Ω, (Wini|h)i∈N) be defined by
Wini|h = {α ∈ Cω : Ω(h) · α ∈ Wini}. For an initialized game (G, v0)

and a history hv of (G, v0), we call the initialized game (G|h, v) the
subgame of (G, v0) with history hv. For a strategy f of Player i in G, let

104

4.8 Subgame-perfect equilibria in infinite games

f |h : V∗Vi → V be defined by f |h(xv) := f (hxv). Obviously, f |h is a
strategy of Player i in G|h.

Recall that a strategy profile (fi)i∈N is a subgame perfect equilibrium
(SPE) if (fi|h)i∈N is a Nash equilibrium of (G|h, v) for every history hv
of (G, v0).

Example 4.37. Consider again the game described in Example 4.35. The
Nash equilibrium where Player 1 moves from vertex 1 to vertex 4 and
Player 2 moves from vertex 2 to vertex 5 is not a subgame perfect
equilibrium since moving from vertex 2 to vertex 5 is not optimal for
Player 2 after the play has reached vertex 2. On the other hand, the Nash
equilibrium where Player 1 moves from vertex 1 to vertex 2 and Player 2
moves from vertex 2 to vertex 3 is also a subgame perfect equilibrium.

The first step in the analysis of subgame perfect equilibria for infinite
duration games is the notion of subgame-perfect determinacy. While the
notion of subgame perfect equilibrium makes sense for more general
classes of extensive games, the notion of subgame-perfect determinacy
applies only to games with qualitative winning conditions.

Definition 4.38. A game (G, v0) is subgame-perfect determined if there
exists a strategy profile (fi)i∈N such that for each history hv of the game
one of the strategies fi|h is a winning strategy in (G|h, v).

Proposition 4.39. Let (G, v0) be a qualitative zero-sum game such that
every subgame is determined. Then (G, v0) is subgame-perfect deter-
mined.

Proof. Let (G, v0) be a multiplayer game such that, for every history hv,
there exists a strategy f h

i for some player i, which is winning in (G|h, v).
We have to combine these strategies in an appropriate way to strategies
fi. (Let us point out that the trivial combination, namely fi(hv) := f h

i (v)
does not work in general.) We say that a decomposition h = h1 · h2 is
good for player i w.r.t. vertex v if f h1

i |h2 is winning in (G|h, v). If the
strategy f h

i is winning in (G|h, v), then the decomposition h = h · ε is
good w.r.t. v, so a good decomposition exists.

For each history hv, if f h
i is winning in (G|h, v), we choose the good

105

4 Basic Concepts of Mathematical Game Theory

(w.r.t. vertex v) decomposition h = h1h2 with minimal h1, and put

fi(hv) := f h1
i (h2v) .

Otherwise, we set fi(hv) := f h
i (v).

It remains to show that for each history hv of (G, v0) the strategy
fi|h is winning in (G|h, v) whenever the strategy f h

i is. Hence, assume
that f h

i is winning in (G|h, v), and let π = π(0)π(1) . . . be a play starting
in π(0) = v and consistent with fi|h. We need to show that π is won by
player i in (G|h, v).

First, we claim that for each k < ω there exists a decomposition
of the form hπ(0) . . . π(k − 1) = h1 · (h2π(0) . . . π(k − 1)) that is good
for player i w.r.t. π(k). This is obviously true for k = 0. Now, for
k > 0, assume that there exists a decomposition hπ(0) . . . π(k − 2) =

h1 · (h2π(0) . . . π(k − 2)) that is good for player i w.r.t. π(k − 1)
and with h1 being minimal. Then π(k) = fi(hπ(0) . . . π(k − 1)) =

f h1(h2π(0) . . . π(k − 1), and hπ(0) . . . π(k − 1) = h1(h2π(0) . . . π(k − 1))
is a decomposition that is good w.r.t. π(k).

Now consider the sequence h0
1, h1

1, . . . of prefixes of the good decom-
positions hπ(0) . . . π(k − 1) = hk

1hk
2π(0) . . . π(k − 1) (w.r.t. π(k)) with

each hk
1 being minimal. Then we have h0

1 ⪰ h1
1 ⪰ . . ., since for each k > 0

the decomposition hπ(0) . . . π(k − 1) = hk−1
1 hk−1

2 π(0) . . . π(k − 1) is also
good for player i w.r.t. π(k). As ≺ is well-founded, there must exist
k < ω such that h1 := hk

1 = hl
1 for each k ≤ l < ω. Hence, we have that

the play π(k)π(k + 1) . . . is consistent with f h1
i |h2π(0)...π(k−1), which is

a winning strategy in (G|hπ(0)...π(k−1), π(k)). So the play hπ is won by
player i in (G, v0), which implies that the play π is won by player i in
(G|h, v). q.e.d.

We say that a class of winning conditions is closed under taking
subgames, if for every condition X ⊆ Cω in the class, and every h ∈ C∗,
also X|h := {x ∈ Cω : hx ∈ X} belongs to the class. Since Borel winning
conditions are closed under taking subgames, it follows that any two-
player zero-sum game with Borel winning condition is subgame-perfect
determined.

106

4.8 Subgame-perfect equilibria in infinite games

Corollary 4.40. Let (G, v0) be a two-player zero-sum Borel game. Then
(G, v0) is subgame-perfect determined.

Multiplayer games are usually not zero-sum games. Indeed when
we have many players the assumption that the winning conditions
of the players form a partition of the set of plays is very restrictive
and unnatural. We now drop this assumption and establish general
conditions under which a multiplayer game admits a subgame perfect
equilibrium. In fact we will relate the existence of subgame perfect
equilibria with the determinacy of associated two-player games. In
particular, it will follow that every multiplayer game with Borel winning
conditions has a subgame perfect equilibrium.

In the rest of this subsection, we are only concerned with the existence
of equilibria, not with their complexity. Thus, without loss of generality,
we tacitly assume that the arena of the game under consideration is a tree
or a forest with the initial vertex as one of its root. The justification for
this assumption is that we can always replace the arena of an arbitrary
game by its unravelling from the initial vertex, ending up in an equivalent
game.

Definition 4.41. Let G = (N, V, (Vi)i∈N, E, Ω, (Wini)i∈N) be a multi-
player game (played on a forest), with winning conditions Wini ⊆ Cω.
The associated class Two(G) of two-player zero-sum games is obtained
as follows:

(1) For each player i, Two(G) contains the game Gi where player i plays
G, with his winning condition Wini, against the coalition of all other
players, with winning condition Cω \ Wini.

(2) Close the class under taking subgames (i.e. consider plays after
initial histories).

(3) Close the class under taking subgraphs (i.e. admit deletion of
positions and moves).

Note that the order in which the operations (1), (2), and (3) are
applied has no effect on the class Two(G).

Theorem 4.42. Let (G, v0) be a multiplayer game such that every game in
Two(G) is determined. Then (G, v0) has a subgame perfect equilibrium.

107

4 Basic Concepts of Mathematical Game Theory

Proof. Let G = (N, V, (Vi)i∈N, E, Ω, (Wini)i∈N) be a multiplayer game
such that every game in Two(G) is determined. For each ordinal α we
define a set Eα ⊆ E beginning with E0 = E and

Eλ =
⋂

α<λ

Eα

for limit ordinals λ. To define Eα+1 from Eα, we consider for each
player i ∈ N the two-player zero-sum game Gα

i = (V, Vi, Eα, Ω, Wini)

where player i plays, with his winning condition Wini against the coali-
tion of all other players (with winning condition Cω \ Wini). Every
subgame of Gα

i belongs to Two(G) and is therefore determined. Hence
we can use Proposition 4.39 to fix a subgame perfect equilibrium (f α

i , f α
−i)

of (G, v0) where f α
i is a strategy of player i and f α

−i is a strategy of the
coalition. Moreover, as the arena of Gα is a forest, these strategies can
be assumed to be positional. Let Xα

i be the set of all v ∈ V such that f α
i

is winning in (Gα
i |h, v) for the unique maximal history h of G leading to

v. For vertices v ∈ Vi ∩ Xα
i we delete all outgoing edges except the one

taken by the strategy f α
i , i.e. we define

Eα+1 = Eα \
⋃

i∈N

{(u, v) ∈ E : u ∈ Vi ∩ Xα
i and v ̸= f α

i (u)} .

Obviously, the sequence (Eα)α∈On is non-increasing. Thus we can fix
the least ordinal γ with Eγ = Eγ+1 and define fi = f γ

i and f−i = f γ
−i.

Moreover, for each player j ̸= i let f j,i be the positional strategy of
player j in G that is induced by f−i.

Intuitively, Player i’s equilibrium strategy gi is as follows: Player
i plays fi as long as no other player deviates. Whenever some player
j ̸= i deviates from her equilibrium strategy f j, player i switches to fi,j.
Formally, define for each vertex v ∈ V the player p(v) who has to be
“punished” at vertex v where p(v) = ⊥ if nobody has to be punished. If
the game has just started, no player should be punished. Thus we let

p(v) = ⊥ if v is a root.

At vertex v with predecessor u, the same player has to be punished as

108

4.8 Subgame-perfect equilibria in infinite games

at vertex u as long as the player whose turn it was at vertex u did not
deviate from her prescribed strategy. Thus for u ∈ Vi and v ∈ uE we let

p(v) =

⊥ if p(u) = ⊥ and v = fi(u),

p(u) if p(u) ̸= i, p(u) ̸= ⊥ and v = fi,p(u)(u),

i otherwise.

Now, for each player i ∈ N we can define the equilibrium strategy gi by
setting

gi(v) =

fi(v) if p(v) = ⊥ or p(v) = i,

fi,p(v)(v) otherwise

for each v ∈ V.
It remains to show that (gi)i∈N is a subgame perfect equilibrium

of (G, v0). First note that fi is winning in (Gγ
i |h, v) if f α

i is winning in
(Gα

i |h, v) for some ordinal α because if f α
i is winning in (Gα

i |h, v) every
play of (Gα+1

i |h, v) is consistent with f α
i and therefore won by player i.

As Eγ ⊆ Eα+1, this also holds for every play of (Gγ
i |h, v). Now let v be

any vertex of G with h the unique maximal history of G leading to v.
We claim that (gj)j∈N is a Nash equilibrium of (G|h, v). Towards this, let
g′ be any strategy of any player i ∈ N in G; let π = ⟨(gj)j∈N⟩v, and let
π′ = ⟨g′, (gj)j∈N\{i}⟩v. We show that hπ is won by player i or that hπ′

is not won by player i. The claim is trivial if π = π′. Thus assume that
π ̸= π′ and fix the least k < ω such that π(k + 1) ̸= π′(k + 1). Clearly,
π(k) ∈ Vi and g′(π(k)) ̸= gi(π(k)). Without loss of generality, let k = 0.
We distinguish the following two cases:

• fi is winning in (Gγ
i |h, v). By the definition of each gj, π is a play

of (Gγ
i |h, v). We claim that π is consistent with fi, which implies

that hπ is won by player i. Otherwise fix the least l < ω such that
π(l) ∈ Vi and fi(π(l)) ̸= π(l + 1). As fi is winning in (Gγ

i |h, v), fi is
also winning in (Gγ

i |hπ(0)...π(l−1), π(l)). But then (π(l), π(l + 1)) ∈
Eγ \ Eγ+1, a contradiction to Eγ = Eγ+1.

• fi is not winning in (Gγ
i |h, v). Hence f−i is winning in (Gγ

i |h, v).
As g′(v) ̸= gi(v), player i has deviated, and it is the case that

109

4 Basic Concepts of Mathematical Game Theory

π′ = ⟨g′, (f j,i)j∈N\{i}⟩v. We claim that π′ is a play of (Gγ
i |h, v). As f−i

is winning in (Gγ
i |h, v), this implies that hπ′ is not won by player i.

Otherwise fix the least l < ω such that (π′(l), π′(l + 1)) ̸∈ Eγ

together with the ordinal α such that (π′(l), π′(l + 1)) ∈ Eα \ Eα+1.
Clearly, π′(l) ∈ Vi. Thus f α

i is winning in (Gα
i |hπ′(0)...π′(l−1), π′(l)),

which implies that fi is winning in (Gγ
i |hπ′(0)...π′(l−1), π′(l)). As π′

is consistent with f−i, this means that f−i is not winning in (Gγ
i |h, v),

a contradiction.

It follows that (gj)j∈N = (gj|h)j∈N is a Nash equilibrium of (G|h, v) for
every history hv of (G, v0), hence (gj)j∈N is a subgame perfect equilib-
rium of (G, v0). q.e.d.

Corollary 4.43. Every multiplayer game with Borel winning conditions
has a subgame perfect equilibrium.

O course this also implies that every multiplayer game with Borel
winning conditions has a Nash equilibrium. Indeed, for the existence
of Nash equilibria, a slightly weaker condition suffices. Let Two(G)Nash

be defined in the same way as Two(G) but without closure under sub-
graphs.

Corollary 4.44. If every game in Two(G)Nash is determined, then G has
a Nash equilibrium.

110

Appendix A - Ordinal Numbers

The standard basic notion used in mathematics is the notion of a set,
and all mathematical theorems follow from the axioms of set theory. The
standard set of axioms, which (among others) guarantee the existence of
an empty set, an infinite set, and the powerset of any set, and that no
set is a member of itself (i.e. ∀x ¬x ∈ x) is called the Zermelo-Fränkel Set
Theory ZF. Furthermore, it is consequence of ZF that every set a contains
an ∈-minimal element b ∈ a, i.e. b ∩ a = ∅. This implies that there are
no infinite ∋-sequences x1 ∋ x2 ∋ x3 ∋ . . . , because otherwise the set
{x1, x2, x3, . . . } would not contain an ∈-minimal element. It is standard
in mathematics to use ZF extended by the axiom of choice AC, which
together are called ZFC.

Since everything is a set in mathematics, there is a need to represent
numbers as sets. The standard way to do this is to start with the empty
set, let 0 = ∅, and proceed by induction, defining n + 1 = n ∪ {n}. Here
are the first few numbers in this coding:

• 0 = ∅,
• 1 = {∅},
• 2 = {∅, {∅}},
• 3 = {∅, {∅}, {∅, {∅}}} = 2 ∪ {2},
• 4 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}} = 3 ∪ {3}.

Observe that for each number n (as a set) it holds that

m ∈ n =⇒ m ⊆ n for every set m. (4.1)

Sets satisfying property (4.1) are called transitive sets, because (4.1) is
equivalent to

x ∈ y ∈ n =⇒ x ∈ n for every set x, y.

111

Ordinal Numbers

For example, the set a := {∅, {∅}, {{∅}}} ̸= 3 is a transitive set,
but a does not occur on our list of natural numbers. Intuitively, the
problem is that {{∅}} /∈ ∅ and ∅ /∈ {{∅}}, so ∈ is not trichotomous
on a. This is why, ∈ does not constitute a linear order on a. Now,
we define a more general class of numbers, the so-called von Neumann
ordinal numbers.

Definition 4.45. A set α is an ordinal if

(1) α is transitive, i.e. x ∈ y ∈ α =⇒ x ∈ α for every x, y, and

(2) ∈ is trichotomous on α, i.e. for every x, y ∈ α either x = y or x ∈ y
or y ∈ x.

On := {α : α is an ordinal} is the class of all ordinals.

We are going to prove in Theorem 4.47 that for all ordinal α, β it
holds that either

a = b or a ∈ b or a ∋ b.

It is even the cases, that the class of ordinal numbers forms a well-founded
order (w.r.t. ∈). This means, that ∈ is a linear order on the class of
ordinals and that every non-empty class X of ordinal number contains
an ∈-minimal ordinal α ∈ X, i.e. α ∈ β for every β ∈ X \ {α}. Note, that
this also implies that the class On is a proper class, which means that
On is not a set itself (otherwise On would satisfy Definition 4.45 and,
hence, On ∈ On in contradiction to the ZFC axioms).

It is easy to check that the natural numbers we defined above are
ordinal numbers: Indeed, if n is a natural number, then we have that
n = {0, . . . , n − 1} and, consequently, for every i ∈ n follows that
i = {0, . . . , i − 1} ⊆ {0, . . . , i − 1, i, . . . n − 1} = n. Similarly, it is easy to
see that for every m, k ∈ n that either m = k or m ∈ k or k ∈ m holds. It
is worth mentioning that the relation ∈ coincides with the usual order
< on natural numbers.

Except for natural numbers, are there any other ordinal numbers?
In fact, we shall see that there are infinite many ordinals which are

112

Ordinal Numbers

infinitely large. For example, consider ω which is defined by

ω =
⋃

n
n =

⋃

n
{0, . . . , n − 1} = {0, 1, 2, 3, . . . }.

ω is the set of all natural numbers, but it is easy to verify that it satisfies
Definition 4.45 and, hence, ω is also an ordinal number. But it does
not stop here! It is always possible to apply the +1 operation, which is
defined as

α + 1 := α ∪ {α}.

Lemma 4.46. Let α be an ordinal and β ∈ α. Then β and α + 1 are
ordinals as well.

Proof. First, we prove that β is an ordinal. To do this, we need to prove
that β satisfies (1) and (2) of Definition 4.45.

(1) For this, let d ∈ c ∈ β. We need to show that d ∈ β. Due to
b ∈ c ∈ β ∈ α and the transitivity of α (Definition 4.45 (1)), it
follows that b, c ∈ α. Thus, β, c, d ∈ α. By Definition 4.45 (2), we can
conclude that β = d or β ∈ d or d ∈ β holds.
β = d is impossible, because β = d would implies that d ∈ c ∈ β = d
and, thus, c ∋ d ∋ c ∋ . . . but due to the ZFC axioms there are no
infinite ∋-sequences. Similarly, β ∈ d is also wrong since otherwise
d ∈ c ∈ β ∈ d. Therefore, d ∈ β has to be true.

(2) It remains to show that Definition 4.45 (2) is true for β. But this is
trivial because, due to Definition 4.45 (1), it is the case that β ⊆ α

and condition (2) is assumed to be true for α.

Now we demonstrate that α + 1 is an ordinal number.

(1) Transitivity of α + 1: Let c ∈ b ∈ α + 1. Our goal is to prove that
c ∈ α + 1. Since α + 1 = α ∪ {α}, we can distinguish the following
two cases. If b = α, then c ∈ b ∈ α and, by using the transitivity of
α, we can deduce that

c ∈ α ⊆ α ∪ {α} = α + 1.

113

Ordinal Numbers

Otherwise, b ̸= α and then b ∈ α (because b ∈ α + 1). By transitivity
of α, we obtain c ∈ α ⊆ α + 1.

(2) Trichotomy: Let x, y ∈ α + 1. We need to prove that x = y or
x ∈ y or y ∈ x holds. If both x, y ∈ α, then there is nothing to
prove. Hence, x /∈ α or y /∈ α. W.l.o.g. we assume that x /∈ α. Since
x ∈ α + 1, it follows that x = α. If y ∈ α, then we are done. If, on the
other hand, y /∈ α, then x = α = y. Thus, we obtain x ∈ y or x = y.

q.e.d.

But does it make sense to say that ω + 1 is the next ordinal, is there
an order on ordinals?

In fact, the ordinal numbers are linearly ordered by ∈.

Theorem 4.47. For every ordinal α, β either α = β or α ∈ β or β ∈ α.
Furthermore, α ⊆ β holds, if and only if α ∈ β or α = β.

Before can prove this theorem, we need some lemmas first.

Lemma 4.48. If X is a non-empty class of ordinals, then

⋂
X := {x : x ∈ a for every a ∈ X}

is an ordinal.

Proof. Since X is non-empty, there is an ordinal α ∈ X and, then,
⋂

X ⊆ α.
Because α is a set, it is possible to prove (by using the ZFC axioms) that
⋂

X is a set. Now it suffices to prove that
⋂

X satisfies the two conditions
from Definition 4.45:

(1) Transitivity: Let a ∈ b ∈ ⋂X. Then a ∈ b ∈ γ for all γ ∈ X. Since X
is a class of ordinals, it follows that a ∈ γ for all γ ∈ X and, finally,
a ∈ ⋂X.

(2) Trichotomy: Let a, b ∈ ⋂
X. Then a, b ∈ α and, because α is an

ordinal, a ∈ b or a = b or b ∈ a.

q.e.d.

The transitivity of ordinals allows us to prove that elements of
ordinals are subsets. Of course, the converse is not true in general,
because not every subset of an ordinal is an element. However, proper

114

Ordinal Numbers

subsets that are ordinals turn out to be elements. As usual we write
α ⊂ β as a shorthand for α ⊆ β and α ̸= β.

Lemma 4.49. Let α, β be ordinals and α ⊂ β. Then α ∈ β.

Proof. Towards a contradiction, we assume there are some ordinals α ⊂ β

with α /∈ β.
In order to obtain a contradiction, we prove that there is an infinite

∋-sequence β0 ∋ β1 ∋ β2 . . . of ordinals starting at β such that α ⊂ βi

but α /∈ βi for all i ∈ {0, 1, 2, . . . }.
We start with β0 := β. Now, consider the set

β0 \ α := {y ∈ β0 : y /∈ α} .

We define γ :=
⋂
(β0 \ α). Due to α ⊂ β = β0, there is a µ ∈ β0 \ α. As a

result, β0 \ α ̸= ∅ and γ is an ordinal (by Lemma 4.48).

Claim 4.50. α ⊆ γ.

Proof. Let δ ∈ α. We are going to prove that δ ∈ γ.
Since α ⊂ β0 we have δ ∈ β0. Let µ′ ∈ β0 \ α be picked arbitrarily.

As a result µ′, δ ∈ β0 and, by Definition 4.45 (2), it follows that

µ′ = δ or µ′ ∈ δ or δ ∈ µ′.

We observe that µ′ ̸= δ, because µ′ /∈ α but δ ∈ α. Furthermore,
µ′ /∈ δ, because otherwise µ′ ∈ δ ∈ α and (since α is an ordinal) µ′ ∈ α

but µ′ /∈ α.
Therefore, it must be the case that δ ∈ µ′. µ′ ∈ β0 \ α was chosen

arbitrarily, so δ ∈ ⋂(β0 \ α) = γ. q.e.d.

Now we have

α ⊆ γ =
⋂

β0 \ α.

Recall that µ ∈ β0 \ α and, therefore, γ =
⋂
(β0 \ α) ⊆ µ. Together with

α ⊆ γ this leads to α ⊆ µ. Since µ ∈ β0 and α /∈ β0, it follows that α ⊂ µ.
Furthermore, α /∈ µ, because otherwise α ∈ µ ∈ β0 and then α ∈ β0

(because β0 is an ordinal) in contradiction to α /∈ β0.

115

Ordinal Numbers

All in all, we managed to prove that µ ∈ β0 is an ordinal (due to
Lemma 4.46) with α ⊂ µ but α /∈ µ. Hence, we can set β1 := µ.

By repetition, we can construct the desired sequence β0 ∋ β1 ∋ β2 ∋
. . ., but this contradicts the ZFC axioms!

q.e.d.

Now we have all the tools we need to finally prove Theorem 4.47.

Proof (of Theorem 4.47). First we prove that α ⊆ β ⇐⇒ α = β ∨ α ∈ β.
The direction “⇐=” follows intermediately from Definition 4.45 (1),

while “=⇒” is Lemma 4.49.
Now we demonstrate that ∈ is a linear order on the class of ordinal

numbers. Towards a contradiction, assume that there are ordinals α, β

that are incomparable w.r.t. ∈, i.e., we have

α ̸= β and α /∈ β and β /∈ α. (4.2)

Consider α ∩ β. By Lemma 4.48, α ∩ β is an ordinal. Furthermore,
α ∩ β ⊆ α and α ∩ β ⊆ β. If α = α ∩ β, then α ⊆ β and by Lemma 4.49
either α = β or α ∈ β in contradiction to (4.2). Thus, α ̸= α ∩ β and,
similarly, β ̸= α ∩ β.

But then, α ∩ β ⊂ α and α ∩ β ⊂ β, which implies that α ∩ β ∈ α and
α ∩ β ∈ β, which leads to α ∩ β ∈ α ∩ β, but due to the ZFC axioms this
is not possible! Contradiction!

So, ∈ is in fact a linear order on the class of ordinal numbers. q.e.d.

Recall that On is the class of all ordinals. Theorem 4.47 tells us that
∈ is a linear order on On. More general, ∈ is a well-founded order on On.
An order (A,<) is a well-founded order, if

(1) (A,<) is a linear order and
(2) for every non-empty set X ⊆ A there is a <-minimal element x ∈ X,

i.e., x < y for every y ∈ X.

For example, (N,<) is a well-founded order but (Z,<) or (Q≥0,<)

are not well-founded orders.
It is not difficult to see that ordinal numbers are well-founded

orders (w.r.t. ∈). Indeed, if X ⊆ On is a non-empty class of ordinals,
then γ :=

⋂
X is an ordinal (by Lemma 4.48) and γ ⊆ x for all x ∈ X.

116

Ordinal Numbers

It remains to prove that γ ∈ X: Otherwise γ /∈ X and then γ ⊂ x for
all x ∈ X. This leads to γ ∈ x for all x ∈ X (by Theorem 4.47). Thus,
{γ} ⊆ x and, as a consequence, γ + 1 ⊆ x for all x ∈ X. But then
γ + 1 ⊆ ⋂

X = γ =⇒ γ ∈ γ which violates the ZFC axioms! Hence,
⋂

X = γ ∈ X.
Now we turn our attention towards the construction of bigger

ordinals. For this, we need the following lemma which states that
ordinal numbers are closed under unions.

Lemma 4.51. Let x be a set of ordinals, i.e., every α ∈ x is an ordinal.
Then

⋃
x := {β : β ∈ α for some α ∈ x}

is an ordinal number.

Proof. Using the ZFC axioms, it is possible to prove that
⋃

x is a set.
Hence, it remains to show that (1) and (2) of Definition 4.45 are satisfied.

(1) Transitivity of
⋃

x: If a ∈ b ∈ ⋃
x, then there is a c ∈ x such that

a ∈ b ∈ c and, by transitivity, a ∈ c which implies that a ∈ ⋃ x.
(2) Trichotomy: If a, b ∈ ⋃

x. Then there are some c, d ∈ x such that
a ∈ c and b ∈ d. Applying Lemma 4.46 yields that a, b are ordinals
and, by Theorem 4.47, either a = b or a ∈ b or b ∈ a.

q.e.d.

ω :=
⋃

n n, the union of all natural numbers, is again an ordinal
number. To prove this, we observe that ω =

⋃
ω and use Lemma 4.51

(that ω is a set is a consequence of the axiom of infinity).
What is the next ordinal number after ω? We can again apply the

+1 operation in the same way as for natural numbers, so

ω + 1 = ω ∪ {ω} = {0, 1, 2, . . . , {0, 1, 2, . . .}}.

Of course it is now possible to construction ordinals like ω + 2 :=
(ω + 1) + 1, ω + 3, . . . and then we can build the union

ω + ω =
⋃

i∈ω

ω + i = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . },

117

Ordinal Numbers

which is an ordinal because of Lemma 4.51. The fact that
ω ∪ {ω + i : i ∈ ω} is a set can be proven by using the axiom of re-
placement.

To get an intuition on how ordinals look like, consider the following
examples of infinite ordinals: ω + 1, ω + ω = 2ω, 3ω, . . . , ω · ω =

ω2, ω3, . . . , ωω.
For some ordinals α it is the case that α = β+ 1 for some β. However,

it is not possible to find an ordinal γ such that γ + 1 = ω holds (Why?).

Definition 4.52. Let α ̸= 0 be an ordinal. If β + 1 ∈ α for every β ∈ α,
then we call α an limes ordinal.

It is easy to see that λ is an limes ordinal, if and only if λ ̸= 0 and
⋃

λ = λ.
Ordinals that are not limes ordinals are called successor ordinals

because of the following theorem.

Theorem 4.53. Let α ̸= 0 be an ordinal that is not an limes ordinal. Then
there is an ordinal β such that β + 1 = α.

Proof. By Definition 4.52 there is a β ∈ α such that β+ 1 /∈ α. By Theorem
4.47, either β + 1 = α or β + 1 ∋ α.

So, we only need to show that β + 1 ̸∋ α holds. Otherwise α ∈
β + 1 = β ∪ {β}. Clearly, α /∈ {β} because α = β ∈ α would violate the
ZFC axioms. But then α ∈ β ∈ α which contradicts the ZFC axioms as
well. Hence β + 1 ∋ α is impossible which leads to β + 1 = α. q.e.d.

Ordinals are intimately connected to well-orders. In fact any well-
ordering (A,<) is isomorphic to some (α, ∈) where α is an ordinal.
For example, (N,<) is isomorphic to (ω,∈) and ω + ω represents
({0, 1} × N,<lex) where <lex is the lexicographical order.

The well-ordering of ordinals allows to define and prove the princi-
ple of transfinite induction. This principle states that On, the class of all
ordinals, is generated from ∅ by taking the successor (+1) and the union
on limit steps, as shown on the examples before.

The principle of transfinite induction allows us to define sets Xα

where α is an ordinal number. Since On is a well-order, we only need to

118

4.9 Cardinal Numbers

describe how Xα is constructed under the assumption that Xβ is already
defined for every β ∈ α.

For example, it is possible to define (via transfinite induction) the
winning region of player 0 in a reachability game (V, V0, V1, E). To do
this, we define sets W0

α for every ordinal number α:

W0
0 := ∅,

W0
α+1 :=

{
x ∈ V0 : xE ∩ W0

α ̸= ∅
}
∪
{

x ∈ V1 : xE ⊆ W0
α

}
,

W0
λ :=

⋃

β∈λ

W0
β for limes ordinals λ.

Now it is easy to verify that
⋃

α∈On W0
α is the winning region of

Player 0.

4.9 Cardinal Numbers

Besides ordinals, we sometimes need cardinal numbers which are special
ordinal number that can be used to measure the size of sets. We say that
two sets x, y have the same cardinality, if there is a bijection between x
and y.

Definition 4.54. An ordinal κ is a cardinal number, if for every α ∈ κ there
is no bijection between κ and α. Furthermore, we say that a cardinal
number κ is the cardinality of a set x, if there is a bijection between x
and κ. In this case we let |x| := κ.

Cn := {κ ∈ On : κ is a cardinal number} is the class of all cardinal
numbers.

But is it guaranteed that we really find a cardinal number for every
possible set out there? The next theorem answers this question.

Theorem 4.55. For every set x there is a cardinal number |x|.

Proof. Consider the class Y of ordinals, which is given by

Y := {α ∈ On : there is a bijection f : x → α}
= {α ∈ On : there is a bijection f : α → x} .

119

Ordinal Numbers

If Y is non-empty, then |x| :=
⋂

Y ∈ Y is the desired cardinal number.
Now we prove that X ̸= ∅ is indeed the case. By the axiom of

choice, there is a choice function g for x, i.e., for every y ⊆ x with y ̸= ∅
we have g(y) ∈ y.

Using transfinite induction, we define for every ordinal α an object
xα by

xα :=

g(yα) if yα := x \
{

xβ : β ∈ α
}
̸= ∅

x if yα = ∅

It is easy to see that for every xα ̸= x we have that xα is an element
of x but xα ̸= xβ for every β ∈ α.

If xα = x holds for some ordinal α, then there is a minimal ordinal
α′ ⊆ α such that xα′ = x and, by definition of xα′ , this means that
x =

{
xβ : β ∈ α′

}
. Furthermore, the function f : α′ → x, β 7→ xβ is a

bijection between x and α′. This implies that α′ ∈ Y.
So, it only remains to prove that xα = x for some ordinal α. Towards

a contradiction, we assume that xα ̸= x for every ordinal α. Then every
xα ∈ x and, therefore, the mapping f : On → x′ := {xα : α ∈ On} , α 7→
xα is a bijection between On and x′. Since x is a set, x′ ⊆ x is a set as
well. Therefore, by the axiom of replacement,

f−1[x′] :=
{

f−1(y) : y ∈ x′
}
= On

is a set. As a result, On satisfies Definition 4.45 and, consequently,
On ∈ On which violates the ZFC axioms! Contradiction!

q.e.d.

It is worth mentioning that the enumeration (xα)α∈|x| induces a
well-ordering < on x by

xα < xβ ⇐⇒ α ∈ β.

Corollary 4.56 (Well-ordering theorem). Every set x can be well-ordered,
i.e., there is a well-order < on x.

Every finite ordinal number is a cardinal number but there are also

120

4.9 Cardinal Numbers

infinite cardinal numbers. For example, ℶ0 := ω is the smallest infinite
cardinal number and, by using the power set, we can construct strictly
larger cardinal numbers:

ℶα+1 := 2ℶα := |P(ℶα)| ,

ℶλ :=
⋃

β∈λ

ℶβ for limes ordinals λ.

Please observe that ℶ1 = |P(ω)| = |R|.
Whether there exists cardinal numbers between ℶ0 and ℶ1 is called

the continuum hypothesis (CH) which has turned out to be independent
of ZFC, i.e., neither (CH) nor ¬(CH) are consequences of ZFC.

121

