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3 Infinite Games

In this chapter we want to discuss a special kind of two-player zero-sum
games of perfect information. These games are played by two players, and
one player’s gain is compensated by the other player’s loss, hence the
name zero-sum games. Chess and Go are examples of zero-sum games:
a win for one player is a loss for the other.

We will start with formal definitions of the basic notions that are
used throughout this chapter.

A game is a pair G = (G, Win) where G = (V,Vy, V1,E, Q) is a
directed graph with V = VU Vj and Q2 : V — C for a finite set C of
priorities and Win C C“. We call G the arena of G and Win the winning
condition of G.

We will often use the identity function for ) if we want to define
winning conditions depending on the visited vertices of a play. Note
that this violates the assumption that the set of priorities is finite if G
itself is infinite.

A play of G is a finite or infinite sequence T = vyv1v;... € ysw
such that (v;,v;,,1) € E for all i. A finite play is lost by the player
who cannot move any more. An infinite play 7 is won by Player 0 if
Q(rr) = Q(vg)Q(v1) . .. € Win, otherwise Player 1 wins (there are no
draws).

A strategy for Player ¢ is a function f : V*V, — V such that
(v, f(xv)) € Eforall x € V* and v € V;.. Thus, a strategy maps prefixes
of plays which end in a position in V;; to legal moves of Player ¢.

A play m = vgvy ... is consistent with a strategy f for Player o
if for all proper prefixes vg...v, of 7t such that v, € V, we have
U1 = f(vg...vn). We say that f is a winning strategy from position v
if every play starting in vp that is consistent with f is won by Player ¢.
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3.1 Topology

The set
Wy = {v € V : Player ¢ has a winning strategy from v}

is the winning region of Player ¢. In zero-sum games it always holds
that Wy N W; = Q.

We call a game G determined if Wy UW; = V, ie. if from each
position one player has a winning strategy.

As shown in the first chapter, games where Win is a reachability
condition are determined. Recall that Win is a reachability condition if
there exists a subset D C C such that each play that reaches D is won
by Player 0, i.e. 1 € Win iff 7n[i] € D for some i.

In the previous chapter, we learnt that parity games are determined
as well. But what are the properties of Win that guarantee determinacy?
Are there non-determined games at all? To answer these questions, we
need topological arguments.

3.1 Topology

Definition 3.1. A topology on a set S is defined by a collection of open
subsets of S. It is required that

® @, and S are open;

e if X and Y are open, then X NY is open;

o if {X;:i € I} is a family of open sets, then ;¢ X; is open.
If O C P(S) is a collection of open sets, we call the pair (S,O) a
topological space.

Often, a topology is defined by its base: A set B of open subsets of
S such that every open set can be represented as a union of sets in B.

Example 3.2. The standard topology on R is defined by the base consist-
ing of all open intervals (4,b) C R.

In our setting, we will only be concerned with the following topol-
ogy on B¥, which is due to Cantor. Its base consists of all sets of the
form z71 := z - B¥ for z € B*. Consequently, a set X C B“ is open if
it is the union of sets zT, i.e. if there exists a set W C B* such that
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X = W - BY. Moreover, a set X C BY is closed if its complement B \ X
is open. For B = {0, 1}, this topology is called the Cantor space, and for
B = w it is called the Baire space.

Bw
z]

Figure 3.1. Base sets in the Cantor space

Example 3.3.

¢ The base sets zT are both open and closed (clopen) since we have
BY\z1 =W, -BY where W, = {y € B* | y £ zand z £ y}. (Here,
u < v means that u is a prefix of v.)
¢ 0*1{0,1}% is open. The complement {0“} is closed, but not open.
* Ly = {x € w" : x contains d infinitely often} = [ (w* -d)" - w®
is a countable union of open sets. e
Next, we will give another useful characterisation of closed sets. A
tree T C B* is a prefix-closed set of finite words, i.e, z€ Tandy < z
implies y € T. For a tree T let [T] be the set of infinite paths through T
(note: T C B*, but [T] C BY).

Example 3.4. Let T =0* = {0" : n € w}. Then [T] = {0¢}.

Lemma 3.5. X C B% is closed if and only if there exists a tree T C B*
such that X = [T].

Proof.

(=) Let X be closed. Then there isa W C B* such that BY \ X = W - B%.
Let T:= {w € B* | Vz(z < w = z ¢ W)}. T is closed under prefixes
and [T] = X.
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3.1 Topology

(<) Let X = [T]. For every x ¢ [T] there exists a smallest prefix
wy < x such that wy ¢ T. Let W := {wy : x ¢ X}. Then BY\ X =
W - BY is open, thus X is closed. Q.E.D.

We call a set W C B* prefix-free if there is no pair x,y € W such
that x < y.

Lemma 3.6.

(1) For every open set A C B“ there is a prefix-free set W C B* such
that A = W - BY.

(2) Let B be a finite alphabet. A C B¢ is clopen if and only if there is
a finite set W C B* such that A = W - B¥.

Proof.
(1) Let A = U - B for some open U C B*. Define

W := {w € U : U contains no proper prefix of w}.

W is prefix-free and W - B“ = U - BY = A.

(2) (=) Let A C B“ be clopen. Thus there exist prefix-free sets U, V C
B* such that A = U - B¥ and BY \ A = V - B¥. We will show that
U UV is finite. Let T = {w € B* | w has no prefixin UU V}. If
T is finite, then U U V is also finite. If U (or V) is infinite, then
T is also infinite since it contains all prefixes of elements of U
(respectively V). T is a finitely branching tree (since B is finite) that
contains no infinite path, since otherwise there exists an infinite
word x € B¢ corresponding to this path withx ¢ U-BY UV - BY =

AU(BY\ A) = B“. By Koénig’s Lemma, this implies that T is finite.

(<) Let A = W - B“ where W C B* is finite. Let | = max{|w]| :
w € W}. Then BY \ A = Z - B“ where

Z = {z € B* : |z| = and no prefix of z is in W}.

Thus, A is clopen. Q.E.D.

Remark 3.7. Lemma 3.6 (2) does not hold for infinite alphabets B.
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Since we are investigating games on graphs, the topological space
that interests us is the space of all sequences in V¢ (or C¥) that are
plays of a game G. As not all such sequences correspond to feasible
plays in G, it is not directly clear that the topological notions we defined
for V¥ can be used for the space of all plays of G. But this is indeed
the case, as stated by the following lemma (which immediately follows
from Lemma 3.5 by considering the unravelling of G).

Lemma 3.8. Let G be a game with positions V. The set of all plays of G
is a closed subset of V<.

Definition 3.9. Let T = (S, O) be a topological space. The class of Borel
sets is the smallest class B C P(S) that contains all open sets and is
closed under countable unions and complementation:

e OCB;
eIf X BthenS\ X € B;
e If {X,:n € w} CBthen U,cn Xn € B.

Most of the w-languages L C B“ occurring in Computer Science
are Borel sets. Borel sets form a natural hierarchy of sets 0 and 1 for
0 < a < w1y, where wy is the first uncountable ordinal number.

. Z‘l) =0;
o [0 = coxd := {S\ X : X € 20} for every &;
o 20 = {Upew Xn : Xu € H% for B < a} for & > 0.

We are especially interested in the first levels of the Borel hierarchy:

L Z‘l): Open sets
o I19: Closed sets
o Zg: Countable unions of closed sets
e I19: Countable intersections of open sets
o Zg: Countable unions of Hg-sets
. Hg: Countable intersections of Zg-sets
Example 3.10. Letd € B.
Ly = {x € B“ : x contains d infinitely often} = (| (B*-d)" - BV,
new T~

0
Hence, L, € I19. €x
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3.1 Topology

To determine the membership of an w-language in a class X or
Hg of the Borel hierarchy and to relate the classes, we need a notion of
reducibility between w-languages.

Definition 3.11. A function f : BY — C% is called continuous if f~(Y)
is open for every open set Y C C%.

Let X € B¥, Y C C¥. We say that X is Wadge reducibleto Y, X <Y,
if there exists a continuous function f : BY — C¢ such that f~1(Y) = X,
ie. x € X iff f(x) € Y for all x € B¥. For any such function f, we
write f : X < Y.

Exercise 3.1. Prove that the relation < satisfies the following properties:
e X<YandY < Zimply X < Z;
e X <Y implies BY\ X < C¥\Y.

Theorem 3.12. Let X < Y for Y € X0 (or Y € T19). Then X € X0
(respectively X € I19).

Proof. The claim is true by definition for Z(l) (the open sets) and thus
also for H(l).

Leta >1, f: X <Yand Y € £ Y = Upep Yn where Y, €
Up<a H%. Define X;, := f‘l(Yn). Then X, <Y}, for all n € w, and thus

by induction hypothesis X, € Ug<s Hg. We have:

xeX & f(x)ey
& f(x) €Yy forsomen € w

& x € X, for some n € w.
Hence, X = U, e Xn € Z0. Q.E.D.
In the following we will present a game-theoretic characterisation
of the relation < in terms of the so-called Wadge game.

Definition 3.13. Let X C B¥, Y C C¥. The Wadge game W(X,Y) is an
infinite game between two players 0 and 1 who move in alternation.
In the i-th round, Player 0 chooses a symbol x; € B, and afterwards
Player 1 chooses a (possibly empty) word y; € C*. After w rounds,
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Player 0 has produced an w-word x = xpx1x2 - -- € BY, and Player 1
has produced a finite or infinite word y = yoy 1y - - - € C=“. Player 1
wins the play (x,y) ifand onlyify e C¥ andx € X & y €Y.
Example 3.14. Let B=C = {0,1}.
e Player 1 wins W(0*1{0,1}%, (0*1)%).
Winning strategy for Player 1: Choose 0 until Player 0 chooses 1 for
the first time. Afterwards, always choose 1.
e Player 0 wins W((0*1)“,0*1{0,1}%).
Winning strategy for Player 0: Choose 1 until Player 1 chooses a
word containing 1 for the first time. Afterwards, always choose 0.

Theorem 3.15 (Wadge). Let X C B, Y C C%. Then X < Y if and only
if Player 1 has a winning strategy for W(X,Y).

Proof.

(<) A winning strategy of Player 1 for W(X,Y) induces a mapping
f : BY — C¥ such that x € X iff y € Y. It remains to show that f is
continuous. Let Z = U - C% be open. For every u € U denote by V,,
the set of all words v = xgx7...x, € B* such that u is the answer of
Player 1 to v, i.e. u = f(xg)f(x1) ... f(xn). Then f~1(U-C¥) =V - B¢
where V := U,cy Vu.

(=) Let f : X < Y. We construct a strategy for Player 1 as
follows. Player 1 has to answer Player 0’s moves xgx1xy ... by an w-
word yoy1y2 ..., but Player 1 can delay choosing y; until he knows
XoXq ... Xy for some appropriate n > i.

Choice of yo: Consider the partition BY = |J.ccf ' (c - C?). Since
c-C¥ is clopen, f~!(c-C¥) is also clopen. For every x € B¢ there
exists ¢ € C such that x € f~!(c-C%), and since f~(c - C¥) is clopen,
there is a prefix wy < x such that wy - BY C f‘l(c - C%¥). So Player 1
can wait until Player 0 has chosen a prefix w € B* that determines the
set f~1(c-C¥) the word x will belong to and choose 1 = c.

The subsequent choices are done analogously. Let yg...y; € C* be
Player 1’s answer to X ...x, € B*. For the choice of y; 1 we consider
the partition

xo...xn.Bw:Ucecfil(yo...yi.c.cw)_
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3.1 Topology

Since the sets f (g - - - y; - ¢ - C%) are clopen, after finitely many moves,
by choosing a prolongation xq - - - x;,X,,11 - - - X, Player 0 has determined
in which set f~'(yp---y; - c- C¥) the word x will be. Player 1 then
chooses y; 11 = c.

By using this strategy, Player 1 constructs the answer y = f(x) for
the sequence x chosen by Player 0. Otherwise, there would be a smallest
i such that y; # f(x;). This is impossible since x € f~(yg- - -y; - C¥).
Since f: X <Y,wehavex € X iff y € Y. Q.E.D.

Definition 3.16. A set Y C C¥ is 0-complete if:

-Yezg;
'XngorallXeZE.

I19-completeness is defined analogously.
Note that Y is £0-complete if and only if C¢ \ Y is I19-complete.
Proposition 3.17. Let B = {0,1}. Then:

* 0*1{0,1}% is Z‘l)-complete;
e {09} is IT9-complete;

e {0,1}*0% is £9-complete;
¢ (0*1)% is I19-complete.

Proof. By the above remark, it suffices to show that 0*1{0,1}“ and
(0*1)@ are X0-complete and IT)-complete, respectively.

* We know that 0*1{0,1}% € £J. Let X = W - B be open. We
describe a winning strategy for Player 1 in W(X,0*1{0,1}): Pick
0 until Player 0 has completed a word contained in W; from this
point onwards, pick 1. Hence, X < 0*1{0,1}“.

e We know that (0°1)¢ € IT). Let X = e Wi - BY € II). We
describe a winning strategy for Player 1 in W(X, {0,1}*0%): Start
with i := 0; for arbitrary i, answer with 1 and set i := i + 1 if the
sequence Xy . .. Xy of symbols chosen by Player 0 so far has a prefix
in W;, otherwise answer with 0 and leave i unaffected. Q.E.D.
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3.2 Gale-Stewart Games

In this chapter we will show that, using the Axiom of Choice, one
can construct a non-determined game. Later, we will mention which
topological properties guarantee determinacy and how this is related to
logic. Before we proceed to discuss the games, we shortly introduce the
basic notions of ordinals, as these will be used in the proofs extensively.

3.2.1 Ordinals

The standard basic notion used in mathematics is the notion of a set,
and all mathematical theorems follow from the axioms of set theory. The
standard set of axioms, which (among others) guarantee the existence
of an empty set, an infinite set, and the powerset of any set, and that
no set is a member of itself (i.e. Vx —x € x) is called the Zermelo-Friinkel
Set Theory ZF. It is standard in mathematics to use ZF extended by the
axiom of choice AC, which together are called ZFC.

Since everything is a set in mathematics, there is a need to represent
numbers as sets. The standard way to do this is to start with the empty
set, let 0 = @, and proceed by induction, defining n +1 = nU {n}.
Here are the first few numbers in this coding;:

*0=0,

c1={2},
*2={0,{2}},
*3=1{0,{2} {2, {2}}}.

Observe that for each number 7 (as a set) it holds that
men — mCn.

In particular, the relation € is fransitive in such sets, i.e. if k € m and
m € n then k € n. We use this property of sets to define a more general
class of numbers.

Definition 3.18. A set « is an ordinal number if € is transitive in «.

Except for natural numbers, what other ordinal numbers are there?
The first example is w = [J,, 1, the union of all natural numbers. Indeed,
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it is easy to check that the union of ordinals is always an ordinal as well
(as long as it is a set at all).

What is the next ordinal number after «w? We can again apply the
+1 operation in the same way as for natural numbers, so

w+1l=wU{w}=1{0,1,2,...,{0,1,...}}.

But does it make sense to say that w + 1 is the next ordinal, is there
an order on ordinals? In fact both, each ordinal as a set and all ordinals
as a class, are well-ordered, i.e. the following holds:

e for any two ordinal numbers a and B either &« C B or B C «;

e there exists no infinite sequence of ordinals
ng 2a 2032 ;
e each ordinal « is well-ordered by €.

The well-ordering of ordinals follows from the mentioned axiom that
no set is a member of itself, Vx —x € x.

Ordinals are intimately connected to well-orders, in fact any struc-
ture (A, <) where < is a well-ordering is isomorphic to some ordinal
«. To get an intuition on how ordinals look like, consider the following
examples of countable ordinals: w + 1, w + w, w?, w3, wv.

The well-ordering of ordinals allows to define and prove the prin-
ciple of transfinite induction. This principle states that the class of all
ordinals is generated from @ by taking the successor (+1) and the union
on limit steps, as shown on the examples before. Specifically, for each

ordinal « it holds that either

e there exists an ordinal § < a such thata = f+1=BU{B}, or

¢ there exist ordinals , < a such that a = U, .

Besides ordinals, we sometimes need cardinal numbers. A cardinal
number « is the smallest ordinal a for which a bijection to x exists.
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3.2.2 Non-determined Games

Let B be an alphabet (especially: B = {0,1} or B = w). In a Gale-
Stewart game the players alternately choose symbols from B and create
an infinite sequence 7w € B“. Gale-Stewart games can be described as
graph games in different ways. For B = {0, 1}, for example, as a game
on the infinite binary tree

Tz = ({O/ 1}*/ VO/ Vl/ E/ Q)/

where
Vo= |J {01},
new
V1 _ U {0/1}2n+1/
new

E={(x,xi):x€{0,1}*,i € {0,1}},

and Q : {0,1}* — {0,1,¢} : ¢ — ¢ xi — i. Alternatively, it can be
described as a game on the graph depicted in Figure 3.2. Similar game
graphs can be defined for arbitrary B.

©O—
O—[]

Figure 3.2. Game graph for Gale-Stewart game over B = {0,1}

Theorem 3.19 (Gale-Stewart). There exists a non-determined game.

We will present two proofs: The first one uses ordinal numbers
to enumerate the set of all strategies. The second one uses ultrafilters.
Both rely on the Axiom of Choice (AC).

Proof. Let To = {x € B* : |x| even} and T} = {x € B* : |x| odd}. Then

F={f:Tp—»B}and G={g: Ty — B}
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3.2 Gale-Stewart Games

are the sets of strategies for Player 0 and for Player 1. Since B is
countable, we have |F| = |G| = |P(w)| = 2“. Thus, using the well-
ordering principle (which is equivalent to AC) we can enumerate the
strategies by ordinals less than 2¢:

F={fa:a<2tand G = {ga: a <2“}.

For strategies f and g let f"¢ € B% be the play uniquely defined by
f and g. We will construct two increasing sequences of sets Xy, Yy C B¢
for & < 2% such that:
1) XaNYy =0,
2) [ Xal, [Yal <2,
(3) for all B < a there exists f € F such that f"gg € Xq,
(4) for all B < a there exists ¢ € G such that fg"g € Y.

The construction proceeds as follows. For & = 0 let X, := Y, := @.
For limit ordinals A let X} := Ug<y Xp and Y, := Ug<, Yp. Observe
that the properties above are indeed satisfied.

For a successor ordinal « = f+ 1 consider the strategy fz. The
cardinality of Xg and Yj is smaller than 2* by Property (2). But there
are 2¢ different plays consistent with fg, so there is one of them which
is not yet in Xg. Choose such a play (AC again) and add it to Y3 to
construct Y. Analogously, find such a play for gg (which additionally
is not in Yy) and add it to Xp to construct Xq. Finally, we define
Win = Uy o0 Xa.

Assume that f = f, for some & < 2% is a winning strategy for
Player 0. By the construction of Win, there is a strategy ¢ € G such that
fu"g € Yy and thus f,"g ¢ Win, a contradiction.

Now assume that g = g, for some & < 2 is a winning strategy for
Player 1. Analogously, there is a strategy f € F such that f"g, € X, C
Win, a contradiction as well. Q.E.D.

The second proof we will present uses the concept of an ultrafilter.
The intuition behind a filter is that it is a family of large sets.

Definition 3.20. Let I be a non-empty set. A non-empty set F C P(I)
is a filter if

52

3 Infinite Games

()@ ¢F,

2QxeF, ye F = xNy € F,and

B)xeF,yox = yeF.
Example 3.21. The set {x C w : w \ x is finite} is a filter. We call it the
Fréchet filter.

Definition 3.22. An ultrafilter is a filter that satisfies the additional

requirement:
(4) for all x C [ eitherx € For I\ x € F.
Example 3.23. Fix ng € w. Then U = {a C w : ng € a} is an ultrafilter.

Note that the Fréchet filter is not an ultrafilter. Observe as well,
that any ultrafilter that contains a finite set must contain a singleton set
as well, so it is of the form presented in the example above. Does there
exist an ultrafilter which contains no finite set, i.e. one that contains the
Fréchet filter? Indeed, we can show it does.

Theorem 3.24. The Fréchet filter F can be expanded to an ultrafilter
Uo>F.

The proof uses AC or Zorn’s Lemma or the compactness theorem
for propositional logic and holds for every filter F C 2% such that
mN---Nay #Oforallm €N, aq,...,ay, € F.

Proof. Let F be the Fréchet filter. We use propositional variables X, for
every a € P(w). Let ® = &y U P where

Dy = {-Xop}
UA{XeAXp — Xprp 10,0 C w}
UA{Xy— Xp:aCbhabCw}
U {Xa & =X\, 10Cw}

and

®p = {X,:a € F}.

Every model Z of & defines an ultrafilter U which expands F,
namely U = {4 C w : Z(X,) = 1}. It remains to show that ® is
satisfiable.
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3.2 Gale-Stewart Games

By the compactness theorem, it suffices to show that every finite
subset of @ is satisfiable. Hence, let ®( be a finite subset of ®. Then
the set [y = {a € F: X; € ®yN Pr} is also finite. Now consider the
following two cases:

* Fy = @. Define the interpretation Z by

1 if0€a,
I(X,) =
0 otherwise.

Then 7 = ®y.

e Fy ={ay,...,am}. Since F is a filter, there exists ng € a; N -+ - N apy.

Define the interpretation Z by

1 ifngea
T (Xa) = .
0 otherwise

Again, we have 7 |= ®y.

Hence, @ is satisfiable. Q.E.D.

We are now able to give an alternative proof of the fact that there

exists a non-determined game.

Proof (of Theorem 3.19). Let U be an ultrafilter that expands the Fréchet
filter. We construct a non-determined Gale-Stewart game over B = w
with winning condition Winy; as follows. Player 0 wins a play x =
XoX1 ... € WY if
¢ Player 1 has played a number that is not higher than the previously
played one, i.e. min{j : x;;1 < x;} exists and is odd, or
e xp < x1 <xp<...and

A(x) == [0,x0) U | [x2i1,%0i42) € U
i€w
(see Figure 3.3).

We claim that the Gale-Stewart game with winning condition Winy;
is not determined. Towards a contradiction, assume that Player 0 has a
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E ) E ) E ) E

C 7 C 7 C 7 C
] ] ] ] ] ]
T T T T T T

1

L
)
0 X0 X1 X2 X3 X4 X5 X6

Figure 3.3. The winning condition of the ultrafilter game

winning strategy f. Then we can construct the following play, which is
consistent with f:

e To xg = f(e), Player 1 answers with an arbitrary number x1 > xo.

¢ To xp; for i > 0, Player 1 chooses the number chosen by f for the
play prefix xgx2x3 ... xp;.

Consequently, Player 1 plays with strategy f against strategy f.

0 X0 f :x2 f X4
1 \xl/ \xg,/" \xs
1 \ xg/ \ xg/

Figure 3.4. Playing the Ultrafilter game

This results in two plays x = xpx1x; ... and x’ = xgxpx3x4 ..., where

Xoip2 = f(x0X1 ... X2i41),

but also
X9it1 = f(Xox1 ... X2).

Both plays are consistent with the winning strategy f for Player 0. Thus
we have A(x) € U and A(x') € U. But

A(x) = [0,x0) U | [x2i41,%2i42)

i€w
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3.2 Gale-Stewart Games

and
A(x") = [0,x0) U | [x2i12,%2i43)-
icw
Thus A(x) N A(x') = [0,x9) € U. However, since U expands the
Fréchet filter, the co-finite set w \ [0,xp) is in U and thus [0,xy) ¢ U, a
contradiction.

Analogously, one derives a contradiction from the assumption that
Player 1 has a winning strategy. Q.E.D.

3.2.3 Determined Games

We call a game G = (V, V, V4, E, Win) clopen, open, closed, etc., or sim-
ply a Borel game, if the winning condition Win C V¢ has the respective
property.

Clopen games are basically finite games: If A C B“ is clopen, then
for every x € B there exists a finite prefix w, < x such that:

e lfxe Athenw,T C A;
o Ifx ¢ Athenw,] C BY\ A.

Therefore, the game is equivalent to a finite game, in which a
play is decided after a prefix w has been seen such that wT C A or
wl C BY\ A. To be more precise: Given a game G and a starting
position vy, consider the tree 75(vp), i.e. the unfolding of G to the tree
of all possible paths starting in vg. If A = W-B“ and BY\ A = W' - B¥,
then the tree can be truncated at the positions in W U W’. The resulting
game is equivalent to the original game but allows only finite plays.

Corollary 3.25. Clopen games are determined.
A stronger result is the following:

Theorem 3.26. Every open game, and thus every closed game, is deter-
mined.

Proof. Let G = (V,Vp, V1, E,Win) where Win = U - V¥ is open. First,
we consider finite plays: Let T, = {v € Vj_, : vE = @} and A, =
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Attry (T, ). From every position v € Ay Player o wins after finitely many
moves with the attractor strategy.
For the infinite plays consider

G =Gl V\ (A UA)

with positions V' := V \ (Ag U A1). In G’ every play is infinite, and
Player 0 wins 71 = vov10p... if and only if m € U - V¥. Obviously,
Player 0 wins in G’ starting from vy if she can enforce a sequence
vg?1 ... vn € U. Then every infinite prolongation of this sequence is a
playin U - V.

Instead of G’ we consider again the equivalent game on the trees
7 (v) = Tg(v), the unfolding of G from v € V. Positions in 7 (v) are
words over V: 7 (v) C V*. Now consider the set

By={veV :ve Al (- v*)}

of positions from where player 0 can enforce a play prefix in U - V*.
From every position in V' \ A, Player 1 has a strategy to guarantee
that the play never reaches U - V* since V' \ Ay is a trap for Player 0.
But a play that never reaches U - V* is won by Player 1. It follows that
Wo = AgUBgand Wy = A1 U (V/ \ Bo), and thus V = Wy UW;. Q.E.D.
A much more subtle result was proven by Tony Martin in 1975.

Theorem 3.27 (Martin). All Borel games are determined.

Here are some winning conditions for frequently used games in
Computer Science:

* Muller conditions: Let B be finite, 7y C P(B), F1 = P(B) \ Fo.
Player o wins 7 € B if and only if

Inf(7) := {b € B : b appears infinitely often in 77} € F,.
Hence, the winning condition is the set

{xeBY:Inf(m) e Fo} = |J () Lan U (B \ La)),

XeFy deX d¢X
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a finite Boolean combination of Hg-sets.

e Parity conditions (see previous chapter) are special cases of Muller
conditions and thus also finite Boolean combinations of Hg-sets.

® Every w-regular language is a Boolean combination of Hg-sets.
This follows from the recognisability of w-regular languages by
Muller automata and the fact that Muller conditions are Boolean
combinations of Hg-sets.

In practice, winning conditions are often specified in a suitable logic:
w-words x € B are interpreted as structures Ay = (w, <, (Py)pep)
with unary predicates P, = {i € w : x; = b}. A sentence ¢ (for example
in FO, MSO, etc.) over the signature {<} U {P, : b € B} defines the
w-language (winning condition) L(¢) = {x € BY : Ay = ¢}.

Example 3.28. Let B = {0,...,m}. The parity condition is specified by
the FO sentence

pi= A <33/VZ (y<z—-Pz)V \Vy3z(y < z/\PCz)> )
bbégé c<b
O

We have:

e FO and LTL define the same w-languages (winning conditions);
* MSO defines exactly the w-regular languages;
¢ There are w-languages that are definable in MSO but not in FO;

e w-regular languages are Boolean combinations of I19-sets.

In particular, graph games with winning conditions specified in LTL,
FO, MSO, etc. are Borel games and therefore determined.

3.3 Muller Games and Game Reductions

Muller games are infinite games played over an arena G = (V, V1, E, Q)
V — C) with a winning condition depending only on the set of pri-
orities seen infinitely often in a play. It is specified by a partition
P(C) = Fy U Fy, and a play 7w = vyv10; ... is won by Player o if

Inf(7r) = {c: Q(v;) = c for infinitely many i € w} € F,.
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We will only consider the case that the set C of priorities is finite. Then
Muller games are Borel games specified by the FO sentence

\ (/\ VxJy(x <y APy) A J\ IxVy(x <y — —|Pcy)> .
XeF, \cexX c¢X

So Muller games are determined. Parity conditions are special Muller
conditions, and we have seen that games with parity winning conditions
are even positionally determined. The question arises what kind of
strategies are needed to win Muller games. Unfortunately, there are
simple Muller games that are not positionally determined, even solitaire
games.

Example 3.29. Consider the game arena depicted in Figure 3.5 with the
winning condition Fy = {{1,2,3}}, i.e. all positions have to be visited
infinitely often. Obviously, player 0 has winning a winning strategy, but
no positional one: Any positional strategy of player 0 will either visit
only positions 1 and 2 or positions 2 and 3.

oW oWiBo

Figure 3.5. A solitaire Muller game

Although Muller games are, in general, not positionally deter-
mined, we will see that Muller games are determined via winning
strategies that can be implemented using finite memory. To this end, we
introduce the notions of a memory structure and of a memory strategy.
Although we will not require that the memory is finite, we will use

finite memory in most cases.

Definition 3.30. A memory structure for a game G with positions in V
is a triple M = (M, update,init), where M is a set of memory states,
update : M x V — M is a memory update function and init : V — M is a
memory initialisation function. The size of the memory is the cardinality
of the set M.

A strategy with memory 9 for Player o is given by a next-move
function F : V; x M — V such that F(v,m) € vE forallv € V,,m €
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M. If a play, from starting position vy, has gone through positions
VU1 . ..Uy, the memory state is m(vg...v,), defined inductively by
m(vp) = init(vp), and m(vg . ..v;v;41) = update(m(vg ... v;),v;41), and
in case v, € V; the strategy leads to position F(vy,, m(vg...,0p)).

Remark 3.31. In case |[M| = 1, the strategy is positional, and it can be
described by a function F : V; — V.

Definition 3.32. A game G is determined via memory 9 if it is deter-
mined and both players have winning strategies with memory 91 on
their winning regions.
Example 3.33. In the game from Example 3.29, Player 0 wins with a
strategy with memory 9 = ({1, 3}, update, init) where

e init(1) = init(2) = 1, init(3) = 3 and
v ifve {13},

e update(m,v) = 1.3}

m ifv=2.

The corresponding strategy is defined by

2 ifoe{1,3},
Floom)=43 ifv=2,m=1,
1 ifo=2,m=23.

Let us consider a more interesting example now.

Example 3.34. Consider the game DJW, with its arena depicted in
Figure 3.6. Player 0 wins a play 7 if the maximal number in Inf(7) is
equal to the number of letters in Inf(7r). Formally:

Fo={XC{1,2,a,b}:|XNn{a,b} =max(XN{1,2})}.

Player 0 has a winning strategy from every position, but no po-
sitional one. Assume that f : {a,b} — {1,2} is a positional winning
strategy for Player 0. If f(a) = 2 (or f(b) = 2), then Player 1 always
picks a (respectively b) and wins, since this generates a play 7 with
Inf(rt) = {a,2} (respectively Inf(7r) = {b,2}). If f(a) = f(b) =1, then
Player 1 alternates between a and b and wins, since this generates a play
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Figure 3.6. Muller game G = DJW,

7 with Inf(7r) = {a,b,1}. However, Player 0 has a winning strategy that
uses the memory depicted in Figure 3.7. The corresponding strategy is
defined as follows:

1 ifm=c#d,
F(c,m) =
2 if m = #cd.

#ba D 1/2

a#b

U

b,1,2

Figure 3.7. Memory for Player 0
Why is this strategy winning? If from some point onwards Player 1

picks only a or only b, then, from this point onwards, the memory state
is always b#a or a#b, respectively, and according to F Player 0 always
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picks 1 and wins. In the other case, Player 1 picks a and b again and
again and the memory state is #ab or #ba infinitely often. Thus Player 0
picks 2 infinitely often and wins as well.

The memory structure used in this example is a special case of the

LAR memory structure, which we will use for arbitrary Muller games.

But first, let us look at a Muller game with infinitely many priorities
that allows no winning strategy with finite memory but one with a
simple infinite memory structure:

Example 3.35. Consider the game with its arena depicted in Figure 3.8
and with winning condition Fy = {{0}}. It is easy to see that every
finite-memory strategy of Player O (the player who moves at position
0) is losing. A winning strategy with infinite memory is given by
the memory structure M = (w, init, update) where init(v) = v and
update(m,v) = max(m,v) together with the strategy F defined by

F(O,m)=m+1.
(0)

Figure 3.8. A game where finite-memory strategies do not suffice

Given a game graph G = (V,Vp, V4, E) and a memory structure
MM = (M, update, init), we obtain a new game graph

GxM=(VxM,VyxM,Vx M/Eupdate)
where
Eypdate = { ((v,m), (0/,m")) : (v,0") € E and m’ = update(m,v')}.

Obviously, every play (vg, mg)(v1,m1) ... in G x 9 has a unique
projection to the play vgv; ... in G. Conversely, every play vg,vy,... in
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G has a unique extension to a play (vg, mg)(v1,m1) ... in G x M with
moy = init(?}o).

Definition 3.36. For games G = (G,Q,Win) and ¢’ = (G',Q’, Win'),
we say that G reduces to G’ via memory M, G <gn G', if G’ = G x M and
every play in G’ is won by the same player as the projected play in G.

Given a memory structure 9t for G and a memory structure o’
for G x 9, we obtain a memory structure IM* = M x M for G. The set
of memory locations is M x M’, and we have memory initialisation

init* (v) = (init(v), init’ (v, init(v)))
with the update function

update*((m,m’),v) =
(update(m, v),update’ (m’, (v, update(m, v)))).

Theorem 3.37. Suppose that G reduces to G’ via memory 9 and that
Player ¢ has a winning strategy for G’ with memory 9V from position
(vg, init(vg))). Then Player ¢ has a winning strategy for G with memory
M x M’ from position vy.

Proof. Given a strategy F' : (V, x M) x M’ — (V x M) for Player ¢
in G’, we have to construct a strategy F : (Vy x (M x M')) — V for
Player ¢ in G. For any v € V, and any pair (m,m’) € M x M’ we
have that F'((v,m), m’) = (w, update(m, w)) for some w € vE. We put
F(v,(m,m')) = w. If a play in G that is consistent with F proceeds from
position v with current memory location (m,m’) to a new position w,
then the memory is updated to (n,n’) with n = update(m, w) and n’ =
update’ (m/, (w,n)). In the extended play in G/, we have an associated
move from (v, m) to (w,n) with memory update from m’ to n’. Thus,
every play in G from initial position vy that is consistent with F is the
projection of a play in G’ from (v, init(vp)) that is consistent with F'.
Therefore, if F/ is a winning strategy from (vp, init(vp)), then F is a
winning strategy from vy. Q.E.D.
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Corollary 3.38. Every game that reduces via memory 91 to a position-
ally determined game is determined via memory 9t.

Obviously, memory reductions between games can be composed.
If G reduces to G’ with memory 9 = (M, update, init) and G’ reduces
to G" with memory 9 = (M’, update’, init’) then G reduces to G” with
memory (M x M’,update”, init”) where

init” (v) = (init(v), init’ (v, init(v)))
and

update” ((m,m’),v) =

(update(m, v), update’ (m’, (v, update(m, v)))).

The classical example of a game reduction with finite memory is
the reduction of Muller games to parity games via latest appearance
records. Intuitively, a latest appearance record (LAR) is a list of priorities
ordered by their latest occurrence. More formally, for a finite set C of
priorities, LAR(C) is the set of sequences ¢ ... ci#ck, 1 - . . ¢; of elements
from C U {#} in which each priority ¢ € C occurs at most once and #
occurs precisely once. At a position v, the LAR ¢1...cx#cgy1...c is
updated by moving the priority Q(v) to the end, and moving # to the
previous position of Q(v) in the sequence. For instance, at a position
with priority ¢;, the LAR c¢jcacattescs is updated to ci#tezeqcser. (If Q(v)
did not occur in the LAR, we simply append Q(v) at the end). Thus,
the LAR memory for an arena with priority labelling () : V — C is the
triple (LAR(C), update, init) with init(v) = #Q(v) and

update(cy ... cp#cp1...0,0) =

c1...offckyr ... Qv) i Qv) € {c1,...q},

€. Cpy1#tcyiy...com  if Q(0) = e
The hit set of an LAR c¢; ... cp#cpyq ... ¢ is the set {cgiq...¢} of

priorities occurring after the symbol #. Note that if in a play 7 =
vov1 ... the LAR at position vy is ¢ ... ¢#fc 1 ... ¢, then Q(v,) = ¢
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and the hit set {cx,1...¢;} is the set of priorities that have been visited
since the latest previous occurrence of ¢; in the play.

Lemma 3.39. Let 7t be a play of a Muller game G with finitely many
priorities, and let Inf(77) be the set of priorities occurring infinitely often
in 71. Then the hit set of the latest appearance record is, from some
point onwards, always a subset of Inf(7r) and infinitely often coincides
with Inf(7).

Proof. For each play m = vgv1v;... there is a position v, such that
O(v,) € Inf(rr) for all n > m. Since no priority outside Inf(7) is
seen after position vy, the hit set will, from that position onwards,
always be contained in Inf(7r), and the LAR will always have the form
€1..-Cj_1Cj ... CkfCry1...c0 where ¢1,...cj1 remains fixed and
Inf(7r) = {cj,...,c;}. Since all priorities in Inf(7r) are seen again and
again, it happens infinitely often that, among these, the one occurring
leftmost in the LAR is hit. At such positions, the LAR is updated to
€1,-+,Cj—1#cjy1...cicj, and the hit set coincides with Inf(7r). Q.E.D.

Theorem 3.40. Every Muller game with finitely many priorities reduces
via LAR memory to a parity game.

Proof. Let G be a Muller game with game graph G, priority labelling
Q : V — C and winning condition (Fp, F1). We have to prove that
G <par ¢’ for a parity game G’ with game graph G x LAR(C) and an
appropriate priority labelling ()’ on V x LAR(C), which is defined as
follows:

2k if {Ck+1/'-'/cl} 6.7:0,

Q' (v,c100 ... ciftcryr ... cp) =
2k +1 if {Ck+1/-~-/01} € F.

Let 1 = vgv1v; ... be a play on G and fix a number m such that,
for all n > m, Q(v,) € Inf(rr) and the LAR at position v, has the form
€1++-CiCjt1 -+ CkHCryq - .. ¢ Where Inf(7r) = {cj11,... ¢} and the prefix
¢1 ... c;j remains fixed. In the corresponding play ' = (vg,79)(v1,71) -
in G’, all nodes (vy,, ) for n > m have a priority 2k + p with k > j and
p € {0,1}. Assume that the play 77 is won by Player ¢, i.e., Inf(77) € Fy.
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Since the hit set of the LAR coincides with Inf(7r) infinitely often, the
minimal priority seen infinitely often on the extended play is 2j + ¢.
Thus the extended play in the parity game G’ is won by the same player
as the original play in G. Q.E.D.

Corollary 3.41. Muller games are determined via finite memory strate-
gies. The size of the memory is bounded by (|C| + 1)!.

The question arises which Muller conditions (Fp, 1) guarantee
positional winning strategies for arbitrary game graphs? One obvious
answer are parity conditions. But there are others:

Example 3.42. Let C = {0,1}, Fy = {C} and F; = P(C)\ {C} =
{{0},{1},@}. (Fo, F1) is not a parity condition, but every Muller game
with winning condition (Fy, F1) is positionally determined.

Definition 3.43. The Zielonka tree for a Muller condition (Fy, F1) over
C is a tree Z(Fp, F1) whose nodes are labelled with pairs (X, o) such
that X € F,. We define Z(Fy, 1) inductively as follows. Let C € F;,
and Cy, ..., Cy_1 be the maximal sets in {X C C: X € F;_,}. Then
Z(Fy, F1) consists of a root, labelled with (C,0), to which we attach as
subtrees the Zielonka trees Z(Fy NP (C;), F1NP(C;)),i=0,...,k—1.

Example 3.44. Let C = {0,1,2,3,4} and Fy = {{0,1},{2,3,4},{2,3},
{2,4},{3},{4}}, 71 = P(C) \ Fo. The Zielonka tree Z(Fy, F1) is de-
picted in Figure 3.9.

A set Y C C belongs to Fy if there is a node of Z(Fp, F1) that is
labelled with (X, ¢) for some X D Y and for all children (Z,1 — ¢) of
(X,0) wehave Y Z Z.

Example 3.45. Consider again the tree Z(Fp, F7) from Example 3.44. It
is the case that {2,3} € Fy, since ({2,3,4},0) is a node of Z(Fy, F1)
and

e {23} € {2,3,4}

e {23y {2}

* {2,3} £ {3,4}.
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N

{0,1},0 {2,3,4},0

/N /N

{0},1 {1},1 {2},1 {3,4},1

/\

{310 {4},0

Figure 3.9. A Zielonka tree

{0,...,m—1},0
{1,...,.m—1},1
{2,...,m—1},0

{m—-2,m—-1},0

{m—-1},1—0¢

Figure 3.10. The Zielonka tree of a parity-condition with m priorities
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The Zielonka tree of a parity-condition is especially simple, as
Figure 3.10 shows.

Besides parity games there are other important special cases of
Muller games. Of special relevance are games with Rabin and Streett
conditions because these admit positional winning strategies for one

player.

Definition 3.46. A Streett-Rabin condition is a Muller condition
(Fo, F1) such that Fj is closed under union.

In the Zielonka tree for a Streett-Rabin condition, the nodes labelled
with (X, 1) have only one successor. It follows that if both Fy and F;
are closed under union, then the Zielonka tree Z(Fy, F1) is a path,
which implies that (Fy, F) is equivalent to a parity condition.

In a Streett-Rabin game, Player 1 has a positional winning strat-
egy on his winning region. On the other hand, Player 0 can win on
his winning region via a finite-memory strategy, and the size of the
memory can be directly read off from the Zielonka tree. We present an
elementary proof of this result.

Theorem 3.47. Let G = (V,Vp, V1, E, Q) be a game with a Streett-Rabin
winning condition (Fy, F7). Then G is determined, i.e. V = Wy U Wy,
with a finite memory winning strategy for Player 0 on W, and a
positional winning strategy for Player 1 on Wj. The size of the memory
required by the winning strategy for Player 0 is bounded by the number
of leaves of the Zielonka tree Z(Fy, F1).

Proof. We proceed by induction on the number of priorities in C or,
equivalently, the depth of the Zielonka tree Z(Fp, F1). Let I be the
number of leaves of Z(Fy, F1). We distinguish two cases.

Case 1: C € Fi. Let

Xoed o Player 0 has a winning strategy with memory
0 ' of size <[ from v ’

and X; = V\ Xp. It suffices to prove that Player 1 has a positional
winning strategy on X;. To construct this strategy, we combine three
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positional strategies of Player 1: A trap strategy, an attractor strategy,

and a winning strategy on a subgame with fewer priorities.

At first, we observe that Xj is a trap for Player 0. This means that
Player 1 has a positional trap strategy ¢ on Xj to enforce that the play
stays within Xj.

Since Fy is closed under union, there is a unique maximal sub-
set C' C C with C' € Fy. LetY := X;nQ1(C\ '), and let
Z = Attr1(Y)\ Y. Observe that Player 1 has a positional attractor
strategy a, by which he can force, from any position z € Z, that the play
reaches Y.

Finally, let V/ = X; \ (YU Z) and let G’ be the subgame of G in-
duced by V', with winning condition (FyNP(C’),F; NP(C’)) (see
Figure 3.11). Since this game has fewer priorities, the induction hypoth-
esis applies, i.e. we have V' = WjU W, and Player 0 has a winning
strategy with memory < I on Wj, whereas Player 1 has a positional
winning strategy ¢’ on W,. However, Wj = @: Otherwise we could
combine the strategies of Player 0 to obtain a winning strategy with
memory < [ on XgU Wé 2 Xp, a contradiction to the definition of Xj.
Hence W] = V.

Xo

\% V4 Y X1

a-1ch o l(c\a)

Figure 3.11. Constructing a winning strategy for Player 1

We can now define a positional strategy g for Player 1 on Xj by
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¢(x) ifxeV,
gx)=1qa(x) ifxez
t(x) ifxey.

Consider any play 7 that starts at a position v € X; and is consis-
tent with g. We have to show that 7 is won by Player 1. Obviously, 7t
stays within Xj. If it hits Y U Z only finitely often, then from some point
onwards it stays within V' and coincides with a play consistent with
g’ . It is therefore won by Player 1. Otherwise, 7t hits Y U Z, and hence
also Y, infinitely often. Thus, Inf(7r) N (C\ C’') # @ and Inf(7) € F.
So Player 1 has a positional winning strategy on Xj.

Case 2: C € Fy. There exist maximal subsets Cy, ..., Cr_1; C C with
C; € F (see Figure 3.12). Observe thatif DN (C\ ;) # @ foralli < k
then D € Fj. Now let

X := {v € V : Player 1 has a positional winning strategy from v},

and Xp = V'\ Xj. We claim that Player 0 has a finite memory winning
strategy of size < [ on Xy. To construct this strategy, we proceed in
a similar way as above, for each of the sets C\ C;. We will obtain
strategies fy, ..., fy_1 for Player 0 such that each f; has finite memory
M;, and we will use these strategies to build a winning strategy f on
X with memory Mo U - - - U Mj_1.

(C,0)

(Co, 1) (C1,1) = (Ce-1,1)
Figure 3.12. The top of the Zielonka tree Z(Fy, F1)
Fori=0,...,k—1,1etY; = XonQ~1(C\ C;), and Z; = Attro(Y;) \

Y;, and let a; be a positional attractor strategy by which Player 0 can force
a play from any position in Z; to reach Y;. Furthermore, let U; = Xp \
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(Y; UZ;), and let G; be the subgame of G induced by U; with winning
condition (Fo N P(C;), F1 NP(C;)). The winning region of Player 1
in G; is empty: Indeed, if Player 1 could win G; from v, then, by the
induction hypothesis, he could win with a positional winning strategy.
By combining this strategy with the positional winning strategy of
Player 1 on X;, this would imply that v € X, butv € U; C V' \ X;.

Hence, by the induction hypothesis, Player 0 has a winning strategy
fi with finite memory M; on Uj. Let (f; + a;) be the combination of f;
with the attractor strategy a;, defined by

fi(v) ifoel
a;(v) ifveZz. .

(fi +ai)(v) := {

From any position v € U; U Z; this strategy ensures that the play either
remains inside U; and is winning for Player 1, or that it eventually
reaches a position in Y;.

We now combine the strategies (fp +ag),..., (fx_1 +ax_1) to a
winning strategy f on Xy, which ensures that either the play ultimately
remains within one of the regions U; and coincides with a play ac-
cording to f;, or that it cycles infinitely often through all the regions
Yo, - /Yk—1~

At positions in Y := ;- Y;, Player 0 just plays with a (positional)
trap strategy t ensuring that the play remains in Xj. At the first position
vy, Player O takes the minimal i such that v € Y}, i.e. v € U; U Z,,
and uses the strategy (f; + 4;) until a position w € Y; is reached. At this
point, Player 0 switches from i to j = i+ (mod k) for the minimal /
such that w ¢ Y;. Hence w € U; U Z;; Player 0 now plays with strategy
(fj +a;) until a position in Y; is reached. There Player 0 again switches
to the appropriate next strategy, as he does every time he reaches Y.

Assuming that M; N M; = @ for i # j, it is not difficult to see that
f can be implemented with memory M = My U - - - U My_1. We leave
the formal definition of f as an exercise.

Note that, by the induction hypothesis, the size of the memory M;
is bounded by the number of leaves of the Zielonka subtrees Z(Fy N
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P(C), F1NP(C;)). Consequently, the size of M is bounded by the
number of leaves of Z(Fy, F1).

It remains to prove that f is winning on Xy. Let 7t be a play that
starts in Xp and is consistent with f. If 71 eventually remains inside
some U;, then from some point onwards it coincides with a play that
is consistent with f; and is therefore won by Player 0. Otherwise, it is
easy to see that 7t hits each of the sets Yy, ..., Yx_1 infinitely often. But
this means that Inf(7r) N (C\ C;) # @ for all i < k; as observed above

this implies that Inf(7r) € Fy. Q.E.D.

An immediate consequence of Theorem 3.47 is that parity games
are positionally determined.

3.4 Complexity

We will now determine the complexity of computing the winning
regions for games over finite game graphs. The associated decision
problem is

Given: Game graph G, winning condition (Fy, 1), v € V,
ce€{0,1}.
Question: v € W, ?

For parity games, we already know that this problem is in NP N coNP,
and it is conjectured to be in P. Moreover, for many special cases, we
know that it is indeed in P. Now we will examine the complexity of
Streett-Rabin games and games with arbitrary Muller conditions.

Theorem 3.48. Deciding whether Player ¢ wins from a given position
in a Streett-Rabin game is

e coNP-hard forc =0,
e NP-hard for o = 1.

Proof. 1t is sufficient to prove the claim for o = 1 since Streett-Rabin
games are determined. We will reduce the satisfiability problem for
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Boolean formulae in CNF to the given problem. For every formula
Y=AG C=\ Y
i i

in CNE, we define the game Gy as follows: Positions for Player 0 are the
literals Xy, ..., Xy, =Xy, ..., 7 Xy occurring in ¥; positions for Player 1
are the clauses Cy, ..., Cy. Player 1 can move from a clause C to a literal
Y € C; Player 0 can move from Y to any clause. The winning condition
is given by

Fo={Z:{X,—-X} C Z for at least one variable X}.

Obviously, (Fy, F1) is a Streett-Rabin condition.

We claim that ¥ is satisfiable if and only if Player 1 wins Gy (from
any initial position).

(=) Assume that Y is satisfiable. There exists a satisfying interpre-
tation 7 : {Xy,..., Xy} — {0,1}. Player 1 moves from a clause C to a
literal Y € C such that [Y]? = 1. In the resulting play only literals with
[[Y]]Z =1 are seen, and thus Player 1 wins.

(<) Assume that ¥ is unsatisfiable. It is sufficient to show that
Player 1 has no positional winning strategy. Every positional strategy
f for Player 1 chooses a literal Y = f(C) € C for every clause C.
Since ¥ is unsatisfiable, there exists clauses C,C’' and a variable X such
that f(C) = X, f(C') = =X. Otherwise, f would define a satisfying
interpretation for ¥. Player 0’s winning strategy is to move from =X to
C and from any other literal to C’. Then X and —X are seen infinitely
often, and Player 0 wins. Thus, f is not a winning strategy for Player 1.
If Player 1 has no positional winning strategy, he has no winning
strategy at all.

Is ¥ + Gy a polynomial reduction? The problem that arises is the
winning condition: Both Fy and J; contain exponentially many sets.
Moreover, the Zielonka tree Z(Fp, F1) has exponential size. On the
other hand, Fj and Fj can be represented in a very compact way using
a Boolean formula in the following sense: Let (Fo, F1) be a Muller
condition over C. A Boolean formula ¥ with variables in C defines the

73



3.4 Complexity

set Fy = {Y C C:Zy |= ¥} where

7y(0) 1 ifcey
y(c) =
0 ifcgY.

¥ defines (Fy, F1) if F¢ = Fp (and thus F ¢ = Fj). Representing
the winning condition by a Boolean formula makes the reduction a
polynomial reduction. Q.E.D.

Another way of defining Streett-Rabin games is by a collection
of pairs (L,R) with L,R C C. The collection {(L1,R1),...,(Lg, R¢)}
defines the Muller condition (Fy, F7) given by:

Fo={XCC:XNL; #D= XNR; #Dforalli<k}.
We have:

¢ Every Muller condition defined by a collection of pairs is a Streett-
Rabin condition.

¢ Every Streett-Rabin condition is definable by a collection of pairs.

® Representing a Streett-Rabin condition by a collection of pairs can
be exponentially more succinct than a representation by its Zielonka
tree or an explicit enumeration of Fy or Fi: There are Streett-Rabin
conditions definable with k pairs such that the corresponding
Zielonka tree has k! leaves.

The reduction ¥ +— Gy can be modified such that the winning
condition is given by 2m pairs, where m is the number of variables in ¥:

Ly ={X;}, Roi={-X;}, Loi1={-Xi}, Roio1={Xi}.

For the Streett-Rabin condition defined by {(L1,Ry),..., (Lam, Rom)}
we have that

Z contains a Literal X; (or =X;) such that the
F1 =4 Z: complementary literal —X; (respectively X;) is

not contained in Z

74

3 Infinite Games

The winning strategies used in the proof remain winning for the modi-
fied winning condition.

To prove the upper bounds for the complexity of Streett-Rabin
games we will consider solitaire games first.

Theorem 3.49. Let G be a Streett-Rabin game such that only Player 0
can do non-trivial moves. Then the winning regions Wy and W can be
computed in polynomial time.

Proof. Let us assume that the winning condition is given by the collec-
tion P = {(L1,R1),...,(Lx, Rg)} of pairs. It is sufficient to prove the
claim for Wy since Streett-Rabin games are determined. Every play 7
will ultimately stay in a strongly connected set U C V such that all
positions in U are seen infinitely often. Therefore, we call a strongly
connected set U good for Player 0 if for all i < k

QU)NL; #0 = QU)NR; # 2.

For every such U, Attro(U) C Wy. If U is not good for Player 0 then
there is a node in U which violates a pair (L;, R;). In this case Player 0
wants to find a (strongly connected) subset of U where she can win
nevertheless. We can eliminate the pairs (L;, R;) where Q(U) NL; =@
since they never violate the winning condition. On the other hand,
Player 0 loses if a node of

U= {uecl|Qu) e L; for some i such that Q(U) N R; = @}

is visited again and again. Thus we will reduce the game from U
to U \ U with the modified winning condition P’ = {(L;,R;) € P :
Q(U)NL; # @}. This yields Algorithm 3.1.

The SCC decomposition can be computed in linear time. The
decomposition algorithm will be called less than |V| times, the rest are
elementary steps. Therefore, the algorithm runs in polynomial time.

It remains to show that Wy = WinReg(G, P):

(C) Let v € Wp. Player 0 can reach from v a strongly connected set
S that satisfies the winning condition. S is a subset of an SCC U of G. If
U satisfies the winning condition, then v € WinReg(G, P). Otherwise,
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Algorithm 3.1. A polynomial time algorithm solving solitaire Streett-
Rabin games

Algorithm WinReg(G, P)

Input: Streett-Rabin game with game graph G and pairs condition P.
Output: Wy, the winning region for Player 0.

Wy := ©;
Decompose G into its SCCs;
For every SCC U do
P'i={(L;,R;) : QU) N L; # D};
U:={ueclU:Qu) € L; for some i such that Q(U) NR; = @};
if 1 =@ then W:=WULU;
else W := W U WinReg(G [u\zu),P');
enddo;
Wy := Attro(W),’
Output Wy;

SCu\ U, and S is contained in an SCC of G [u\ﬁ' The repetition of
the argument leads to S C W and therefore v € WinReg(G, P)

(D) Let v € WinReg(G, P). The algorithm finds a strongly con-
nected set U (an SCC of a subgraph) that is reachable from v and that
satisfies the winning condition. By moving from v into U, staying there,
and visiting all positions in U infinitely often, Player 0 wins. Thus
v e Wp. Q.E.D.

Theorem 3.50. Deciding whether Player ¢ wins from a given position
in a Streett-Rabin game is

® coNP-complete for o =0,
® NP-complete for o = 1.

Proof. 1t suffices to prove the claim for Player 1 since Wy is the comple-
ment of W;. Hardness follows from Theorem 3.48. To decide whether
v € Wy, guess a positional strategy for Player 1 and construct the in-
duced solitaire game, in which only Player 0 has non-trivial moves.
Then decide in polynomial time whether v is in the winning region of
Player 1 in the solitaire game (according to Theorem 3.49), i.e. whether
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the strategy is winning from v. If this is the case, accept; otherwise
reject. Q.E.D.

Remark 3.51. The complexity of computing the winning regions in arbi-
trary Muller games depends to a great amount on the representation of
the winning condition. For any reasonable representation, the problem
is in PsPACE, and many representations are so succinct as to render the
problem Pspacg-hard. Only recently, it was shown that, given an ex-
plicit representation of the winning condition, the problem of deciding
the winner is in P.
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