
Logic and Games
SS 2009

Prof. Dr. Erich Grädel
Łukasz Kaiser, Tobias Ganzow

Mathematische Grundlagen der Informatik
RWTH Aachen

cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizensiert uter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2009 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 Finite Games and First-Order Logic 1
1.1 Model Checking Games for Modal Logic 1
1.2 Finite Games . 4
1.3 Alternating Algorithms . 8
1.4 Model Checking Games for First-Order Logic 18

2 Parity Games and Fixed-Point Logics 21
2.1 Parity Games . 21
2.2 Fixed-Point Logics . 31
2.3 Model Checking Games for Fixed-Point Logics 34

3 Infinite Games 41
3.1 Topology . 42
3.2 Gale-Stewart Games . 49
3.3 Muller Games and Game Reductions 58
3.4 Complexity . 72

4 Basic Concepts of Mathematical Game Theory 79
4.1 Games in Strategic Form . 79
4.2 Iterated Elimination of Dominated Strategies 87
4.3 Beliefs and Rationalisability . 93
4.4 Games in Extensive Form . 96

1 Finite Games and First-Order Logic

An important problem in the field of logics is the question for a given
logic L, a structure A and a formula ψ ∈ L, whether A is a model of
ψ. In this chapter we will discuss an approach to the solution of this
model checking problem via games for some logics. Our goal is to reduce
the problem A |= ψ to a strategy problem for a model checking game
G(A, ψ) played by two players called Verifier (or Player 0) and Falsifier
(or Player 1). We want to have the following relation between these two
problems:

A |= ψ iff Verifier has a winning strategy for G(A, ψ).

We can then do model checking by constructing or proving the existence
of winning strategies.

1.1 Model Checking Games for Modal Logic

The first logic to be considered is propositional modal logic (ML). Let
us first briefly review its syntax and semantics:

Definition 1.1. For a given set of actions A and atomic properties
{Pi : i ∈ I}, the syntax of ML is inductively defined:

• All propositional logic formulae with propositional variables Pi are
in ML.

• If ψ, ϕ ∈ ML, then also ¬ψ, (ψ ∧ ϕ) and (ψ ∨ ϕ) ∈ ML.

• If ψ ∈ ML and a ∈ A, then ⟨a⟩ψ and [a]ψ ∈ ML.

Remark 1.2. If there is only one action a ∈ A, we write ♦ψ and �ψ

instead of ⟨a⟩ψ and [a]ψ, respectively.

1

1.1 Model Checking Games for Modal Logic

Definition 1.3. A transition system or Kripke structure with actions from
a set A and atomic properties {Pi : i ∈ I} is a structure

K = (V, (Ea)a∈A, (Pi)i∈I)

with a universe V of states, binary relations Ea ⊆ V × V describing
transitions between the states, and unary relations Pi ⊆ V describing
the atomic properties of states.

A transition system can be seen as a labelled graph where the
nodes are the states of K, the unary relations are labels of the states,
and the binary transition relations are the labelled edges.

Definition 1.4. Let K = (V, (Ea)a∈A, (Pi)i∈I) be a transition system,
ψ ∈ ML a formula and v a state of K. The model relationship K, v |= ψ,
i.e. ψ holds at state v of K, is inductively defined:

• K, v |= Pi if and only if v ∈ Pi.

• K, v |= ¬ψ if and only if K, v ̸|= ψ.

• K, v |= ψ ∨ ϕ if and only if K, v |= ψ or K, v |= ϕ.

• K, v |= ψ ∧ ϕ if and only if K, v |= ψ and K, v |= ϕ.

• K, v |= ⟨a⟩ψ if and only if there exists w such that (v, w) ∈ Ea and
K, w |= ψ.

• K, v |= [a] ψ if and only if K, w |= ψ holds for all w with (v, w) ∈ Ea.

Definition 1.5. For a transition system K and a formula ψ we define
the extension

JψKK := {v : K, v |= ψ}

as the set of states of K where ψ holds.

Remark 1.6. In order to keep the following propositions short and easier
to understand, we assume that all modal logic formulae are given in
negation normal form, i.e. negations occur only at atoms. This does
not change the expressiveness of modal logic as for every formula an
equivalent one in negation normal form can be constructed. We omit a
proof here, but the transformation can be easily achieved by applying

2

1 Finite Games and First-Order Logic

DeMorgan’s laws and the duality of � and ♦ (i.e. ¬⟨a⟩ψ ≡ [a]¬ψ and
¬[a]ψ ≡ ⟨a⟩¬ψ) to shift negations to the atomic subformulae.

We will now describe model checking games for ML. Given a
transition system K and a formula ψ ∈ ML, we define a game G that
contains positions (ϕ, v) for every subformula ϕ of ψ and every v ∈ V.
In this game, starting from position (ϕ, v), Verifier’s goal is to show
that K, v |= ϕ, while Falsifier tries to prove K, v ̸|= ϕ.

In the game, Verifier is allowed to move at positions (ϕ ∨ ϑ, v),
where she can choose to move to position (ϕ, v) or (ϑ, v), and at posi-
tions (⟨a⟩ϕ, v), where she can move to position (ϕ, w) for a w ∈ vEa.
Analogously, Falsifier can move from (ϕ ∧ ϑ, v) to (ϕ, v) or (ϑ, v) and
from ([a]ϕ, v) to (ϕ, w) for a w ∈ vEa. Finally, there are the terminal
positions (Pi, v) and (¬Pi, v), which are won by Verifier if K, v |= Pi

and K, v |= ¬Pi, respectively, otherwise they are winning positions for
Falsifier.

The intuitive idea of this construction is to let the Verifier make the
existential choices. To win from one of her positions, a disjunction or
diamond subformula, she either needs to prove that one of the disjuncts
is true, or that there exists a successor at which the subformula holds.
Falsifier, on the other hand, in order to win from his positions, can
choose a conjunct that is false or, if at a box formula, choose a successor
at which the subformula does not hold.

The idea behind this construction is that at disjunctions and dia-
monds, Verifier can choose a subformula that is satisfied by the structure
or a successor position at which the subformula is satisfied, while at
conjunctions and boxes, Falsifier can choose a subformula or position
that is not. So it is easy to see that the following lemma holds.

Lemma 1.7. Let K be a Kripke structure, v ∈ V and ϕ a formula in ML.
Then we have

K, v |= ϕ ⇔ Verifier has a winning strategy from (ϕ, v).

To assess the efficiency of games as a solution for model checking
problems, we have to consider the complexity of the resulting model
checking games based on the following criteria:

3

1.2 Finite Games

• Are all plays necessarily finite?

• If not, what are the winning conditions for infinite plays?

• Do the players always have perfect information?

• What is the structural complexity of the game graphs?

• How does the size of the graph depend on different parameters of
the input structure and the formula?

For first-order logic (FO) and modal logic (ML) we have only finite
plays with positional winning conditions, and, as we will see, the
winning regions are computable in linear time with respect to the size
of the game graph (for finite structures of course).

Model checking games for fixed-point logics however admit infinite
plays, and we use so called parity conditions to determine the winner of
such plays. It is still an open question whether winning regions and
winning strategies in parity games are computable in polynomial time.

1.2 Finite Games

In the following section we want to deal with two-player games with
perfect information and positional winning conditions, given by a game
graph (or arena)

G = (V, E)

where the set V of positions is partitioned into sets of positions V0

and V1 belonging to Player 0 and Player 1, respectively. Player 0, also
called Ego, moves from positions v ∈ V0, while Player 1, called Alter,
moves from positions v ∈ V1. All moves are along edges, and we use
the term play to describe a (finite or infinite) sequence v0v1v2 . . . with
(vi, vi+1) ∈ E for all i. We use a simple positional winning condition:
Move or lose! Player σ wins at position v if v ∈ V1−σ and vE = ∅, i.e.,
if the position belongs to his opponent and there are no moves possible
from that position. Note that this winning condition only applies to
finite plays, infinite plays are considered to be a draw.

4

1 Finite Games and First-Order Logic

We define a strategy (for Player σ) as a mapping

f : {v ∈ Vσ : vE ̸= ∅} → V

with (v, f (v)) ∈ E for all v ∈ V. We call f winning from position v if
Player σ wins all plays that start at v and are consistent with f .

We now can define winning regions W0 and W1:

Wσ = {v ∈ V : Player σ has a winning strategy from position v}.

This proposes several algorithmic problems for a given game G:
The computation of winning regions W0 and W1, the computation of
winning strategies, and the associated decision problem

Game := {(G, v) : Player 0 has a winning strategy for G from v}.

Theorem 1.8. Game is P-complete and decidable in time O(|V|+ |E|).

Note that this remains true for strictly alternating games.
A simple polynomial-time approach to solve Game is to compute

the winning regions inductively: Wσ =
⋃

n∈N Wn
σ , where

W0
σ = {v ∈ V1−σ : vE = ∅}

is the set of terminal positions which are winning for Player σ, and

Wn+1
σ = {v ∈ Vσ : vE ∩Wn

σ ̸= ∅} ∪ {v ∈ V1−σ : vE ⊆ Wn
σ }

is the set of positions from which Player σ can win in at most n + 1
moves.

After n ≤ |V| steps, we have that Wn+1
σ = Wn

σ , and we can stop
the computation here.

To solve Game in linear time, we have to use the slightly more
involved Algorithm 1.1. Procedure Propagate will be called once for
every edge in the game graph, so the running time of this algorithm is
linear with respect to the number of edges in G.

Furthermore, we can show that the decision problem Game is
equivalent to the satisfiability problem for propositional Horn formulae.

5

1.2 Finite Games

Algorithm 1.1. A linear time algorithm for Game

Input: A game G = (V, V0, V1, E)
output: Winning regions W0 and W1

for all v ∈ V do (∗ 1: Initialisation ∗)
win[v] := ⊥
P[v] := ∅
n[v] := 0

end do

for all (u, v) ∈ E do (∗ 2: Calculate P and n ∗)
P[v] := P[v] ∪ {u}
n[u] := n[u] + 1

end do

for all v ∈ V0 (∗ 3: Calculate win ∗)
if n[v] = 0 then Propagate(v, 1)

for all v ∈ V \V0
if n[v] = 0 then Propagate(v, 0)

return win

procedure Propagate(v, σ)
if win[v] ̸= ⊥ then return
win[v] := σ (∗ 4: Mark v as winning for player σ ∗)
for all u ∈ P[v] do (∗ 5: Propagate change to predecessors ∗)

n[u] := n[u]− 1
if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)

end do
end

6

1 Finite Games and First-Order Logic

We recall that propositional Horn formulae are finite conjunctions∧
i∈I Ci of clauses Ci of the form

X1 ∧ . . . ∧ Xn → X or

X1 ∧ . . . ∧ Xn︸ ︷︷ ︸
body(Ci)

→ 0︸︷︷︸
head(Ci)

.

A clause of the form X or 1 → X has an empty body.

We will show that Sat-Horn and Game are mutually reducible
via logspace and linear-time reductions.

(1) Game ≤log-lin Sat-Horn
For a game G = (V, V0, V1, E), we construct a Horn formula ψG
with clauses

v → u for all u ∈ V0 and (u, v) ∈ E, and

v1 ∧ . . . ∧ vm → u for all u ∈ V1 and uE = {v1, . . . , vm}.

The minimal model of ψG is precisely the winning region of
Player 0, so

(G, v) ∈ Game ⇐⇒ ψG ∧ (v → 0) is unsatisfiable.

(2) Sat-Horn ≤log-lin Game
For a Horn formula ψ(X1, . . . , Xn) =

∧
i∈I Ci, we define a game

Gψ = (V, V0, V1, E) as follows:

V = {0} ∪ {X1, . . . , Xn}︸ ︷︷ ︸
V0

∪ {Ci : i ∈ I}︸ ︷︷ ︸
V1

and

E = {Xj → Ci : Xj = head(Ci)} ∪ {Ci → Xj : Xj ∈ body(Ci)},

i.e., Player 0 moves from a variable to some clause containing the
variable as its head, and Player 1 moves from a clause to some
variable in its body. Player 0 wins a play if, and only if, the play
reaches a clause C with body(C) = ∅. Furthermore, Player 0 has
a winning strategy from position X if, and only if, ψ |= X, so we

7

1.3 Alternating Algorithms

have

Player 0 wins from position 0 ⇐⇒ ψ is unsatisfiable.

These reductions show that Sat-Horn is also P-complete and, in
particular, also decidable in linear time.

1.3 Alternating Algorithms

Alternating algorithms are algorithms whose set of configurations is
divided into accepting, rejecting, existential and universal configurations.
The acceptance condition of an alternating algorithm A is defined by
a game played by two players ∃ and ∀ on the computation tree TA,x

of A on input x. The positions in this game are the configurations of
A, and we allow moves C → C′ from a configuration C to any of its
successor configurations C′. Player ∃ moves at existential configurations
and wins at accepting configurations, while Player ∀ moves at universal
configurations and wins at rejecting configurations. By definition, A
accepts some input x if and only if Player ∃ has a winning strategy for
the game played on TA,x.

We will introduce the concept of alternating algorithms formally,
using the model of a Turing machine, and we prove certain relation-
ships between the resulting alternating complexity classes and usual
deterministic complexity classes.

1.3.1 Turing Machines

The notion of an alternating Turing machine extends the usual model
of a (deterministic) Turing machine which we introduce first. We
consider Turing machines with a separate input tape and multiple
linear work tapes which are divided into basic units, called cells or
fields. Informally, the Turing machine has a reading head on the input
tape and a combined reading and writing head on each of its work tapes.
Each of the heads is at one particular cell of the corresponding tape
during each point of a computation. Moreover, the Turing machine is
in a certain state. Depending on this state and the symbols the machine

8

1 Finite Games and First-Order Logic

is currently reading on the input and work tapes, it manipulates the
current fields of the work tapes, moves its heads and changes to a new
state.

Formally, a (deterministic) Turing machine with separate input tape
and k linear work tapes is given by a tuple M = (Q, Γ, Σ, q0, Facc, Frej, δ),
where Q is a finite set of states, Σ is the work alphabet containing a
designated symbol � (blank), Γ is the input alphabet, q0 ∈ Q is the
initial state, F := Facc ∪ Frej ⊆ Q is the set of final states (with Facc

the accepting states, Frej the rejecting states and Facc ∩ Frej = ∅), and
δ : (Q \ F)× Γ× Σk → Q× {−1, 0, 1} × Σk × {−1, 0, 1}k is the transition
function.

A configuration of M is a complete description of all relevant facts
about the machine at some point during a computation, so it is a tuple
C = (q, w1, . . . , wk, x, p0, p1, . . . , pk) ∈ Q× (Σ∗)k × Γ∗ ×Nk+1 where q
is the recent state, wi is the contents of work tape number i, x is the
contents of the input tape, p0 is the position on the input tape and pi is
the position on work tape number i. The contents of each of the tapes
is represented as a finite word over the corresponding alphabet[, i.e., a
finite sequence of symbols from the alphabet]. The contents of each of
the fields with numbers j > |wi| on work tape number i is the blank
symbol (we think of the tape as being infinite). A configuration where x
is omitted is called a partial configuration. The configuration C is called
final if q ∈ F. It is called accepting if q ∈ Facc and rejecting if q ∈ Frej.

The successor configuration of C is determined by the recent state
and the k + 1 symbols on the recent cells of the tapes, using the transition
function: If δ(q, xp0 , (w1)p1 , . . . , (wk)pk) = (q′, m0, a1, . . . , ak, m1, . . . , mk, b),
then the successor configuration of C is ∆(C) = (q′, w′, p′, x), where for
any i, w′i is obtained from wi by replacing symbol number pi by ai and
p′i = pi + mi. We write C ⊢M C′ if, and only if, C′ = ∆(C).

The initial configuration C0(x) = C0(M, x) of M on input x ∈ Γ∗ is
given by the initial state q0, the blank-padded memory, i.e., wi = ε and
pi = 0 for any i ≥ 1, p0 = 0, and the contents x on the input tape.

A computation of M on input x is a sequence C0, C1, . . . of config-
urations of M, such that C0 = C0(x) and Ci ⊢M Ci+1 for all i ≥ 0.
The computation is called complete if it is infinite or ends in some final

9

1.3 Alternating Algorithms

configuration. A complete finite computation is called accepting if the
last configuration is accepting, and the computation is called rejecting
if the last configuration is rejecting. M accepts input x if the (unique)
complete computation of M on x is finite and accepting. M rejects input
x if the (unique) complete computation of M on x is finite and rejecting.
The machine M decides a language L ⊆ Γ∗ if M accepts all x ∈ L and
rejects all x ∈ Γ∗ \ L.

1.3.2 Alternating Turing Machines

Now we shall extend deterministic Turing machines to nondeterministic
Turing machines from which the concept of alternating Turing machines
is obtained in a very natural way, given our game theoretical framework.

A nondeterministic Turing machine is nondeterministic in the sense
that a given configuration C may have several possible successor config-
urations instead of at most one. Intuitively, this can be described as the
ability to guess. This is formalised by replacing the transition function
δ : (Q \ F)× Γ× Σk → Q× {−1, 0, 1} × Σk × {−1, 0, 1}k by a transition
relation ∆ ⊆ ((Q \ F)× Γ× Σk)× (Q× {−1, 0, 1} × Σk × {−1, 0, 1}k).
The notion of successor configurations is defined as in the deterministic
case, except that the successor configuration of a configuration C may
not be uniquely determined. Computations and all related notions
carry over from deterministic machines in the obvious way. However,
on a fixed input x, a nondeterministic machine now has several possi-
ble computations, which form a (possibly infinite) finitely branching
computation tree TM,x. A nondeterministic Turing machine M accepts
an input x if there exists a computation of M on x which is accepting,
i.e., if there exists a path from the root C0(x) of TM,x to some accepting
configuration. The language of M is L(M) = {x ∈ Γ∗ | M accepts x}.
Notice that for a nondeterministic machine M to decide a language
L ⊆ Γ∗ it is not necessary, that all computations of M are finite. (In a
sense, we count infinite computations as rejecting.)

From a game-theoretical perspective, the computation of a non-
deterministic machine can be viewed as a solitaire game on the com-
putation tree in which the only player (the machine) chooses a path

10

1 Finite Games and First-Order Logic

through the tree starting from the initial configuration. The player wins
the game (and hence, the machine accepts its input) if the chosen path
finally reaches an accepting configuration.

An obvious generalisation of this game is to turn it into a two-
player game by assigning the nodes to the two players who are called ∃
and ∀, following the intuition that Player ∃ tries to show the existence
of a good path, whereas Player ∀ tries to show that all selected paths
are bad. As before, Player ∃ wins a play of the resulting game if, and
only if, the play is finite and ends in an accepting leaf of the game tree.
Hence, we call a computation tree accepting if, and only if, Player ∃ has
a winning strategy for this game.

It is important to note that the partition of the nodes in the tree
should not depend on the input x but is supposed to be inherent to
the machine. Actually, it is even independent of the contents of the
work tapes, and thus, whether a configuration belongs to Player ∃ or to
Player ∀ merely depends on the current state.

Formally, an alternating Turing machine is a nondeterministic Turing
machine M = (Q, Γ, Σ, q0, Facc, Frej, ∆) whose set of states Q = Q∃ ∪
Q∀ ∪ Facc ∪ Frej is partitioned into existential, universal, accepting, and
rejecting states. The semantics of these machines is given by means of
the game described above.

Now, if we let accepting configurations belong to player ∀ and
rejecting configurations belong to player ∃, then we have the usual
winning condition that a player loses if it is his turn but he cannot move.
We can solve such games by determining the winner at leaf nodes and
propagating the winner successively to parent nodes. If at some node,
the winner at all of its child nodes is determined, the winner at this
node can be determined as well. This method is sometimes referred
to as backwards induction and it basically coincides with our method
for solving Game on trees (with possibly infinite plays). This gives the
following equivalent semantics of alternating Turing machines:

The subtree TC of the computation tree of M on x with root C is
called accepting, if

• C is accepting

11

1.3 Alternating Algorithms

• C is existential and there is a successor configuration C′ of C such
that TC′ is accepting or

• C is universal and TC′ is accepting for all successor configurations
C′ of C.

M accepts an input x, if TC0(x) = TM,x is accepting.
For functions T, S : N → N, an alternating Turing machine M is

called T-time bounded if, and only if, for any input x, each computation
of M on x has length less or equal T(|x|). The machine is called S-
space bounded if, and only if, for any input x, during any computation
of M on x, at most S(|x|) cells of the work tapes are used. Notice
that time boundedness implies finiteness of all computations which is
not the case for space boundedness. The same definitions apply for
deterministic and nondeterministic Turing machines as well since these
are just special cases of alternating Turing machines. These notions
of resource bounds induce the complexity classes Atime containing
precisely those languages L such that there is an alternating T-time
bounded Turing machine deciding L and Aspace containing precisely
those languages L such that there is an alternating S-space bounded
Turing machine deciding L. Similarly, these classes can be defined for
nondeterministic and deterministic Turing machines.

We are especially interested in the following alternating complexity
classes:

• ALogspace =
⋃

d∈N Aspace(d · log n),
• APtime =

⋃
d∈N Atime(nd),

• APspace =
⋃

d∈N Aspace(nd).

Observe that Game ∈ Alogspace. An alternating algorithm which
decides Game with logarithmic space just plays the game. The algo-
rithm only has to store the current position in memory, and this can be
done with logarithmic space. We shall now consider a slightly more
involved example.

Example 1.9. QBF ∈ Atime(O(n)). W.l.o.g we assume that negation
appears only at literals. We describe an alternating procedure Eval(ϕ, I)
which computes, given a quantified Boolean formula ψ and a valuation
I : free(ψ) → {0, 1} of the free variables of ψ, the value JψKI .

12

1 Finite Games and First-Order Logic

Algorithm 1.2. Alternating algorithm deciding QBF.

Input: (ψ, I) where ψ ∈ QAL and I : free(ψ) → {0, 1}
if ψ = Y then

if I(Y) = 1 then accept
else reject

if ψ = ϕ1 ∨ ϕ2 then „∃“ guesses i ∈ {1, 2} , Eval(ϕi, I)
if ψ = ϕ1 ∧ ϕ2 then „∀“ chooses i ∈ {1, 2} , Eval(ϕi, I)
if ψ = ∃Xϕ then „∃“ guesses j ∈ {0, 1} , Eval(ϕ, I [X = j])
if ψ = ∀Xϕ then „∀“ chooses j ∈ {0, 1} , Eval(ϕ, I [X = j])

The main results we want to establish in this section concern the
relationship between alternating complexity classes and determinis-
tic complexity classes. We will see that alternating time corresponds
to deterministic space, while by translating deterministic time into
alternating space, we can reduce the complexity by one exponential.
Here, we consider the special case of alternating polynomial time and
polynomial space. We should mention, however, that these results can
be generalised to arbitrary large complexity bounds which are well
behaved in a certain sense.

Lemma 1.10. NPspace ⊆ APtime.

Proof. Let L ∈ NPspace and let M be a nondeterministic nl-space
bounded Turing machine which recognises L for some l ∈ N. The
machine M accepts some input x if, and only if, some accepting config-
uration is reachable from the initial configuration C0(x) in the configu-
ration tree of M on x in at most k := 2cnl

steps for some c ∈ N. This is
due to the fact that there are most k different configurations of M on
input x which use at most nl cells of the memory which can be seen
using a simple combinatorial argument. So if there is some accepting
configuration reachable from the initial configuration C0(x), then there
is some accepting configuration reachable from C0(x) in at most k steps.
This is equivalent to the existence of some intermediate configuration
C′ that is reachable from C0(x) in at most k/2 steps and from which
some accepting configuration is reachable in at most k/2 steps.

13

1.3 Alternating Algorithms

So the alternating algorithm deciding L proceeds as follows. The
existential player guesses such a configuration C′ and the universal
player chooses whether to check that C′ is reachable from C0(x) in at
most k/2 steps or whether to check that some accepting configuration is
reachable from C′ in at most k/2 steps. Then the algorithm (or equiva-
lently, the game) proceeds with the subproblem chosen by the universal
player, and continues in this binary search like fashion. Obviously,
the number of steps which have to be performed by this procedure
to decide whether x is accepted by M is logarithmic in k. Since k is
exponential in nl , the time bound of M is dnl for some d ∈ N, so M
decides L in polynomial time. q.e.d.

Lemma 1.11. APtime ⊆ Pspace.

Proof. Let L ∈ APtime and let A be an alternating nl-time bounded
Turing machine that decides L for some l ∈ N. Then there is some
r ∈ N such that any configuration of A on any input x has at most r
successor configurations and w.l.o.g. we can assume that any non-final
configuration has precisely r successor configurations. We can think of
the successor configurations of some non-final configuration C as being
enumerated as C1, . . . , Cr. Clearly, for given C and i we can compute Ci.
The idea for a deterministic Turing machine M to check whether some
input x is in L is to perform a depth-first search on the computation
tree TA,x of A on x. The crucial point is, that we cannot construct
and keep the whole configuration tree TA,x in memory since its size is
exponential in |x| which exceeds our desired space bound. However,
since the length of each computation is polynomially bounded, it is
possible to keep a single computation path in memory and to construct
the successor configurations of the configuration under consideration
on the fly.

Roughly, the procedure M can be described as follows. We start
with the initial configuration C0(x). Given any configuration C under
consideration, we propagate 0 to the predecessor configuration if C is
rejecting and we propagate 1 to the predecessor configuration if C is
accepting. If C is neither accepting nor rejecting, then we construct,

14

1 Finite Games and First-Order Logic

for i = 1, . . . , r the successor configuration Ci of C and proceed with
checking Ci. If C is existential, then as soon as we receive 1 for some i,
we propagate 1 to the predecessor. If we encounter 0 for all i, then we
propagate 0. Analogously, if C is universal, then as soon as we receive
a 0 for some i, we propagate 0. If we receive only 1 for all i, then we
propagate 1. Then x is in L if, and only if, we finally receive 1 at C0(x).
Now, at any point during such a computation we have to store at most
one complete computation of A on x. Since A is nl-time bounded, each
such computation has length at most nl and each configuration has size
at most c · nl for some c ∈ N. So M needs at most c · n2l memory cells
which is polynomial in n. q.e.d.

So we obtain the following result.

Theorem 1.12. (Parallel time complexity = sequential space complexity)

(1) APtime = Pspace.

(2) AExptime = Expspace.

Proposition (2) of this theorem is proved exactly the same way as
we have done it for proposition (1). Now we prove that by translating
sequential time into alternating space, we can reduce the complexity by
one exponential.

Lemma 1.13. Exptime ⊆ APspace

Proof. Let L ∈ Exptime. Using a standard argument from complexity
theory, there is a deterministic Turing machine M = (Q, Σ, q0, δ) with
time bound m := 2c·nk

for some c, k ∈ N with only a single tape (serving
as both input and work tape) which decides L. (The time bound of
the machine with only a single tape is quadratic in that of the original
machine with k work tapes and a separate input tape, which, however,
does not matter in the case of an exponential time bound.) Now if
Γ = Σ ⊎ (Q× Σ) ⊎ {#}, then we can describe each configuration C of
M by a word

C = #w0 . . . wi−1(qwi)wi+1 . . . wt# ∈ Γ∗.

15

1.3 Alternating Algorithms

Since M has time bound m and only one single tape, it has space bound
m. So, w.l.o.g., we can assume that |C| = m + 2 for all configurations
C of M on inputs of length n. (We just use a representation of the
tape which has a priori the maximum length that will occur during
a computation on an input of length n.) Now the crucial point in the
argumentation is the following. If C ⊢ C′ and 1 ≤ i ≤ m, symbol
number i of the word C′ only depends on the symbols number i− 1,
i and i + 1 of C. This allows us, to decide whether x ∈ L(M) with the
following alternating procedure which uses only polynomial space.

Player ∃ guesses some number s ≤ m of steps of which he claims
that it is precisely the length of the computation of M on input x.
Furthermore, ∃ guesses some state q ∈ Facc, a Symbol a ∈ Σ and
a number i ∈ {0, . . . , s}, and he claims that the i-th symbol of the
configuration C of M after the computation on x is (qa). (So players
start inspecting the computation of M on x from the final configuration.)
If M accepts input x, then obviously player ∃ has a possibility to choose
all these objects such that his claims can be validated. Player ∀ wants to
disprove the claims of ∃. Now, player ∃ guesses symbols a−1, a0, a1 ∈ Γ
of which he claims that these are the symbols number i − 1, i and
i + 1 of the predecessor configuration of the final configuration C.
Now, ∀ can choose any of these symbols and demand, that ∃ validates
his claim for this particular symbol. This symbol is now the symbol
under consideration, while i is updated according to the movement
of the (unique) head of M. Now, these actions of the players take
place for each of the s computation steps of M on x. After s such
steps, we check whether the recent symbol and the recent position are
consistent with the initial configuration C0(x). The only information
that has to be stored in the memory is the position i on the tape, the
number s which ∃ has initially guessed and the current number of steps.
Therefore, the algorithm uses space at most O(log(m)) = O(nk) which
is polynomial in n. Moreover, if M accepts input x then obviously, player
∃ has a winning strategy for the computation game. If, conversely, M
rejects input x, then the combination of all claims of player ∃ cannot be
consistent and player ∀ has a strategy to spoil any (cheating) strategy
of player ∃ by choosing the appropriate symbol at the appropriate

16

1 Finite Games and First-Order Logic

computation step. q.e.d.

Finally, we make the simple observation that it is not possible
to gain more than one exponential when translating from sequential
time to alternating space. (Notice that Exptime is a proper subclass of
2Exptime.)

Lemma 1.14. APspace ⊆ Exptime

Proof. Let L ∈ APspace, and let A be an alternating nk-space bounded
Turing machine which decides L for some k ∈ N. Moreover, for an
input x of A, let Conf(A, x) be the set of all configurations of A on
input x. Due to the polynomial space bound of A, this set is finite
and its size is at most exponential in |x|. So we can construct the
graph G = (Conf(A, x),⊢) in time exponential in |x|. Moreover, a
configuration C is reachable from C0(x) in TA,x if and only if C is
reachable from C0(x) in G. So to check whether A accepts input x we
simply decide whether player ∃ has a winning strategy for the game
played on G from C0(x). This can be done in time linear in the size of
G, so altogether we can decide whether x ∈ L(A) in time exponential
in |x|. q.e.d.

Theorem 1.15. (Translating sequential time into alternating space)

(1) ALogspace = P.
(2) APspace = Exptime.

Proposition (1) of this theorem is proved using exactly the same
arguments as we have used for proving proposition (2). An overview
over the relationship between deterministic and alternating complexity
classes is given in Figure 1.1.

Logspace ⊆ Ptime ⊆ Pspace ⊆ Exptime ⊆ Expspace
|| || || ||

ALogspace ⊆ APtime ⊆ APspace ⊆ AExptime

Figure 1.1. Relation between deterministic and alternating complexity classes

17

1.4 Model Checking Games for First-Order Logic

1.4 Model Checking Games for First-Order Logic

Let us first recall the syntax of FO formulae on relational structures.
We have that Ri(x̄), ¬Ri(x̄), x = y and x ̸= y are well-formed valid FO
formulae, and inductively for FO formulae ϕ and ψ, we have that ϕ∨ ψ,
ϕ ∧ ψ, ∃xϕ and ∀xϕ are well-formed FO formulae. This way, we allow
only formulae in negation normal form where negations occur only at
atomic subformulae and all junctions except ∨ and ∧ are eliminated.
These constraints do not limit the expressiveness of the logic, but the
resulting games are easier to handle.

For a structure A = (A, R1, . . . , Rm) with Ri ⊆ Ari , we define the
evaluation game G(A, ψ) as follows:

We have positions ϕ(ā) for every subformula ϕ(x̄) of ψ and every
ā ∈ Ak.

At a position ϕ ∨ ϑ, Verifier can choose to move either to ϕ or to
ϑ, while at positions ∃xϕ(x, b̄), he can choose an instantiation a ∈ A of
x and move to ϕ(a, b̄). Analogously, Falsifier can move from positions
ϕ ∧ ϑ to either ϕ or ϑ and from positions ∀xϕ(x, b̄) to ϕ(a, b̄) for an
a ∈ A.

The winning condition is evaluated at positions with atomic or
negated atomic formulae ϕ, and we define that Verifier wins at ϕ(ā) if,
and only if, A |= ϕ(ā), and Falsifier wins if, and only if, A ̸|= ϕ(ā).

In order to determine the complexity of FO model checking, we
have to consider the process of determining whether A |= ψ. To decide
this question, we have to construct the game G(A, ψ) and check whether
Verifier has a winning strategy from position ψ. The size of the game
graph is bound by |G(A, ψ)| ≤ |ψ| · |A|width(ψ), where width(ψ) is
the maximal number of free variables in the subformulae of ψ. So
the game graph can be exponential, and therefore we can get only
exponential time complexity for Game. In particular, we have the
following complexities for the general case:

• alternating time: O(|ψ|+ qd(ψ) log |A|)
where qd(ψ) is the quantifier-depth of ψ,

• alternating space: O(width(ψ) · log |A|+ log |ψ|),
• deterministic time: O(|ψ| · |A|width(ψ)) and

18

1 Finite Games and First-Order Logic

• deterministic space: O(|ψ|+ qd(ψ) log |A|).

Efficient implementations of model checking algorithms will con-
struct the game graph on the fly while solving the game.

There are several possibilities of how to reason about the complex-
ity of FO model checking. We can consider the structural complexity, i.e.,
we fix a formula and measure the complexity of the model checking
algorithm in terms of the size of the structure only. On the other hand,
the expression complexity measures the complexity in terms of the size of
a given formula while the structure is considered to be fixed. Finally,
the combined complexity is determined by considering both, the formula
and the structure, as input parameters.

We obtain that the structural complexity of FO model checking
is ALogtime, and both the expression complexity and the combined
complexity is PSpace.

1.4.1 Fragments of FO with Efficient Model Checking

We have just seen that in the general case the complexity of FO model
checking is exponential with respect to the width of the formula. In
this section, we will see that some restrictions made to the underlying
logic will also reduce the complexity of the associated model checking
problem.

We will start by considering the k-variable fragment of FO :

FOk := {ψ ∈ FO : width(ψ) ≤ k}.

In this fragment, we have an upper bound for the width of the formulae,
and we get polynomial time complexity:

ModCheck(FOk) is P-complete and solvable in time O(|ψ| · |A|k).
There are other fragments of FO that have model checking com-

plexity O(|ψ| · ∥A∥):

• ML: propositional modal logic,
• FO2: formulae of width two,
• GF: the guarded fragment of first-order logic.

We will have a closer look at the last one, GF.

19

1.4 Model Checking Games for First-Order Logic

GF is a fragment of first-order logic which allows only guarded
quantification

∃ȳ(α(x̄, ȳ) ∧ ϕ(x̄, ȳ)) and ∀ȳ(α(x̄, ȳ) → ϕ(x̄, ȳ))

where the guards α are atomic formulae containing all free variables
of ϕ.

GF is a generalisation of modal logics, and we have that ML ⊆
GF ⊆ FO. In particular, the modal logic quantifiers ♦ and � can be
expressed as

⟨a⟩ϕ ≡ ∃y(Eaxy ∧ ϕ(y)) and [a]ϕ ≡ ∀y(Eaxy → ϕ(y)).

Since guarded logics have small model checking games of size
∥G(A, ψ)∥ = O(|ψ| · ∥A∥), there exist efficient game-based model check-
ing algorithms for them.

20

