
Logic and Games
SS 2009

Prof. Dr. Erich Grädel
Łukasz Kaiser, Tobias Ganzow

Mathematische Grundlagen der Informatik
RWTH Aachen



cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizensiert uter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2009 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de



Contents

1 Finite Games and First-Order Logic 1
1.1 Model Checking Games for Modal Logic . . . . . . . . . . . . 1
1.2 Finite Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Alternating Algorithms . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Model Checking Games for First-Order Logic . . . . . . . . . 18

2 Parity Games and Fixed-Point Logics 21
2.1 Parity Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Fixed-Point Logics . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Model Checking Games for Fixed-Point Logics . . . . . . . . 34

3 Infinite Games 41
3.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Gale-Stewart Games . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Muller Games and Game Reductions . . . . . . . . . . . . . . 58
3.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Basic Concepts of Mathematical Game Theory 79
4.1 Games in Strategic Form . . . . . . . . . . . . . . . . . . . . . 79
4.2 Iterated Elimination of Dominated Strategies . . . . . . . . . . 87
4.3 Beliefs and Rationalisability . . . . . . . . . . . . . . . . . . . . 93
4.4 Games in Extensive Form . . . . . . . . . . . . . . . . . . . . . 96





4 Basic Concepts of Mathematical Game
Theory

Up to now we considered finite or infinite games

• with two players,
• played on finite or infinite graphs,
• with perfect information (the players know the whole game, the

history of the play and the actual position),
• with qualitative (win or loss) winning conditions (zero-sum games),
• with ω-regular winning conditions (or Borel winning conditions)

specified in a suitable logic or by automata, and
• with asynchronous interaction (turn-based games).

Those games are used for verification or to evaluate logic formulae.
In this section we move to concurrent multi-player games in which

players get real-valued payoffs. The games will still have perfect infor-
mation and additionally throughout this chapter we assume that the
set of possible plays is finite, so there exist only finitely many strategies
for each of the players.

4.1 Games in Strategic Form

Definition 4.1. A game in strategic form is described by a tuple Γ =
(N, (Si)i∈N , (pi)i∈N) where

• N = {1, . . . , n} is a finite set of players
• Si is a set of strategies for Player i
• pi : S → R is a payoff function for Player i

and S := S1 × · · · × Sn is the set of strategy profiles. Γ is called a zero-sum
game if ∑i∈N pi(s) = 0 for all s ∈ S.
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4.1 Games in Strategic Form

The number pi(s1, . . . , sn) is called the value or utility of the strategy
profile (s1, . . . , sn) for Player i. The intuition for zero-sum games is that
the game is a closed system.

Many important notions can best be explained by two-player games,
but are defined for arbitrary multi-player games.

In the sequel, we will use the following notation: Let Γ be a game.
Then S−i := S1 × · · · × Si−1 × Si+1 × · · · × Sn is the set of all strategy
profiles for the players except i. For s ∈ Si and s−i ∈ S−i, (s, s−i) is
the strategy profile where Player i chooses the strategy s and the other
players choose s−i.

Definition 4.2. Let s, s′ ∈ Si. Then s dominates s′ if

• for all s−i ∈ S−i we have pi(s, s−i) ≥ pi(s′, s−i), and

• there exists s−i ∈ S−i such that pi(s, s−i) > pi(s′, s−i).

A strategy s is dominant if it dominates some other strategy of the player.

Definition 4.3. An equilibrium in dominant strategies is a strategy profile
(s1, . . . , sn) ∈ S such that all si are dominant strategies.

Definition 4.4. A strategy s ∈ Si is a best response to s−i ∈ S−i if
pi(s, s−i) ≥ pi(s′, s−i) for all s′ ∈ Si.

Remark 4.5. A dominant strategy is a best response for all strategy
profiles of the other players.

Example 4.6.

• Prisoner’s Dilemma:

Two suspects are arrested, but there is insufficient evidence for
a conviction. Both prisoners are questioned separately, and are
offered the same deal: if one testifies for the prosecution against
the other and the other remains silent, the betrayer goes free and
the silent accomplice receives the full 10-year sentence. If both stay
silent, both prisoners are sentenced to only one year in jail for a
minor charge. If both betray each other, each receives a five-year
sentence. So this dilemma poses the question: How should the
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4 Basic Concepts of Mathematical Game Theory

prisoners act?

stay silent betray

stay silent (−1,−1) (−10, 0)

betray (0,−10) (−5,−5)

An entry (a, b) at position i, j of the matrix means that if profile
(i, j) is chosen, Player 1 (who chooses the rows) receives payoff a
and Player 2 (who chooses the columns) receives payoff b.

Betraying is a dominant strategy for every player, call this strategy b.
Therefore, (b, b) is an equilibrium in dominant strategies. Problem:
The payoff (−5,−5) of the dominant equilibrium is not optimal.

The Prisoner’s Dilemma is an important metaphor for many de-
cision situations, and there exists extensive literature concerned
with the problem. Especially interesting is the situation, where the
Prisoner’s Dilemma is played infinitely often.

• Battle of the sexes:

meat fish

red wine (2, 1) (0, 0)

white wine (0, 0) (1, 2)

There are no dominant strategies, and thus there is no dominant
equilibrium. The pairs (red wine, meat) and (white wine, fish)
are distinguished since every player plays with a best response
against the strategy of the other player: No player would change
his strategy unilaterally.

Definition 4.7. A strategy profile s = (s1, . . . , sn) ∈ S is a Nash equilib-
rium in Γ if

pi(si, s−i︸ ︷︷ ︸
s

) ≥ pi(s′, s−i)

holds for all i ∈ N and all strategies s′i ∈ Si, i.e., for every Player i, si is
a best response for s−i.
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4.1 Games in Strategic Form

Is there a Nash equilibrium in every game? Yes, but not necessarily in
pure strategies!

Example 4.8. Rock, paper, scissors:

rock scissors paper

rock (0, 0) (1,−1) (−1, 1)

scissors (−1, 1) (0, 0) (1,−1)

paper (1,−1) (−1, 1) (0, 0)

There are no dominant strategies and no Nash equilibria: For every pair
( f , g) of strategies one of the players can change to a better strategy.
Note that this game is a zero-sum game. But there is a reasonable
strategy to win this game: Randomly pick one of the three actions with
equal probability.

This observation leads us to the notion of mixed strategies, where
the players are allowed to randomise over strategies.

Definition 4.9. A mixed strategy of Player i in Γ is a probability distribu-
tion µi : Si → [0, 1] on Si where ∑s∈Si

µ(s) = 1.
∆(Si) denotes the set of probability distributions on Si. ∆(S) :=
∆(S1)× · · · ×∆(Sn) is the set of all strategy profiles in mixed strategies.
The expected payoff is p̂i : ∆(S) → R,

p̂i(µ1, . . . , µn) = ∑
(s1,...,sn)∈S

∏
j∈N

µj(sj)

 · pi(s1, . . . , sn)

For every game Γ = (N, (Si)i∈N , (pi)i∈N) we define the mixed
expansion Γ̂ = (N, (∆(Si))i∈N , ( p̂i)i∈N).

Definition 4.10. A Nash equilibrium of Γ in mixed strategies is a Nash
equilibrium in Γ̂, i.e. a Nash equilibrium in Γ in mixed strategies is
a mixed strategy profile µ = (µ1, . . . , µn) ∈ ∆(S) such that, for every
player i and every µ′i ∈ ∆(S), p̂i(µi, µ−i) ≥ p̂i(µ′i , µ−i).

Theorem 4.11 (Nash). Every finite game Γ in strategic form has at least
one Nash equilibrium in mixed strategies.
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4 Basic Concepts of Mathematical Game Theory

To prove this theorem, we will use a well-known fixed-point theorem.

Theorem 4.12 (Brouwer’s fixed-point theorem). Let X ⊆ Rn be compact
(i.e., closed and bounded) and convex. Then every continuous function
f : X → X has a fixed point.

Proof (of Theorem 4.11). Let Γ = (N, (Si)i∈N , (pi)i∈N). Every mixed
strategy of Player i is a tuple µi = (µi,s)s∈Si ∈ [0, 1]|Si | such that

∑s∈Si
µi,s = 1. Thus, ∆(Si) ⊆ [0, 1]|Si | is a compact and convex set,

and the same applies to ∆(S) = ∆(S1)× · · · ×∆(Sn) for N = {1, . . . , n}.
For every i ∈ N, every pure strategy s ∈ Si and every mixed strategy
profile µ ∈ ∆(S) let

gi,s(µ) := max
(

p̂i(s, µ−i)− p̂i(µ), 0
)

be the gain of Player i if he unilaterally changes from the mixed profile
µ to the pure strategy s (only if this is reasonable).

Note that if gi,s(µ) = 0 for all i and all s ∈ Si, then µ is a Nash
equilibrium. We define the function

f : ∆(S) → ∆(S)

µ 7→ f (µ) = (ν1, . . . , νn)

where νi : Si → [0, 1] is a mixed strategy defined by

νi,s =
µi,s + gi,s(µ)

1 + ∑s∈Si
gi,s(µ)

.

For every Player i and all s ∈ Si, µ 7→ νi,s is continuous since p̂i is
continuous and thus gi,s, too. f (µ) = (ν1, . . . , νn) is in ∆(S): Every
νi = (νi,s)s∈Si is in ∆(Si) since

∑
s∈Si

νi,s =
∑s∈Si

µi,s + ∑s∈Si
gi,s(µ)

1 + ∑s∈Si
gi,s(µ)

=
1 + ∑s∈Si

gi,s(µ)
1 + ∑s∈Si

gi,s(µ)
= 1.

By the Brouwer fixed point theorem f has a fixed point. Thus, there is
a µ ∈ ∆(S) such that
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4.1 Games in Strategic Form

µi,s =
µi,s + gi,s(µ)

1 + ∑s∈Si
gi,s(µ)

for all i and all s.
Case 1: There is a Player i such that ∑s∈Si

gi,s(µ) > 0.
Multiplying both sides of the fraction above by the denominator, we get
µi,s ·∑s∈Si

gi,s(µ) = gi,s(µ). This implies µi,s = 0 ⇔ gi,s(µ) = 0, and
thus gi,s(µ) > 0 for all s ∈ Si where µi,s > 0.

But this leads to a contradiction: gi,s(µ) > 0 means that it is
profitable for Player i to switch from (µi, µ−i) to (s, µ−i). This cannot
be true for all s where µi,s > 0 since the payoff for (µi, µ−i) is the mean
of the payoffs (s, µ−i) with arbitrary µi,s. However, the mean cannot be
smaller than all components:

p̂i(µi, µ−i) = ∑
s∈Si

µi,s · p̂i(s, µ−i)

= ∑
s∈Si

µi,s>0

µi,s · p̂i(s, µ−i)

> ∑
s∈Si

µi,s>0

µi,s · p̂i(µi, µ−i)

= p̂i(µi, µ−i)

which is a contradiction.
Case 2: gi,s(µ) = 0 for all i and all s ∈ Si, but this already means that µ

is a Nash equilibrium as stated before. q.e.d.

The support of a mixed strategy µi ∈ ∆(Si) is supp(µi) = {s ∈ Si :
µi(s) > 0}.

Theorem 4.13. Let µ∗ = (µ1, . . . , µn) be a Nash equilibrium in mixed
strategies of a game Γ. Then for every Player i and every pure strategy
s, s′ ∈ supp(µi)

p̂i(s, µ−i) = p̂i(s′, µ−i).

Proof. Assume p̂i(s, µ−i) > p̂i(s′, µ−i). Then Player i could achieve a
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4 Basic Concepts of Mathematical Game Theory

higher payoff against µ−i if she played s instead of s′: Define µ̃i ∈ ∆(Si)
as follows:

• µ̃i(s) = µi(s) + µi(s′),

• µ̃i(s′) = 0,

• µ̃i(t) = µi(t) for all t ∈ Si − {s, s′}.

Then

p̂i(µ̃i, µ−i) = p̂i(µi, µ−i) + µi(s′)︸ ︷︷ ︸
>0

· ( p̂i(s, µ−i)− p̂i(s′, µ−i)
)︸ ︷︷ ︸

>0

> p̂i(µi, µ−i)

which contradicts the fact that µ is a Nash equilibrium. q.e.d.

We want to apply Nash’s theorem to two-person games. First, we
note that in every game Γ = ({0, 1}, (S0, S1), (p0, p1))

max
f∈∆(S0)

min
g∈∆(S1)

p0( f , g) ≤ min
g∈∆(S1)

max
f∈∆(S0)

p0( f , g).

The maximal payoff which one player can enforce cannot exceed the
minimal payoff the other player has to cede. This is a special case of the
general observation that for every function f : X×Y → R

sup
x

inf
y

h(x, y) ≤ inf
y

sup
x

h(x, y).

(For all x′, y: h(x′, y) ≤ supx h(x, y). Thus infy h(x′, y) ≤ infy supx
h(x, y) and supx infy h(x, y) ≤ infy supx h(x, y).)

Remark 4.14. Another well-known special case is

∃x ∀y Rxy |= ∀y ∃x Rxy.

Example 4.15. Consider the following two-player “traveller” game Γ =
({1, 2}, (S1, S2), (p1, p2)) with S1 = S2 = {2, . . . , 100} and
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4.1 Games in Strategic Form

p1(x, y) =


x + 2 if x < y,

y− 2 if y < x,

x if x = y,

p2(x, y) =


x− 2 if x < y,

y + 2 if y < x,

y if x = y.

Let’s play this game! These are the results from the lecture in 2009:

2, 49, 49, 50, 51, 92, 97, 98, 99, 99, 100.

But what are the Nash equilibria? Observe that the only pure-strategy
Nash equilibrium is (2, 2) since for each (i, j) with i ̸= j the player that
has chosen the greater number, say i, can do better by switching to j− 1,
and also, for every (i, i) with i > 2 each player can do better by playing
i− 1 (and getting the payoff i + 1 then). But would you really expect
such a good payoff playing 2? Look at how others played: 97 seems to
be much better against what people do in most cases!

Theorem 4.16 (v. Neumann, Morgenstern).
Let Γ = ({0, 1}, (S0, S1), (p,−p)) be a two-person zero-sum game. For
every Nash equilibrium ( f ∗, g∗) in mixed strategies

max
f∈∆(S0)

min
g∈∆(S1)

p( f , g) = p( f ∗, g∗) = min
g∈∆(S1)

max
f∈∆(S0)

p( f , g).

In particular, all Nash equilibria have the same payoff which is called
the value of the game. Furthermore, both players have optimal strategies
to realise this value.

Proof. Since ( f ∗, g∗) is a Nash equilibrium, for all f ∈ ∆(S0), g ∈ ∆(S1)

p( f ∗, g) ≥ p( f ∗, g∗) ≥ p( f , g∗).

Thus

min
g∈∆(S1)

p( f ∗, g) = p( f ∗, g∗) = max
f∈∆(S1)

p( f , g∗).
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4 Basic Concepts of Mathematical Game Theory

So

max
f∈∆(S0)

min
g∈∆(S1)

p( f , g) ≥ p( f ∗, g∗) ≥ min
g∈∆(S1)

max
f∈∆(S0)

p( f , g)

and

max
f∈∆(S0)

min
g∈∆(S1)

p( f , g) ≤ min
g∈∆(S1)

max
f∈∆(S0)

p( f , g)

imply the claim. q.e.d.

4.2 Iterated Elimination of Dominated Strategies

Besides Nash equilibria, the iterated elimination of dominated strategies
is a promising solution concept for strategic games which is inspired
by the following ideas. Assuming that each player behaves rational in
the sense that he will not play a strategy that is dominated by another
one, dominated strategies may be eliminated. Assuming further that
it is common knowledge among the players that each player behaves
rational, and thus discards some of her strategies, such elimination
steps may be iterated as it is possible that some other strategies become
dominated due to the elimination of previously dominated strategies.
Iterating these elimination steps eventually yields a fixed point where
no strategies are dominated.

Example 4.17.

L R L R

T (1, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 0)

B (1, 1, 1) (0, 0, 1) (1, 1, 1) (1, 0, 0)

X Y

Player 1 picks rows, Player 2 picks columns, and Player 3 picks matrices.

• No row dominates the other (for Player 1);
• no column dominates the other (for Player 2);
• matrix X dominates matrix Y (for Player 3).
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4.2 Iterated Elimination of Dominated Strategies

Thus, matrix Y is eliminated.

• In the remaining game, the upper row dominates the lower one
(for Player 1).

Thus, the lower row is eliminated.

• Of the remaining two possibilities, Player 2 picks the better one.

The only remaining profile is (T, R, X).

There are different variants of strategy elimination that have to be
considered:

• dominance by pure or mixed strategies;
• (weak) dominance or strict dominance;
• dominance by strategies in the local subgame or by strategies in the

global game.

The possible combinations of these parameters give rise to eight differ-
ent operators for strategy elimination that will be defined more formally
in the following.

Let Γ = (N, (Si)i∈N , (pi)i∈N) such that Si is finite for every Player i.
A subgame is defined by T = (T1, . . . , Tn) with Ti ⊆ Si for all i. Let
µi ∈ ∆(Si), and si ∈ Si. We define two notions of dominance:

(1) Dominance with respect to T:
µi >T si if and only if

• pi(µi, t−i) ≥ pi(si, t−i) for all t−i ∈ T−i

• pi(µi, t−i) > pi(si, t−i) for some t−i ∈ T−i.

(2) Strict dominance with respect to T:
µi ≫T si if and only if pi(µi, t−i) > pi(si, t−i) for all t−i ∈ T−i.

We obtain the following operators on T = (T1, . . . , Tn), Ti ⊆ Si,
that are defined component-wise:

ML(T)i := {ti ∈ Ti : ¬∃µi ∈ ∆(Ti) µi >T ti},

MG(T)i := {ti ∈ Ti : ¬∃µi ∈ ∆(Si) µi >T ti},

PL(T)i := {ti ∈ Ti : ¬∃t′i ∈ Ti t′i >T ti}, and

PG(T)i := {ti ∈ Ti : ¬∃si ∈ Si si >T ti}.
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4 Basic Concepts of Mathematical Game Theory

MLS, MGS, PLS, PGS are defined analogously with ≫T instead of >T .
For all T we have the following obvious inclusions:

• Every M-operator eliminates more strategies than the correspond-
ing P-operator.

• Every operator considering (weak) dominance eliminates more
strategies than the corresponding operator considering strict domi-
nance.

• With dominance in global games more strategies are eliminated
than with dominance in local games.

MG(T) MGS(T)

ML(T) MLS(T)

PG(T) PGS(T)

PL(T) PLS(T)

Figure 4.1. Inclusions between the eight strategy elimination operators

Each of these operators is deflationary, i.e. F(T) ⊆ T for every T
and every operator F. We iterate an operator beginning with T = S,
i.e. F0 := S and Fα+1 := F(Fα). Obviously, F0 ⊇ F1 ⊇ · · · ⊇ Fα ⊇ Fα+1.
Since S is finite, we will reach a fixed point Fα such that Fα = Fα+1 =:
F∞. We expect that for the eight fixed points MG∞, ML∞, etc. the same
inclusions hold as for the operators MG(T), ML(T), etc. But this is not
the case: For the following game Γ = ({0, 1}, (S0, S1), (p0, p1)) we have
ML∞ * PL∞.

X Y Z

A (2, 1) (0, 1) (1, 0)

B (0, 1) (2, 1) (1, 0)

C (1, 1) (1, 0) (0, 0)

D (1, 0) (0, 1) (0, 0)
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4.2 Iterated Elimination of Dominated Strategies

We have:

• Z is dominated by X and Y.

• D is dominated by A.

• C is dominated by 1
2 A + 1

2 B.

Thus:

ML(S) = ML1 = ({A, B}, {X, Y}) ⊂ PL(S) = PL1

= ({A, B, C}, {X, Y}).

ML(ML1) = ML1 since in the following game there are no domi-
nated strategies:

X Y

A (2, 1) (0, 1)

B (0, 1) (2, 1)

PL(PL1) = ({A, B, C}, {X}) = PL2 $ PL1 since Y is dominated by
X (here we need the presence of C). Since B and C are now dominated
by A, we have PL3 = ({A}, {X}) = PL∞. Thus, PL∞ $ ML∞ although
ML is the stronger operator.

We are interested in the inclusions of the fixed points of the dif-
ferent operators. But we only know the inclusions for the operators.
So the question arises under which assumptions can we prove, for two
deflationary operators F and G on S, the following claim:

If F(T) ⊆ G(T) for all T, then F∞ ⊆ G∞?

The obvious proof strategy is induction over α: We have F0 = G0 = S,
and if Fα ⊆ Gα, then

Fα+1 = F(Fα) ⊆ G(Fα)

F(Gα) ⊆ G(Gα) = Gα+1

If we can show one of the inclusions F(Fα) ⊆ F(Gα) or G(Fα) ⊆
G(Gα), then we have proven the claim. These inclusions hold if the

90



4 Basic Concepts of Mathematical Game Theory

operators are monotone: H : S → S is monotone if T ⊆ T′ implies
H(T) ⊆ H(T′). Thus, we have shown:

Lemma 4.18. Let F, G : P(S) → P(S) be two deflationary operators
such that F(T) ⊆ G(T) for all T ⊆ S. If either F or G is monotone, then
F∞ ⊆ G∞.

Corollary 4.19. PL and ML are not monotone on every game.

Which operators are monotone? Obviously, MGS and PGS are
monotone: If µi ≫T si and T′ ⊆ T, then also µi ≫T′ si. Let T′ ⊆ T and
si ∈ PGS(T′)i. Thus, there is no µi ∈ Si such that µi ≫T′ si, and there
is also no µi ∈ Si such that µi ≫T si and we have si ∈ PGS(T)i. The
reasoning for MGS is analogous if we replace Si by ∆(Si).

MLS and PLS are not monotone. Consider the following simple
game:

X

A (1, 0)

B (0, 0)

MLS({A, B}, {X}) = PLS({A, B}, {X}) = ({A}, {X}) and

MLS({B}, {X}) = PLS({B}, {X}) = ({B}, {X}),

but ({B}, {X}) ̸⊆ ({A}, {X}).
Thus, none of the local operators (those which only consider domi-

nant strategies in the current subgame) is monotone. We will see that
also MG and PG are not monotone in general. The monotonicity of
the global operators MGS and PGS will allow us to prove the expected
inclusions ML∞ ⊆ MLS∞ ⊆ PLS∞ and PL∞ ⊆ PLS∞ between the local
operators. To this end, we will show that the fixed points of the local
and corresponding global operators coincide (although the operators
are different).

Lemma 4.20. MGS∞ = MLS∞ and PGS∞ = PLS∞.

Proof. We will only prove PGS∞ = PLS∞. Since PGS(T) ⊆ PLS(T) for
all T and PGS is monotone, we have PGS∞ ⊆ PLS∞. Now we will
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4.2 Iterated Elimination of Dominated Strategies

prove by induction that PLSα ⊆ PGSα for all α. Only the induction step
α 7→ α + 1 has to be considered: Let si ∈ PLSα+1

i . Therefore, si ∈ PLSα
i

and there is no s′i ∈ PLSα
i such that s′i ≫PLSα si. Assume si /∈ PGSα+1

i ,
i.e.

A = {s′i ∈ Si : s′i ≫PGSα si} ̸= ∅

(note: By induction hypothesis PGSα = PLSα). Pick an s∗i ∈ A which
is maximal with respect to ≫PLSα . Claim: s∗i ∈ PLSα. Otherwise, there
exists a β ≤ α and an si′ ∈ Si with s′i ≫PLSβ si∗ . Since PLSβ ⊇ PLSα,
it follows that s′i ≫PLSα s∗i ≫PLSα si. Therefore, s′i ∈ A and s∗i is not
maximal with respect to ≫PLSα in A. Contradiction.

But if s∗i ∈ PLSα and s∗i ≫PLSα si, then si /∈ PLSα+1 which again
constitutes a contradiction.

The reasoning for MGS∞ and MLS∞ is analogous. q.e.d.

Corollary 4.21. MLS∞ ⊆ PLS∞.

Lemma 4.22. MG∞ = ML∞ and PG∞ = PL∞.

Proof. We will only prove PG∞ = PL∞ by proving PGα = PLα for all α

by induction. Let PGα = PLα and si ∈ PGα+1
i . Then si ∈ PGα

i = PLα
i

and hence there is no s′i ∈ Si such that s′i >PGα si. Thus, there is no
s′i ∈ PLα

i such that s′i >PLα si and si ∈ PLα+1. So, PGα+1 ⊆ PLα+1.
Now, let si ∈ PLα+1

i . Again we have si ∈ PLα
i = PGα

i . Assume
si /∈ PGα+1

i . Then

A = {s′i ∈ Si : s′i >PLα si} ̸= ∅.

For every β ≤ α let Aβ = A ∩ PLβ
i . Pick the maximal β such that

Aβ ̸= ∅ and a s∗i ∈ Aβ which is maximal with respect to >PLβ .

Claim: β = α. Otherwise, si ̸∈ PLβ+1
i . Then there exists an s′i ∈ PLβ

i
with s′i >PLβ s∗i . Since PLβ ⊇ PLα and s∗i >PLα si, we have s′i >PLα si, i.e.
s′i ∈ Aβ which contradicts the choice of s∗i . Therefore, s∗i ∈ PLα

i . Since
s∗i >PLα si, we have si /∈ PLα+1

i . Contradiction, hence the assumption
is wrong, and we have si ∈ PGα+1. Altogether PGα = PLα. Again, the
reasoning for MG∞ = ML∞ is analogous. q.e.d.
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Corollary 4.23. PL∞ ⊆ PLS∞ and ML∞ ⊆ MLS∞.

Proof. We have PL∞ = PG∞ ⊆ PGS∞ = PLS∞ where the inclusion
PG∞ ⊆ PGS∞ holds because PG(T) ⊆ PGS(T) for any T and PGS is
monotone. Analogously, we have ML∞ = MG∞ ⊆ MGS∞ = MLS∞.

q.e.d.

This implies that MG and PG cannot be monotone. Otherwise, we
would have ML∞ = PL∞. But we know that this is wrong.

4.3 Beliefs and Rationalisability

Let Γ = (N, (Si)i∈N , (pi)i∈N) be a game. A belief of Player i is a proba-
bility distribution over S−i.

Remark 4.24. A belief is not necessarily a product of independent proba-
bility distributions over the individual Sj (j ̸= i). A player may believe
that the other players play correlated.

A strategy si ∈ Si is called a best response to a belief γ ∈ ∆(S−i) if
p̂i(si, γ) ≥ p̂i(s′i , γ) for all s′i ∈ Si. Conversely, si ∈ Si is never a best
response if si is not a best response for any γ ∈ ∆(S−i).

Lemma 4.25. For every game Γ = (N, (Si)i∈N , (pi)i∈N) and every si ∈
Si, si is never a best response if and only if there exists a mixed strategy
µi ∈ ∆(Si) such that µi ≫S si.

Proof. If µi ≫S si, then p̂i(µi, s−i) > p̂i(si, s−i) for all s−i ∈ S−i. Thus,
p̂i(µi, γ) > p̂i(si, γ) for all γ ∈ ∆(S−i). Then, for every belief γ ∈
∆(S−i), there exists an s′i ∈ supp(µi) such that p̂i(s′i , γ) > p̂i(si, γ).
Therefore, si is never a best response.

Conversely, let s∗i ∈ Si be never a best response in Γ. We define a
two-person zero-sum game Γ′ = ({0, 1}, (T0, T1), (p,−p)) where T0 =
Si − {s∗i }, T1 = S−i and p(si, s−i) = pi(si, s−i)− pi(s∗i , s−i). Since s∗i is
never a best response, for every mixed strategy µ1 ∈ ∆(T1) = ∆(S−i)
there is a strategy s0 ∈ T0 = Si − {s∗i } such that p̂i(s0, µ1) > p̂i(s∗i , µ1)
(in Γ), i.e. p(s0, µ1) > 0 (in Γ′). So, in Γ′

min
µ1∈∆(T1)

max
s0∈T0

p(s0, µ1) > 0,
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and therefore

min
µ1∈∆(T1)

max
µ0∈∆(T0)

p(µ0, µ1) > 0.

By Nash’s Theorem, there is a Nash equilibrium (µ∗0 , µ∗1) in Γ′. By von
Neumann and Morgenstern we have

min
µ1∈∆(T1)

max
s0∈∆(T0)

p(µ0, µ1) = p(µ∗0 , µ∗1)

= max
s0∈∆(T0)

min
µ1∈∆(T1)

p(µ0, µ1) > 0.

Thus, 0 < p(µ∗0 , µ∗1) ≤ p(µ∗0 , µ1) for all µ1 ∈ ∆(T1) = ∆(S−i). So,
we have in Γ p̂i(µ∗0 , s−i) > pi(s∗i , s−i) for all s−i ∈ S−i which means
µ∗0 ≫S s∗i . q.e.d.

Definition 4.26. Let Γ = (N, (Si)i∈N , (pi)i∈N) be a game. A strategy
si ∈ Si is rationalisable in Γ if for any Player j there exists a set Tj ⊆ Sj

such that

• si ∈ Ti, and

• every sj ∈ Tj (for all j) is a best response to a belief γj ∈ ∆(S−j)
where supp(γj) ⊆ T−j.

Theorem 4.27. For every finite game Γ we have: si is rationalisable if
and only if si ∈ MLS∞

i . This means, the rationalisable strategies are
exactly those surviving iterated elimination of strategies that are strictly
dominated by mixed strategies.

Proof. Let si ∈ Si be rationalisable by T = (T1, . . . , Tn). We show
T ⊆ MLS∞. We will use the monotonicity of MGS and the fact that
MLS∞ = MGS∞. This implies MGS∞ = gfp(MGS) and hence, MGS∞

contains all other fixed points. It remains to show that MGS(T) = T.
Every sj ∈ Tj is a best response (among the strategies in Sj) to a belief
γ with supp(γ) ⊆ T−j. This means that there exists no mixed strategy
µj ∈ ∆(Sj) such that µj ≫T sj. Therefore, sj is not eliminated by MGS:
MGS(T) = T.
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Conversely, we have to show that every strategy si ∈ MLS∞
i is ra-

tionalisable by MLS∞. Since MLS∞ = MGS∞, we have MGS(MLS∞) =
MLS∞. Thus, for every si ∈ MLS∞

i there is no mixed strategy µi ∈ ∆(Si)
such that µi ≫MLS∞ si. So, si is a best response to a belief in
MLS∞

i . q.e.d.

Intuitively, the concept of rationalisability is based on the idea that
every player keeps those strategies that are a best response to a possible
combined rational action of his opponents. As the following example
shows, it is essential to also consider correlated actions of the players.

Example 4.28. Consider the following cooperative game in which every
player receives the same payoff:

L R L R L R L R

T 8 0 4 0 0 0 3 3

B 0 0 0 4 0 8 3 3

1 2 3 4

Matrix 2 is not strictly dominated. Otherwise there were p, q ∈ [0, 1]
with p + q ≤ 1 and

8 · p + 3 · (1− p− q) > 4 and

8 · q + 3 · (1− p− q) > 4.

This implies 2 · (p + q) + 6 > 8, i.e. 2 · (p + q) > 2, which is impossible.
So, matrix 2 must be a best response to a belief γ ∈ ∆({T, B} ×

{L, R}). Indeed, the best responses to γ = 1
2 · ((T, L) + (B, R)) are

matrices 1, 2 or 3.
On the other hand, matrix 2 is not a best response to a belief of

independent actions γ ∈ ∆({T, B})× ∆({L, R}). Otherwise, if matrix
2 was be a best response to γ = (p · T + (1− p) · B, q · L + (1− q) · R),
we would have that

4pq + 4 · (1− p) · (1− q) ≥ max{8pq, 8 · (1− p) · (1− q), 3}.

We can simplify the left side: 4pq + 4 · (1− p) · (1− q) = 8pq− 4p−
4q + 4. Obviously, this term has to be greater than each of the terms
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from which we chose the maximum:

8pq− 4p− 4q + 4 ≥ 8pq ⇒ p + q ≥ 1

and

8pq− 4p− 4q + 4 ≥ 8 · (1− p) · (1− q) ⇒ p + q ≤ 1.

So we have p + q = 1, or q = 1− p. But this allows us to substitute q by
p− 1, and we get

8pq− 4p− 4q + 4 = 8p · (1− p).

However, this term must still be greater or equal than 3, so we get

8p · (1− p) ≥ 3

⇔ p · (1− p) ≥ 3
8

,

which is impossible since max(p · (1− p)) = 1
4 (see Figure 4.2).

1
4

3
8

− 1
4

− 1
4

1
4

1
2

3
4

1 1 1
4

Figure 4.2. Graph of the function p 7→ p · (1− p)

4.4 Games in Extensive Form

A game in extensive form (with perfect information) is described by a
game tree. For two-person games this is a special case of the games on
graphs which we considered in the earlier chapters. The generalisation
to n-person games is obvious: G = (V, V1, . . . , Vn, E, p1, . . . , pn) where
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(V, E) is a directed tree (with root node w), V = V1 ⊎ · · · ⊎Vn, and the
payoff function pi : Plays(G) → R for Player i, where Plays(G) is the
set of paths through (V, E) beginning in the root node, which are either
infinite or end in a terminal node.

A strategy for Player i in G is a function f : {v ∈ Vi : vE ̸= ∅} → V
such that f (v) ∈ vE. Si is the set of all strategies for Player i. If all
players 1, . . . , n each fix a strategy fi ∈ Si, then this defines a unique
play f1ˆ · · · ˆ fn ∈ Plays(G).

We say that G has finite horizon if the depth of the game tree (the
length of the plays) is finite.

For every game G in extensive form, we can construct a game
S(G) = (N, (Si)i∈N , (pi)i∈N) with N = {1, . . . , n} and pi( f1, . . . , fn) =
pi( f1ˆ · · · ˆ fn). Hence, we can apply all solution concepts for strategic
games (Nash equilibria, iterated elimination of dominated strategies,
etc.) to games in extensive form. First, we will discuss Nash equilibria
in extensive games.

Example 4.29. Consider the game G (of finite horizon) depicted in
Figure 4.3 presented as (a) an extensive-form game and as (b) a strategic-
form game. The game has two Nash equilibria:

• The natural solution (b, d) where both players win.
• The second solution (a, c) which seems to be irrational since both

players pick an action with which they lose.

What seems irrational about the second solution is the following ob-
servation. If Player 0 picks a, it does not matter which strategy her
opponent chooses since the position v is never reached. Certainly, if
Player 0 switches from a to b, and Player 1 still responds with c, the
payoff of Player 0 does not increase. But this threat is not credible since
if v is reached after action a, then action d is better for Player 1 than c.
Hence, Player 0 has an incentive to switch from a to b.

This example shows that the solution concept of Nash equilibria
is not sufficient for games in extensive form since they do not take the
sequential structure into account. Before we introduce a stronger notion
of equilibrium, we will need some more notation: Let G be a game in
extensive form and v a position of G. G �v denotes the subgame of G
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w

(0, 1)

a

v

(0, 0)

c

(1, 1)

d

b

(a) extensive form

c d
a (0, 1) (0, 1)
b (0, 0) (1, 1)

(b) strategic form

Figure 4.3. A game of finite horizon

beginning in v (defined by the subtree of G rooted at v). Payoffs: Let hv

be the unique path from w to v in G. Then pG�v
i (π) = pGi (hv · π). For

every strategy f of Player i in G let f �v be the restriction of f to G �v.

Definition 4.30. A subgame perfect equilibrium of G is a strategy pro-
file ( f1, . . . , fn) such that, for every position v, ( f1 �v, . . . , fn �v) is a
Nash equilibrium of G �v. In particular, ( f1, . . . , fn) itself is a Nash
equilibrium.

In the example above, only the natural solution (b, d) is a subgame
perfect equilibrium. The second Nash equilibrium (a, c) is not a sub-
game perfect equilibrium since (a�v, c�v) is not a Nash equilibrium in
G �v.

Let G be a game in extensive form, f = ( f1, . . . , fn) be a strategy
profile, and v a position in G. We denote by f̃ (v) the play in G �v that is
uniquely determined by f1 . . . , fn.

Lemma 4.31. Let G be a game in extensive form with finite horizon.
A strategy profile f = ( f1, . . . , fn) is a subgame perfect equilibrium of
G if and only if for every Player i, every v ∈ Vi, and every w ∈ vE:
pi( f̃ (v)) ≥ pi( f̃ (w)).

Proof. Let f be a subgame perfect equilibrium. If pi( f̃ (w)) > pi( f̃ (v))
for some v ∈ Vi, w ∈ vE, then it would be better for Player i in G �v to
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change her strategy in v from fi to f ′i with

f ′i (u) =

 fi(u) if u ̸= v

w if u = w .

This is a contradiction.
Conversely, if f is not a subgame perfect equilibrium, then there is a

Player i, a position v0 ∈ Vi and a strategy f ′i ̸= fi such that it is better for
Player i in G �v0 to switch from fi to f ′i against f−i. Let g := ( f ′i , f−i). We
have q := pi(g̃(v0)) > pi( f̃ (v0)). We consider the path g̃(v0) = v0 . . . vt

and pick a maximal m < t with pi(g̃(v0)) > pi( f̃ (vm)). Choose v = vm

and w = vm+1 ∈ vE. Claim: pi( f̃ (v)) < pi( f̃ (w)) (see Figure 4.4):

pi( f̃ (v)) = pi( f̃ (vm)) < pi(g̃(vm)) = q

pi( f̃ (w)) = pi( f̃ (vm+1)) ≥ pi(g̃(vm+1)) = q q.e.d.

v0

< q

vm = v

< q

vm+1 = w

≥ q

q

g̃(v0)

f̃ (v0)

f̃ (vm)

f̃ (vw)

Figure 4.4. pi( f̃ (v)) < pi( f̃ (w))

If f is not a subgame perfect equilibrium, then we find a subgame
G �v such that there is a profitable deviation from fi in G �v, which only
differs from fi in the first move.
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In extensive games with finite horizon we can directly define the
payoff at the terminal nodes (the leaves of the game tree). We obtain
a payoff function pi : T → R for i = 1, . . . , n where T = {v ∈ V : vE =
∅}.

Backwards induction: For finite games in extensive form we define
a strategy profile f = ( f1, . . . , fn) and values ui(v) for all positions v
and every Player i by backwards induction:

• For terminal nodes t ∈ T we do not need to define f , and ui(t) :=
pi(t).

• Let v ∈ V \ T such that all ui(w) for all i and all w ∈ vE are already
defined. For i with v ∈ Vi define fi(v) = w for some w with
ui(w) = max{ui(w′) : w′ ∈ vE} and uj(v) := uj( fi(v)) for all j.

We have pi( f̃ (v)) = ui(v) for every i and every v.

Theorem 4.32. The strategy profile defined by backwards induction is
a subgame perfect equilibrium.

Proof. Let f ′i ̸= fi. Then there is a node v0 ∈ Vi with minimal height
in the game tree such that f ′i (v) ̸= fi(v). Especially, for every w ∈ vE,
˜( f ′i , f−i)(w) = f̃ (w). For w = f ′i (v) we have

pi( ˜( f ′i , f−i)(v)) = pi( ˜( f ′i , f−i)(w))

= pi( f̃ (w))

= ui(w) ≤ max
w′∈vE

{ui(w′)}
= ui(v)

= pi( f̃ (v)).

Therefore, f �v is a Nash equilibrium in G �v. q.e.d.

Corollary 4.33. Every finite game in extensive form has a subgame
perfect equilibrium (and thus a Nash equilibrium) in pure strategies.
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