Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik **RWTH** Aachen Prof. Dr. E. Grädel, K. Dannert

Logic and Games — Assignment 5

Due: Tuesday the 20th November at 12:00 in the lecture or at our chair.

Exercise 1

4 Points

An operator $F: \mathcal{P}(A) \to \mathcal{P}(A)$ is called *inflationary*, if $F(X) \supseteq X$ for all $X \subseteq A$. Give examples for operators $F : \mathcal{P}(A) \to \mathcal{P}(A)$ with the following properties:

- (a) F has a fixed point but no least fixed point.
- (b) F has a least fixed point but F is not monotone.
- (c) F is monotone but not inflationary.
- (d) F is inflationary but not monotone.

Exercise 2

Consider the signature $\tau = \{P, Q\}$. Give an L_{μ} -formula $\varphi \in L_{\mu}(\tau)$ such that for each transition system $\mathcal{K} = (V, E, P, Q)$ and each node $v \in V$ we have $\mathcal{K}, v \models \varphi$ if and only if

- (a) at each node reachable from v where Q holds, P holds as well.
- (b) from each node reachable from v where P holds, there is a reachable node where Q holds.
- (c) there is an infinite path from v such that $P \wedge Q$ holds only finitely many times.

Exercise 3

Let $\mathfrak{N} = (\mathbb{N}, S, 0)$ and $\mathfrak{Z} = (\mathbb{Z}, S, 0)$, where S denotes the successor function on \mathbb{N} and \mathbb{Z} , respectively.

- (a) Define the relations $+ \subseteq \mathbb{N}^3$ and $\cdot \subseteq \mathbb{N}^3$ in LFP.
- (b) Define the relation $\leq \mathbb{Z}^2$ in LFP.

Exercise 4

Prove that the following problem is undecidable:

- Let $\varphi(x)$ be a formula in FO.
- Is $F_{\varphi}^{\mathfrak{A}}$ monotone for all structures \mathfrak{A} with signature $\tau(\varphi) \setminus \{R\}$?

Hint: Use the fact that the satisfiability problem for FO is undecidable.

http://logic.rwth-aachen.de/Teaching/LS-WS19

8 Points

12 Points

6 Points