
Logic and Games
SS 2009

Prof. Dr. Erich Grädel
Łukasz Kaiser, Tobias Ganzow

Mathematische Grundlagen der Informatik
RWTH Aachen

cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizensiert uter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2009 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 Finite Games and First-Order Logic 1
1.1 Model Checking Games for Modal Logic 1
1.2 Finite Games . 4
1.3 Alternating Algorithms . 8
1.4 Model Checking Games for First-Order Logic 18

2 Parity Games and Fixed-Point Logics 21
2.1 Parity Games . 21
2.2 Fixed-Point Logics . 31
2.3 Model Checking Games for Fixed-Point Logics 34

3 Infinite Games 41
3.1 Topology . 42
3.2 Gale-Stewart Games . 49
3.3 Muller Games and Game Reductions 58
3.4 Complexity . 72

4 Basic Concepts of Mathematical Game Theory 79
4.1 Games in Strategic Form . 79
4.2 Iterated Elimination of Dominated Strategies 87
4.3 Beliefs and Rationalisability . 93
4.4 Games in Extensive Form . 96

1 Finite Games and First-Order Logic

An important problem in the field of logics is the question for a given
logic L, a structure A and a formula ψ ∈ L, whether A is a model of
ψ. In this chapter we will discuss an approach to the solution of this
model checking problem via games for some logics. Our goal is to reduce
the problem A |= ψ to a strategy problem for a model checking game
G(A, ψ) played by two players called Verifier (or Player 0) and Falsifier
(or Player 1). We want to have the following relation between these two
problems:

A |= ψ iff Verifier has a winning strategy for G(A, ψ).

We can then do model checking by constructing or proving the existence
of winning strategies.

1.1 Model Checking Games for Modal Logic

The first logic to be considered is propositional modal logic (ML). Let
us first briefly review its syntax and semantics:

Definition 1.1. For a given set of actions A and atomic properties
{Pi : i ∈ I}, the syntax of ML is inductively defined:

• All propositional logic formulae with propositional variables Pi are
in ML.

• If ψ, ϕ ∈ ML, then also ¬ψ, (ψ ∧ ϕ) and (ψ ∨ ϕ) ∈ ML.

• If ψ ∈ ML and a ∈ A, then ⟨a⟩ψ and [a]ψ ∈ ML.

Remark 1.2. If there is only one action a ∈ A, we write ♦ψ and �ψ

instead of ⟨a⟩ψ and [a]ψ, respectively.

1

1.1 Model Checking Games for Modal Logic

Definition 1.3. A transition system or Kripke structure with actions from
a set A and atomic properties {Pi : i ∈ I} is a structure

K = (V, (Ea)a∈A, (Pi)i∈I)

with a universe V of states, binary relations Ea ⊆ V × V describing
transitions between the states, and unary relations Pi ⊆ V describing
the atomic properties of states.

A transition system can be seen as a labelled graph where the
nodes are the states of K, the unary relations are labels of the states,
and the binary transition relations are the labelled edges.

Definition 1.4. Let K = (V, (Ea)a∈A, (Pi)i∈I) be a transition system,
ψ ∈ ML a formula and v a state of K. The model relationship K, v |= ψ,
i.e. ψ holds at state v of K, is inductively defined:

• K, v |= Pi if and only if v ∈ Pi.

• K, v |= ¬ψ if and only if K, v ̸|= ψ.

• K, v |= ψ ∨ ϕ if and only if K, v |= ψ or K, v |= ϕ.

• K, v |= ψ ∧ ϕ if and only if K, v |= ψ and K, v |= ϕ.

• K, v |= ⟨a⟩ψ if and only if there exists w such that (v, w) ∈ Ea and
K, w |= ψ.

• K, v |= [a] ψ if and only if K, w |= ψ holds for all w with (v, w) ∈ Ea.

Definition 1.5. For a transition system K and a formula ψ we define
the extension

JψKK := {v : K, v |= ψ}

as the set of states of K where ψ holds.

Remark 1.6. In order to keep the following propositions short and easier
to understand, we assume that all modal logic formulae are given in
negation normal form, i.e. negations occur only at atoms. This does
not change the expressiveness of modal logic as for every formula an
equivalent one in negation normal form can be constructed. We omit a
proof here, but the transformation can be easily achieved by applying

2

1 Finite Games and First-Order Logic

DeMorgan’s laws and the duality of � and ♦ (i.e. ¬⟨a⟩ψ ≡ [a]¬ψ and
¬[a]ψ ≡ ⟨a⟩¬ψ) to shift negations to the atomic subformulae.

We will now describe model checking games for ML. Given a
transition system K and a formula ψ ∈ ML, we define a game G that
contains positions (ϕ, v) for every subformula ϕ of ψ and every v ∈ V.
In this game, starting from position (ϕ, v), Verifier’s goal is to show
that K, v |= ϕ, while Falsifier tries to prove K, v ̸|= ϕ.

In the game, Verifier is allowed to move at positions (ϕ ∨ ϑ, v),
where she can choose to move to position (ϕ, v) or (ϑ, v), and at posi-
tions (⟨a⟩ϕ, v), where she can move to position (ϕ, w) for a w ∈ vEa.
Analogously, Falsifier can move from (ϕ ∧ ϑ, v) to (ϕ, v) or (ϑ, v) and
from ([a]ϕ, v) to (ϕ, w) for a w ∈ vEa. Finally, there are the terminal
positions (Pi, v) and (¬Pi, v), which are won by Verifier if K, v |= Pi

and K, v |= ¬Pi, respectively, otherwise they are winning positions for
Falsifier.

The intuitive idea of this construction is to let the Verifier make the
existential choices. To win from one of her positions, a disjunction or
diamond subformula, she either needs to prove that one of the disjuncts
is true, or that there exists a successor at which the subformula holds.
Falsifier, on the other hand, in order to win from his positions, can
choose a conjunct that is false or, if at a box formula, choose a successor
at which the subformula does not hold.

The idea behind this construction is that at disjunctions and dia-
monds, Verifier can choose a subformula that is satisfied by the structure
or a successor position at which the subformula is satisfied, while at
conjunctions and boxes, Falsifier can choose a subformula or position
that is not. So it is easy to see that the following lemma holds.

Lemma 1.7. Let K be a Kripke structure, v ∈ V and ϕ a formula in ML.
Then we have

K, v |= ϕ ⇔ Verifier has a winning strategy from (ϕ, v).

To assess the efficiency of games as a solution for model checking
problems, we have to consider the complexity of the resulting model
checking games based on the following criteria:

3

1.2 Finite Games

• Are all plays necessarily finite?

• If not, what are the winning conditions for infinite plays?

• Do the players always have perfect information?

• What is the structural complexity of the game graphs?

• How does the size of the graph depend on different parameters of
the input structure and the formula?

For first-order logic (FO) and modal logic (ML) we have only finite
plays with positional winning conditions, and, as we will see, the
winning regions are computable in linear time with respect to the size
of the game graph (for finite structures of course).

Model checking games for fixed-point logics however admit infinite
plays, and we use so called parity conditions to determine the winner of
such plays. It is still an open question whether winning regions and
winning strategies in parity games are computable in polynomial time.

1.2 Finite Games

In the following section we want to deal with two-player games with
perfect information and positional winning conditions, given by a game
graph (or arena)

G = (V, E)

where the set V of positions is partitioned into sets of positions V0

and V1 belonging to Player 0 and Player 1, respectively. Player 0, also
called Ego, moves from positions v ∈ V0, while Player 1, called Alter,
moves from positions v ∈ V1. All moves are along edges, and we use
the term play to describe a (finite or infinite) sequence v0v1v2 . . . with
(vi, vi+1) ∈ E for all i. We use a simple positional winning condition:
Move or lose! Player σ wins at position v if v ∈ V1−σ and vE = ∅, i.e.,
if the position belongs to his opponent and there are no moves possible
from that position. Note that this winning condition only applies to
finite plays, infinite plays are considered to be a draw.

4

1 Finite Games and First-Order Logic

We define a strategy (for Player σ) as a mapping

f : {v ∈ Vσ : vE ̸= ∅} → V

with (v, f (v)) ∈ E for all v ∈ V. We call f winning from position v if
Player σ wins all plays that start at v and are consistent with f .

We now can define winning regions W0 and W1:

Wσ = {v ∈ V : Player σ has a winning strategy from position v}.

This proposes several algorithmic problems for a given game G:
The computation of winning regions W0 and W1, the computation of
winning strategies, and the associated decision problem

Game := {(G, v) : Player 0 has a winning strategy for G from v}.

Theorem 1.8. Game is P-complete and decidable in time O(|V|+ |E|).

Note that this remains true for strictly alternating games.
A simple polynomial-time approach to solve Game is to compute

the winning regions inductively: Wσ =
⋃

n∈N Wn
σ , where

W0
σ = {v ∈ V1−σ : vE = ∅}

is the set of terminal positions which are winning for Player σ, and

Wn+1
σ = {v ∈ Vσ : vE ∩Wn

σ ̸= ∅} ∪ {v ∈ V1−σ : vE ⊆ Wn
σ }

is the set of positions from which Player σ can win in at most n + 1
moves.

After n ≤ |V| steps, we have that Wn+1
σ = Wn

σ , and we can stop
the computation here.

To solve Game in linear time, we have to use the slightly more
involved Algorithm 1.1. Procedure Propagate will be called once for
every edge in the game graph, so the running time of this algorithm is
linear with respect to the number of edges in G.

Furthermore, we can show that the decision problem Game is
equivalent to the satisfiability problem for propositional Horn formulae.

5

1.2 Finite Games

Algorithm 1.1. A linear time algorithm for Game

Input: A game G = (V, V0, V1, E)
output: Winning regions W0 and W1

for all v ∈ V do (∗ 1: Initialisation ∗)
win[v] := ⊥
P[v] := ∅
n[v] := 0

end do

for all (u, v) ∈ E do (∗ 2: Calculate P and n ∗)
P[v] := P[v] ∪ {u}
n[u] := n[u] + 1

end do

for all v ∈ V0 (∗ 3: Calculate win ∗)
if n[v] = 0 then Propagate(v, 1)

for all v ∈ V \V0
if n[v] = 0 then Propagate(v, 0)

return win

procedure Propagate(v, σ)
if win[v] ̸= ⊥ then return
win[v] := σ (∗ 4: Mark v as winning for player σ ∗)
for all u ∈ P[v] do (∗ 5: Propagate change to predecessors ∗)

n[u] := n[u]− 1
if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)

end do
end

6

1 Finite Games and First-Order Logic

We recall that propositional Horn formulae are finite conjunctions∧
i∈I Ci of clauses Ci of the form

X1 ∧ . . . ∧ Xn → X or

X1 ∧ . . . ∧ Xn︸ ︷︷ ︸
body(Ci)

→ 0︸︷︷︸
head(Ci)

.

A clause of the form X or 1 → X has an empty body.

We will show that Sat-Horn and Game are mutually reducible
via logspace and linear-time reductions.

(1) Game ≤log-lin Sat-Horn
For a game G = (V, V0, V1, E), we construct a Horn formula ψG
with clauses

v → u for all u ∈ V0 and (u, v) ∈ E, and

v1 ∧ . . . ∧ vm → u for all u ∈ V1 and uE = {v1, . . . , vm}.

The minimal model of ψG is precisely the winning region of
Player 0, so

(G, v) ∈ Game ⇐⇒ ψG ∧ (v → 0) is unsatisfiable.

(2) Sat-Horn ≤log-lin Game
For a Horn formula ψ(X1, . . . , Xn) =

∧
i∈I Ci, we define a game

Gψ = (V, V0, V1, E) as follows:

V = {0} ∪ {X1, . . . , Xn}︸ ︷︷ ︸
V0

∪ {Ci : i ∈ I}︸ ︷︷ ︸
V1

and

E = {Xj → Ci : Xj = head(Ci)} ∪ {Ci → Xj : Xj ∈ body(Ci)},

i.e., Player 0 moves from a variable to some clause containing the
variable as its head, and Player 1 moves from a clause to some
variable in its body. Player 0 wins a play if, and only if, the play
reaches a clause C with body(C) = ∅. Furthermore, Player 0 has
a winning strategy from position X if, and only if, ψ |= X, so we

7

1.3 Alternating Algorithms

have

Player 0 wins from position 0 ⇐⇒ ψ is unsatisfiable.

These reductions show that Sat-Horn is also P-complete and, in
particular, also decidable in linear time.

1.3 Alternating Algorithms

Alternating algorithms are algorithms whose set of configurations is
divided into accepting, rejecting, existential and universal configurations.
The acceptance condition of an alternating algorithm A is defined by
a game played by two players ∃ and ∀ on the computation tree TA,x

of A on input x. The positions in this game are the configurations of
A, and we allow moves C → C′ from a configuration C to any of its
successor configurations C′. Player ∃ moves at existential configurations
and wins at accepting configurations, while Player ∀ moves at universal
configurations and wins at rejecting configurations. By definition, A
accepts some input x if and only if Player ∃ has a winning strategy for
the game played on TA,x.

We will introduce the concept of alternating algorithms formally,
using the model of a Turing machine, and we prove certain relation-
ships between the resulting alternating complexity classes and usual
deterministic complexity classes.

1.3.1 Turing Machines

The notion of an alternating Turing machine extends the usual model
of a (deterministic) Turing machine which we introduce first. We
consider Turing machines with a separate input tape and multiple
linear work tapes which are divided into basic units, called cells or
fields. Informally, the Turing machine has a reading head on the input
tape and a combined reading and writing head on each of its work tapes.
Each of the heads is at one particular cell of the corresponding tape
during each point of a computation. Moreover, the Turing machine is
in a certain state. Depending on this state and the symbols the machine

8

1 Finite Games and First-Order Logic

is currently reading on the input and work tapes, it manipulates the
current fields of the work tapes, moves its heads and changes to a new
state.

Formally, a (deterministic) Turing machine with separate input tape
and k linear work tapes is given by a tuple M = (Q, Γ, Σ, q0, Facc, Frej, δ),
where Q is a finite set of states, Σ is the work alphabet containing a
designated symbol � (blank), Γ is the input alphabet, q0 ∈ Q is the
initial state, F := Facc ∪ Frej ⊆ Q is the set of final states (with Facc

the accepting states, Frej the rejecting states and Facc ∩ Frej = ∅), and
δ : (Q \ F)× Γ× Σk → Q× {−1, 0, 1} × Σk × {−1, 0, 1}k is the transition
function.

A configuration of M is a complete description of all relevant facts
about the machine at some point during a computation, so it is a tuple
C = (q, w1, . . . , wk, x, p0, p1, . . . , pk) ∈ Q× (Σ∗)k × Γ∗ ×Nk+1 where q
is the recent state, wi is the contents of work tape number i, x is the
contents of the input tape, p0 is the position on the input tape and pi is
the position on work tape number i. The contents of each of the tapes
is represented as a finite word over the corresponding alphabet[, i.e., a
finite sequence of symbols from the alphabet]. The contents of each of
the fields with numbers j > |wi| on work tape number i is the blank
symbol (we think of the tape as being infinite). A configuration where x
is omitted is called a partial configuration. The configuration C is called
final if q ∈ F. It is called accepting if q ∈ Facc and rejecting if q ∈ Frej.

The successor configuration of C is determined by the recent state
and the k + 1 symbols on the recent cells of the tapes, using the transition
function: If δ(q, xp0 , (w1)p1 , . . . , (wk)pk) = (q′, m0, a1, . . . , ak, m1, . . . , mk, b),
then the successor configuration of C is ∆(C) = (q′, w′, p′, x), where for
any i, w′i is obtained from wi by replacing symbol number pi by ai and
p′i = pi + mi. We write C ⊢M C′ if, and only if, C′ = ∆(C).

The initial configuration C0(x) = C0(M, x) of M on input x ∈ Γ∗ is
given by the initial state q0, the blank-padded memory, i.e., wi = ε and
pi = 0 for any i ≥ 1, p0 = 0, and the contents x on the input tape.

A computation of M on input x is a sequence C0, C1, . . . of config-
urations of M, such that C0 = C0(x) and Ci ⊢M Ci+1 for all i ≥ 0.
The computation is called complete if it is infinite or ends in some final

9

1.3 Alternating Algorithms

configuration. A complete finite computation is called accepting if the
last configuration is accepting, and the computation is called rejecting
if the last configuration is rejecting. M accepts input x if the (unique)
complete computation of M on x is finite and accepting. M rejects input
x if the (unique) complete computation of M on x is finite and rejecting.
The machine M decides a language L ⊆ Γ∗ if M accepts all x ∈ L and
rejects all x ∈ Γ∗ \ L.

1.3.2 Alternating Turing Machines

Now we shall extend deterministic Turing machines to nondeterministic
Turing machines from which the concept of alternating Turing machines
is obtained in a very natural way, given our game theoretical framework.

A nondeterministic Turing machine is nondeterministic in the sense
that a given configuration C may have several possible successor config-
urations instead of at most one. Intuitively, this can be described as the
ability to guess. This is formalised by replacing the transition function
δ : (Q \ F)× Γ× Σk → Q× {−1, 0, 1} × Σk × {−1, 0, 1}k by a transition
relation ∆ ⊆ ((Q \ F)× Γ× Σk)× (Q× {−1, 0, 1} × Σk × {−1, 0, 1}k).
The notion of successor configurations is defined as in the deterministic
case, except that the successor configuration of a configuration C may
not be uniquely determined. Computations and all related notions
carry over from deterministic machines in the obvious way. However,
on a fixed input x, a nondeterministic machine now has several possi-
ble computations, which form a (possibly infinite) finitely branching
computation tree TM,x. A nondeterministic Turing machine M accepts
an input x if there exists a computation of M on x which is accepting,
i.e., if there exists a path from the root C0(x) of TM,x to some accepting
configuration. The language of M is L(M) = {x ∈ Γ∗ | M accepts x}.
Notice that for a nondeterministic machine M to decide a language
L ⊆ Γ∗ it is not necessary, that all computations of M are finite. (In a
sense, we count infinite computations as rejecting.)

From a game-theoretical perspective, the computation of a non-
deterministic machine can be viewed as a solitaire game on the com-
putation tree in which the only player (the machine) chooses a path

10

1 Finite Games and First-Order Logic

through the tree starting from the initial configuration. The player wins
the game (and hence, the machine accepts its input) if the chosen path
finally reaches an accepting configuration.

An obvious generalisation of this game is to turn it into a two-
player game by assigning the nodes to the two players who are called ∃
and ∀, following the intuition that Player ∃ tries to show the existence
of a good path, whereas Player ∀ tries to show that all selected paths
are bad. As before, Player ∃ wins a play of the resulting game if, and
only if, the play is finite and ends in an accepting leaf of the game tree.
Hence, we call a computation tree accepting if, and only if, Player ∃ has
a winning strategy for this game.

It is important to note that the partition of the nodes in the tree
should not depend on the input x but is supposed to be inherent to
the machine. Actually, it is even independent of the contents of the
work tapes, and thus, whether a configuration belongs to Player ∃ or to
Player ∀ merely depends on the current state.

Formally, an alternating Turing machine is a nondeterministic Turing
machine M = (Q, Γ, Σ, q0, Facc, Frej, ∆) whose set of states Q = Q∃ ∪
Q∀ ∪ Facc ∪ Frej is partitioned into existential, universal, accepting, and
rejecting states. The semantics of these machines is given by means of
the game described above.

Now, if we let accepting configurations belong to player ∀ and
rejecting configurations belong to player ∃, then we have the usual
winning condition that a player loses if it is his turn but he cannot move.
We can solve such games by determining the winner at leaf nodes and
propagating the winner successively to parent nodes. If at some node,
the winner at all of its child nodes is determined, the winner at this
node can be determined as well. This method is sometimes referred
to as backwards induction and it basically coincides with our method
for solving Game on trees (with possibly infinite plays). This gives the
following equivalent semantics of alternating Turing machines:

The subtree TC of the computation tree of M on x with root C is
called accepting, if

• C is accepting

11

1.3 Alternating Algorithms

• C is existential and there is a successor configuration C′ of C such
that TC′ is accepting or

• C is universal and TC′ is accepting for all successor configurations
C′ of C.

M accepts an input x, if TC0(x) = TM,x is accepting.
For functions T, S : N → N, an alternating Turing machine M is

called T-time bounded if, and only if, for any input x, each computation
of M on x has length less or equal T(|x|). The machine is called S-
space bounded if, and only if, for any input x, during any computation
of M on x, at most S(|x|) cells of the work tapes are used. Notice
that time boundedness implies finiteness of all computations which is
not the case for space boundedness. The same definitions apply for
deterministic and nondeterministic Turing machines as well since these
are just special cases of alternating Turing machines. These notions
of resource bounds induce the complexity classes Atime containing
precisely those languages L such that there is an alternating T-time
bounded Turing machine deciding L and Aspace containing precisely
those languages L such that there is an alternating S-space bounded
Turing machine deciding L. Similarly, these classes can be defined for
nondeterministic and deterministic Turing machines.

We are especially interested in the following alternating complexity
classes:

• ALogspace =
⋃

d∈N Aspace(d · log n),
• APtime =

⋃
d∈N Atime(nd),

• APspace =
⋃

d∈N Aspace(nd).

Observe that Game ∈ Alogspace. An alternating algorithm which
decides Game with logarithmic space just plays the game. The algo-
rithm only has to store the current position in memory, and this can be
done with logarithmic space. We shall now consider a slightly more
involved example.

Example 1.9. QBF ∈ Atime(O(n)). W.l.o.g we assume that negation
appears only at literals. We describe an alternating procedure Eval(ϕ, I)
which computes, given a quantified Boolean formula ψ and a valuation
I : free(ψ) → {0, 1} of the free variables of ψ, the value JψKI .

12

1 Finite Games and First-Order Logic

Algorithm 1.2. Alternating algorithm deciding QBF.

Input: (ψ, I) where ψ ∈ QAL and I : free(ψ) → {0, 1}
if ψ = Y then

if I(Y) = 1 then accept
else reject

if ψ = ϕ1 ∨ ϕ2 then „∃“ guesses i ∈ {1, 2} , Eval(ϕi, I)
if ψ = ϕ1 ∧ ϕ2 then „∀“ chooses i ∈ {1, 2} , Eval(ϕi, I)
if ψ = ∃Xϕ then „∃“ guesses j ∈ {0, 1} , Eval(ϕ, I [X = j])
if ψ = ∀Xϕ then „∀“ chooses j ∈ {0, 1} , Eval(ϕ, I [X = j])

The main results we want to establish in this section concern the
relationship between alternating complexity classes and determinis-
tic complexity classes. We will see that alternating time corresponds
to deterministic space, while by translating deterministic time into
alternating space, we can reduce the complexity by one exponential.
Here, we consider the special case of alternating polynomial time and
polynomial space. We should mention, however, that these results can
be generalised to arbitrary large complexity bounds which are well
behaved in a certain sense.

Lemma 1.10. NPspace ⊆ APtime.

Proof. Let L ∈ NPspace and let M be a nondeterministic nl-space
bounded Turing machine which recognises L for some l ∈ N. The
machine M accepts some input x if, and only if, some accepting config-
uration is reachable from the initial configuration C0(x) in the configu-
ration tree of M on x in at most k := 2cnl

steps for some c ∈ N. This is
due to the fact that there are most k different configurations of M on
input x which use at most nl cells of the memory which can be seen
using a simple combinatorial argument. So if there is some accepting
configuration reachable from the initial configuration C0(x), then there
is some accepting configuration reachable from C0(x) in at most k steps.
This is equivalent to the existence of some intermediate configuration
C′ that is reachable from C0(x) in at most k/2 steps and from which
some accepting configuration is reachable in at most k/2 steps.

13

1.3 Alternating Algorithms

So the alternating algorithm deciding L proceeds as follows. The
existential player guesses such a configuration C′ and the universal
player chooses whether to check that C′ is reachable from C0(x) in at
most k/2 steps or whether to check that some accepting configuration is
reachable from C′ in at most k/2 steps. Then the algorithm (or equiva-
lently, the game) proceeds with the subproblem chosen by the universal
player, and continues in this binary search like fashion. Obviously,
the number of steps which have to be performed by this procedure
to decide whether x is accepted by M is logarithmic in k. Since k is
exponential in nl , the time bound of M is dnl for some d ∈ N, so M
decides L in polynomial time. q.e.d.

Lemma 1.11. APtime ⊆ Pspace.

Proof. Let L ∈ APtime and let A be an alternating nl-time bounded
Turing machine that decides L for some l ∈ N. Then there is some
r ∈ N such that any configuration of A on any input x has at most r
successor configurations and w.l.o.g. we can assume that any non-final
configuration has precisely r successor configurations. We can think of
the successor configurations of some non-final configuration C as being
enumerated as C1, . . . , Cr. Clearly, for given C and i we can compute Ci.
The idea for a deterministic Turing machine M to check whether some
input x is in L is to perform a depth-first search on the computation
tree TA,x of A on x. The crucial point is, that we cannot construct
and keep the whole configuration tree TA,x in memory since its size is
exponential in |x| which exceeds our desired space bound. However,
since the length of each computation is polynomially bounded, it is
possible to keep a single computation path in memory and to construct
the successor configurations of the configuration under consideration
on the fly.

Roughly, the procedure M can be described as follows. We start
with the initial configuration C0(x). Given any configuration C under
consideration, we propagate 0 to the predecessor configuration if C is
rejecting and we propagate 1 to the predecessor configuration if C is
accepting. If C is neither accepting nor rejecting, then we construct,

14

1 Finite Games and First-Order Logic

for i = 1, . . . , r the successor configuration Ci of C and proceed with
checking Ci. If C is existential, then as soon as we receive 1 for some i,
we propagate 1 to the predecessor. If we encounter 0 for all i, then we
propagate 0. Analogously, if C is universal, then as soon as we receive
a 0 for some i, we propagate 0. If we receive only 1 for all i, then we
propagate 1. Then x is in L if, and only if, we finally receive 1 at C0(x).
Now, at any point during such a computation we have to store at most
one complete computation of A on x. Since A is nl-time bounded, each
such computation has length at most nl and each configuration has size
at most c · nl for some c ∈ N. So M needs at most c · n2l memory cells
which is polynomial in n. q.e.d.

So we obtain the following result.

Theorem 1.12. (Parallel time complexity = sequential space complexity)

(1) APtime = Pspace.

(2) AExptime = Expspace.

Proposition (2) of this theorem is proved exactly the same way as
we have done it for proposition (1). Now we prove that by translating
sequential time into alternating space, we can reduce the complexity by
one exponential.

Lemma 1.13. Exptime ⊆ APspace

Proof. Let L ∈ Exptime. Using a standard argument from complexity
theory, there is a deterministic Turing machine M = (Q, Σ, q0, δ) with
time bound m := 2c·nk

for some c, k ∈ N with only a single tape (serving
as both input and work tape) which decides L. (The time bound of
the machine with only a single tape is quadratic in that of the original
machine with k work tapes and a separate input tape, which, however,
does not matter in the case of an exponential time bound.) Now if
Γ = Σ ⊎ (Q× Σ) ⊎ {#}, then we can describe each configuration C of
M by a word

C = #w0 . . . wi−1(qwi)wi+1 . . . wt# ∈ Γ∗.

15

1.3 Alternating Algorithms

Since M has time bound m and only one single tape, it has space bound
m. So, w.l.o.g., we can assume that |C| = m + 2 for all configurations
C of M on inputs of length n. (We just use a representation of the
tape which has a priori the maximum length that will occur during
a computation on an input of length n.) Now the crucial point in the
argumentation is the following. If C ⊢ C′ and 1 ≤ i ≤ m, symbol
number i of the word C′ only depends on the symbols number i− 1,
i and i + 1 of C. This allows us, to decide whether x ∈ L(M) with the
following alternating procedure which uses only polynomial space.

Player ∃ guesses some number s ≤ m of steps of which he claims
that it is precisely the length of the computation of M on input x.
Furthermore, ∃ guesses some state q ∈ Facc, a Symbol a ∈ Σ and
a number i ∈ {0, . . . , s}, and he claims that the i-th symbol of the
configuration C of M after the computation on x is (qa). (So players
start inspecting the computation of M on x from the final configuration.)
If M accepts input x, then obviously player ∃ has a possibility to choose
all these objects such that his claims can be validated. Player ∀ wants to
disprove the claims of ∃. Now, player ∃ guesses symbols a−1, a0, a1 ∈ Γ
of which he claims that these are the symbols number i − 1, i and
i + 1 of the predecessor configuration of the final configuration C.
Now, ∀ can choose any of these symbols and demand, that ∃ validates
his claim for this particular symbol. This symbol is now the symbol
under consideration, while i is updated according to the movement
of the (unique) head of M. Now, these actions of the players take
place for each of the s computation steps of M on x. After s such
steps, we check whether the recent symbol and the recent position are
consistent with the initial configuration C0(x). The only information
that has to be stored in the memory is the position i on the tape, the
number s which ∃ has initially guessed and the current number of steps.
Therefore, the algorithm uses space at most O(log(m)) = O(nk) which
is polynomial in n. Moreover, if M accepts input x then obviously, player
∃ has a winning strategy for the computation game. If, conversely, M
rejects input x, then the combination of all claims of player ∃ cannot be
consistent and player ∀ has a strategy to spoil any (cheating) strategy
of player ∃ by choosing the appropriate symbol at the appropriate

16

1 Finite Games and First-Order Logic

computation step. q.e.d.

Finally, we make the simple observation that it is not possible
to gain more than one exponential when translating from sequential
time to alternating space. (Notice that Exptime is a proper subclass of
2Exptime.)

Lemma 1.14. APspace ⊆ Exptime

Proof. Let L ∈ APspace, and let A be an alternating nk-space bounded
Turing machine which decides L for some k ∈ N. Moreover, for an
input x of A, let Conf(A, x) be the set of all configurations of A on
input x. Due to the polynomial space bound of A, this set is finite
and its size is at most exponential in |x|. So we can construct the
graph G = (Conf(A, x),⊢) in time exponential in |x|. Moreover, a
configuration C is reachable from C0(x) in TA,x if and only if C is
reachable from C0(x) in G. So to check whether A accepts input x we
simply decide whether player ∃ has a winning strategy for the game
played on G from C0(x). This can be done in time linear in the size of
G, so altogether we can decide whether x ∈ L(A) in time exponential
in |x|. q.e.d.

Theorem 1.15. (Translating sequential time into alternating space)

(1) ALogspace = P.
(2) APspace = Exptime.

Proposition (1) of this theorem is proved using exactly the same
arguments as we have used for proving proposition (2). An overview
over the relationship between deterministic and alternating complexity
classes is given in Figure 1.1.

Logspace ⊆ Ptime ⊆ Pspace ⊆ Exptime ⊆ Expspace
|| || || ||

ALogspace ⊆ APtime ⊆ APspace ⊆ AExptime

Figure 1.1. Relation between deterministic and alternating complexity classes

17

1.4 Model Checking Games for First-Order Logic

1.4 Model Checking Games for First-Order Logic

Let us first recall the syntax of FO formulae on relational structures.
We have that Ri(x̄), ¬Ri(x̄), x = y and x ̸= y are well-formed valid FO
formulae, and inductively for FO formulae ϕ and ψ, we have that ϕ∨ ψ,
ϕ ∧ ψ, ∃xϕ and ∀xϕ are well-formed FO formulae. This way, we allow
only formulae in negation normal form where negations occur only at
atomic subformulae and all junctions except ∨ and ∧ are eliminated.
These constraints do not limit the expressiveness of the logic, but the
resulting games are easier to handle.

For a structure A = (A, R1, . . . , Rm) with Ri ⊆ Ari , we define the
evaluation game G(A, ψ) as follows:

We have positions ϕ(ā) for every subformula ϕ(x̄) of ψ and every
ā ∈ Ak.

At a position ϕ ∨ ϑ, Verifier can choose to move either to ϕ or to
ϑ, while at positions ∃xϕ(x, b̄), he can choose an instantiation a ∈ A of
x and move to ϕ(a, b̄). Analogously, Falsifier can move from positions
ϕ ∧ ϑ to either ϕ or ϑ and from positions ∀xϕ(x, b̄) to ϕ(a, b̄) for an
a ∈ A.

The winning condition is evaluated at positions with atomic or
negated atomic formulae ϕ, and we define that Verifier wins at ϕ(ā) if,
and only if, A |= ϕ(ā), and Falsifier wins if, and only if, A ̸|= ϕ(ā).

In order to determine the complexity of FO model checking, we
have to consider the process of determining whether A |= ψ. To decide
this question, we have to construct the game G(A, ψ) and check whether
Verifier has a winning strategy from position ψ. The size of the game
graph is bound by |G(A, ψ)| ≤ |ψ| · |A|width(ψ), where width(ψ) is
the maximal number of free variables in the subformulae of ψ. So
the game graph can be exponential, and therefore we can get only
exponential time complexity for Game. In particular, we have the
following complexities for the general case:

• alternating time: O(|ψ|+ qd(ψ) log |A|)
where qd(ψ) is the quantifier-depth of ψ,

• alternating space: O(width(ψ) · log |A|+ log |ψ|),
• deterministic time: O(|ψ| · |A|width(ψ)) and

18

1 Finite Games and First-Order Logic

• deterministic space: O(|ψ|+ qd(ψ) log |A|).

Efficient implementations of model checking algorithms will con-
struct the game graph on the fly while solving the game.

There are several possibilities of how to reason about the complex-
ity of FO model checking. We can consider the structural complexity, i.e.,
we fix a formula and measure the complexity of the model checking
algorithm in terms of the size of the structure only. On the other hand,
the expression complexity measures the complexity in terms of the size of
a given formula while the structure is considered to be fixed. Finally,
the combined complexity is determined by considering both, the formula
and the structure, as input parameters.

We obtain that the structural complexity of FO model checking
is ALogtime, and both the expression complexity and the combined
complexity is PSpace.

1.4.1 Fragments of FO with Efficient Model Checking

We have just seen that in the general case the complexity of FO model
checking is exponential with respect to the width of the formula. In
this section, we will see that some restrictions made to the underlying
logic will also reduce the complexity of the associated model checking
problem.

We will start by considering the k-variable fragment of FO :

FOk := {ψ ∈ FO : width(ψ) ≤ k}.

In this fragment, we have an upper bound for the width of the formulae,
and we get polynomial time complexity:

ModCheck(FOk) is P-complete and solvable in time O(|ψ| · |A|k).
There are other fragments of FO that have model checking com-

plexity O(|ψ| · ∥A∥):

• ML: propositional modal logic,
• FO2: formulae of width two,
• GF: the guarded fragment of first-order logic.

We will have a closer look at the last one, GF.

19

1.4 Model Checking Games for First-Order Logic

GF is a fragment of first-order logic which allows only guarded
quantification

∃ȳ(α(x̄, ȳ) ∧ ϕ(x̄, ȳ)) and ∀ȳ(α(x̄, ȳ) → ϕ(x̄, ȳ))

where the guards α are atomic formulae containing all free variables
of ϕ.

GF is a generalisation of modal logics, and we have that ML ⊆
GF ⊆ FO. In particular, the modal logic quantifiers ♦ and � can be
expressed as

⟨a⟩ϕ ≡ ∃y(Eaxy ∧ ϕ(y)) and [a]ϕ ≡ ∀y(Eaxy → ϕ(y)).

Since guarded logics have small model checking games of size
∥G(A, ψ)∥ = O(|ψ| · ∥A∥), there exist efficient game-based model check-
ing algorithms for them.

20

2 Parity Games and Fixed-Point Logics

2.1 Parity Games

In the previous section we presented model checking games for first-
order logic and modal logic. These games admit only finite plays and
their winning conditions are specified just by sets of positions. Winning
regions in these games can be computed in linear time with respect to
the size of the game graph.

However, in many computer science applications, more expressive
logics like temporal logics, dynamic logics, fixed-point logics and others
are needed. Model checking games for these logics admit infinite plays
and their winning conditions must be specified in a more elaborate way.
As a consequence, we have to consider the theory of infinite games.

For fixed-point logics, such as LFP or the modal µ-calculus, the
appropriate evaluation games are parity games. These are games of
possibly infinite duration where to each position a natural number is
assigned. This number is called the priority of the position, and the
winner of an infinite play is determined according to whether the least
priority seen infinitely often during the play is even or odd.

Definition 2.1. We describe a parity game by a labelled graph G =
(V, V0, V1, E, Ω) where (V, V0, V1, E) is a game graph and Ω : V → N,
with |Ω(V)| finite, assigns a priority to each position. The set V of
positions may be finite or infinite, but the number of different priorities,
called the index of G, must be finite. Recall that a finite play of a game
is lost by the player who gets stuck, i.e. cannot move. For infinite plays
v0v1v2 . . ., we have a special winning condition: If the least number
appearing infinitely often in the sequence Ω(v0)Ω(v1) . . . of priorities
is even, then Player 0 wins the play, otherwise Player 1 wins.

21

2.1 Parity Games

Definition 2.2. A strategy (for Player σ) is a function

f : V∗Vσ → V

such that f (v0v1 . . . vn) ∈ vnE.

We say that a play π = v0v1 . . . is consistent with the strategy f of
Player σ if for each vi ∈ Vσ it holds that vi+1 = f (vi). The strategy f is
winning for Player σ from (or on) a set W ⊆ V if each play starting in
W that is consistent with f is winning for Player σ.

In general, a strategy depends on the whole history of the game.
However, in this chapter, we are interested in simple strategies that
depend only on the current position.

Definition 2.3. A strategy (of Player σ) is called positional (or memoryless)
if it only depends on the current position, but not on the history of
the game, i.e. f (hv) = f (h′v) for all h, h′ ∈ V∗, v ∈ V. We often view
positional strategies simply as functions f : V → V.

We will see that such positional strategies suffice to solve parity
games by proving the following theorem.

Theorem 2.4 (Forgetful Determinacy). In any parity game, the set of
positions can be partitioned into two sets W0 and W1 such that Player 0
has a positional strategy that is winning on W0 and Player 1 has a
positional strategy that is winning on W1.

Before proving the theorem, we give two general examples of
positional strategies, namely attractor and trap strategies, and show
how positional winning strategies on parts of the game graph may be
combined to positional winning strategies on larger regions.

Remark 2.5. Let f and f ′ be positional strategies for Player σ that are
winning on the sets W, W ′, respectively. Let f + f ′ be the positional
strategy defined by

(f + f ′)(x) :=

 f (x) if x ∈ W

f ′(x) otherwise.

Then f + f ′ is a winning strategy on W ∪W ′.

22

2 Parity Games and Fixed-Point Logics

Definition 2.6. Let G = (V, V0, V1, E) be a game and X ⊆ V. We define
the attractor of X for Player σ as

Attrσ(X) = {v ∈ V : Player σ has a (w.l.o.g. positional) strategy

to reach some position x ∈ X ∪ Tσ

in finitely many steps}

where Tσ = {v ∈ V1−σ : vE = ∅} denotes the set of terminal positions
in which Player σ has won.

A set X ⊆ V is called a trap for Player σ if Player 1− σ has a (w.l.o.g.
positional) strategy that avoids leaving X from every x ∈ X.

We can now turn to the proof of the Forgetful Determinacy Theo-
rem.

Proof. Let G = (V, V0, V1, E, Ω) be a parity game with |Ω(V)| = m.
Without loss of generality we can assume that Ω(V) = {0, . . . , m− 1}
or Ω(V) = {1, . . . , m}. We prove the statement by induction over
|Ω(V)|.

In the case of |Ω(V)| = 1, i.e., Ω(V) = {0} or Ω(V) = {1}, the
theorem clearly holds as either Player 0 or Player 1 wins every infinite
play. Her opponent can only win by reaching a terminal position that
does not belong to him. So we have, for Ω(V) = {σ},

W1−σ = Attr1−σ(T1−σ) and

Wσ = V \W1−σ.

Computing W1−σ as the attractor of T1−σ is a simple reachability prob-
lem, and thus it can be solved with a positional strategy. Concerning
Wσ, it can be seen that there is a positional strategy that avoids leaving
this (1− σ)-trap.

Let |Ω(v)| = m > 1. We only consider the case 0 ∈ Ω(V), i.e.,
Ω(V) = {0, . . . , m− 1} since otherwise we can use the same argumen-
tation with switched roles of the players. We define

X1 := {v ∈ V : Player 1 has positional winning strategy from v},

23

2.1 Parity Games

and let g be a positional winning strategy for Player 1 on X1.

Our goal is to provide a positional winning strategy f ∗ for Player 0
on V \ X1, so in particular we have W1 = X1 and W0 = V \ X1.

First of all, observe that V \ X1 is a trap for Player 1. Indeed, if
Player 1 could move to X1 from a v ∈ V1 \ X1, then v would also be
in X1. Thus, there exists a positional trap strategy f for Player 0 that
guarantees to stay in V \ X1.

Let Y = Ω−1(0) \X1, Z = Attr0(Y) and let a be an attractor strategy
for Player 0 which guarantees that Y (or a terminal winning position
y ∈ T0) can be reached from every z ∈ Z \ Y. Moreover, let V′ =
V \ (X1 ∪ Z).

The restricted game G ′ = G|V ′ has less priorities than G (since
at least all positions with priority 0 have been removed). Thus, by
induction hypothesis, the Forgetful Determinacy Theorem holds for
G ′: V′ = W ′

0 ∪W ′
1 and there exist positional winning strategies f ′ for

Player 0 on W ′
0 and g′ for Player 1 on W ′

1 in G ′.
We have that W ′

1 = ∅, as the strategy

g + g′ : x 7→
g(x) x ∈ X1

g′(x) x ∈ W ′
1

is a positional winning strategy for Player 1 on X1 ∪W ′
1. Indeed, every

play consistent with g + g′ either stays in W ′
1 and is consistent with g′

or reaches X′1 and is from this point on consistent with g. But X1, by
definition, already contains all positions from which Player 1 can win
with a positional strategy, so W ′

1 = ∅.

Knowing that W ′
1 = ∅, let f ∗ = f ′ + a + f , i.e.

f ∗(x) =

f ′(x) if x ∈ W ′

0

a(x) if x ∈ Z \Y

f (x) if x ∈ Y

We claim that f ∗ is a positional winning strategy for Player 0 from
V \ X1. If π is a play consistent with f ∗, then π stays in V \ X1.

24

2 Parity Games and Fixed-Point Logics

X1

YV′ Z

Ω−1(0)

Figure 2.1. Construction of a winning strategy

Case (a): π hits Z only finitely often. Then π eventually stays in W ′
0 and

is consistent with f ′ from this point, so Player 0 wins π.
Case (b): π hits Z infinitely often. Then π also hits Y infinitely often,
which implies that priority 0 is seen infinitely often. Thus, Player 0
wins π. q.e.d.

The following theorem is a consequence of positional determinacy.

Theorem 2.7. It can be decided in NP∩ coNP whether a given position
in a parity game is a winning position for Player 0.

Proof. A node v in a parity game G = (V, V0, V1, E, Ω) is a winning
position for Player σ if there exists a positional strategy f : Vσ → V
which is winning from position v. It therefore suffices to show that the
question whether a given strategy f : Vσ → V is a winning strategy for
Player σ from position v can be decided in polynomial time. We prove
this for Player 0; the argument for Player 1 is analogous.

Given G and f : V0 → V, we obtain a reduced game graph G f =
(W, F) by retaining only those moves that are consistent with f , i.e.,

F = {(v, w) : (v ∈ W ∩Vσ ∧ w = f (v)) ∨
(v ∈ W ∩V1−σ ∧ (v, w) ∈ E)}.

In this reduced game, only the opponent, Player 1, makes non-
trivial moves. We call a cycle in (W, F) odd if the least priority of its

25

2.1 Parity Games

nodes is odd. Clearly, Player 0 wins G from position v via strategy f if,
and only if, in G f no odd cycle and no terminal position w ∈ V0 is reach-
able from v. Since the reachability problem is solvable in polynomial
time, the claim follows. q.e.d.

2.1.1 Algorithms for parity games

It is an open question whether winning sets and winning strategies for
parity games can be computed in polynomial time. The best algorithms
known today are polynomial in the size of the game, but exponential
with respect to the number of priorities. Such algorithms run in poly-
nomial time when the number of priorities in the input parity game is
bounded.

One way to intuitively understand an algorithm solving a parity
game is to imagine a judge who watches the players playing the game.
At some point, the judge is supposed to say “Player 0 wins”, and indeed,
whenever the judge does so, there should be no question that Player 0
wins. Note that we have no condition in case that Player 1 wins. We will
first give a formal definition of a certain kind of judge with bounded
memory, and later use this notion to construct algorithms for parity
games.

Definition 2.8. A judge M = (M, m0, δ, F) for a parity game G =
(V, V0, V1, E, Ω) consists of a set of states M with a distinguished initial
state m0 ∈ M, a set of final states F ⊆ M, and a transition function
δ : V × M → M. Note that a judge is thus formally the same as an
automaton reading words over the alphabet V. But to be called a judge,
two special properties must be fulfilled. Let v0v1 . . . be a play of G
and m0m1 . . . the corresponding sequence of states of M, i.e., m0 is the
initial state of M and mi+1 = δ(vi, mi). Then the following holds:

(1) if v0 . . . is winning for Player 0, then there is a k such that mk ∈ F,
(2) if, for some k, mk ∈ F, then there exist i < j ≤ k such that vi = vj

and min{Ω(vi+1), Ω(vi+2), . . . , Ω(vj)} is even.

To illustrate the second condition in the above definition, note that
in the play v0v1 . . . the sequence vivi+1 . . . vj forms a cycle. The judge is

26

2 Parity Games and Fixed-Point Logics

indeed truthful, because both players can use a positional strategy in a
parity game, so if a cycle with even priority appears, then Player 0 can
be declared as the winner. To capture this intuition formally, we define
the following reachability game, which emerges as the product of the
original game G and the judge M.

Definition 2.9. Let G = (V, V0, V1, E, Ω) be a parity game and M =
(M, m0, δ, F) an automaton reading words over V. The reachability
game G ×M is defined as follows:

G ×M = (V × M, V0 × M, V1 × M, E′, V × F),

where ((v, m), (v′, m′)) ∈ E′ iff (v, v′) ∈ E and m′ = δ(v, m), and the
last component V× F denotes positions which are immediately winning
for Player 0 (the goal of Player 0 is to reach such a position).

Note that M in the definition above is a deterministic automaton,
i.e., δ is a function. Therefore, in G and in G ×M the players have the
same choices, and thus it is possible to translate strategies between G
and G ×M. Formally, for a strategy σ in G we define the strategy σ in
G ×M as

σ((v0, m0)(v1, m1) . . . (vn, mn)) = (σ(v0v1 . . . vn), δ(vn, mn)).

Conversely, given a strategy σ in G ×M we define the strategy σ in G
such that σ(v0v1 . . . vn) = vn+1 if and only if

σ((v0, m0)(v1, m1) . . . (vn, mn)) = (vn+1, mn+1),

where m0m1 . . . is the unique sequence corresponding to v0v1
Having defined G ×M, we are ready to formally prove that the

above definition of a judge indeed makes sense for parity games.

Theorem 2.10. Let G be a parity game and M a judge for G. Then
Player 0 wins G from v0 if and only if he wins G ×M from (v0, m0).

Proof. (⇒) By contradiction, let σ be the winning strategy for Player 0
in G from v0, and assume that there exists a winning strategy ρ for

27

2.1 Parity Games

Player 1 in G ×M from (v0, m0). (Note that we just used determinacy
of reachability games.) Consider the unique plays

πG = v0v1 . . . and πG×M = (v0, m0)(v1, m1) . . .

in G and G ×M, respectively, which are consistent with both σ and ρ

(the play πG) and with σ and ρ (πG×M). Observe that the positions of
G appearing in both plays are indeed the same due to the way σ and ρ

are defined. Since Player 0 wins πG , by Property (1) in the definition
of a judge there must be an mk ∈ F. But this contradicts the fact that
Player 1 wins πG×M.

(⇐) Let σ be a winning strategy for Player 0 in G ×M, and let ρ

be a positional winning strategy for Player 1 in G. Again, we consider
the unique plays

πG = v0v1 . . . πG×M = (v0, m0)(v1, m1) . . .

such that πG is consistent with σ and ρ, and πG×M is consistent with σ

and ρ. Since πG×M is won by Player 0, there is an mk ∈ F appearing in
this play.

By Property (2) in the definition of a judge, there exist two indices
i < j such that vi = vj and the minimum priority appearing between
vi and vj is even. Let us now consider the following strategy σ′ for
Player 0 in G:

σ′(w0w1 . . . wn) =

σ(w0w1 . . . wn) if n < j,

σ(w0w1 . . . wm) otherwise,

where m = i + [(n− i) mod (j− i)]. Intuitively, the strategy σ′ makes
the same choices as σ up to the (j − 1)st step, and then repeats the
choices of σ from steps i, i + 1, . . . , j− 1.

We will now show that the unique play π′ in G that is consistent
with both σ′ and ρ is won by Player 0. Since in the first j steps σ′ is
the same as σ, we have that π[n] = vn for all n ≤ j. Now observe that
π[j + 1] = vi+1. Since ρ is positional, if vj is a position of Player 1, then
π[j + 1] = vi+1, and if vj is a position of Player 0, then π[j + 1] = vi+1

28

2 Parity Games and Fixed-Point Logics

because we defined σ′(v0 . . . vj) = σ(v0 . . . vi). Inductively repeating
this reasoning, we get that the play π repeats the cycle vivi+1 . . . vj

infinitely often, i.e.

π = v0 . . . vi−1(vivi+1 . . . vj−1)ω .

Thus, the minimal priority occurring infinitely often in π is the same as
min{Ω(vi), Ω(vi+1), . . . Ω(vj−1)}, and thus is even. Therefore Player 0
wins π, which contradicts the fact that ρ was a winning strategy for
Player 1. q.e.d.

The above theorem allows us, if only a judge is known, to reduce
the problem of solving a parity game to the problem of solving a
reachability game, which we already tackled with the Game algorithm.
But to make use of it, we first need to construct a judge for an input
parity game.

The most naïve way to build a judge for a finite parity game G is
to just remember, for each position v visited during the play, what is
the minimal priority seen in the play since the last occurrence of v. If it
happens that a position v is repeated and the minimal priority since v
last occurred is even, then the judge decides that Player 0 won the play.

It is easy to check that an automaton defined in this way indeed
is a judge for any finite parity game G, but such judge can be very
big. Since for each of the |V| = n positions we need to store one of
|Ω(V)| = d colours, the size of the judge is in the order of O(dn). We
will present a judge that is much better for small d.

Definition 2.11. A progress-measuring judge MP = (MP, m0, δP, FP) for
a parity game G = (V, V0, V1, E, Ω) is constructed as follows. If ni =
|Ω−1(i)| is the number of positions with priority i, then

MP = {0, 1, . . . , n0 + 1} × {0} × {0, 1, . . . , n2 + 1} × {0} × . . .

and this product ends in · · · × {0, 1, . . . , nm + 1} if the maximal priority
m is even, or in · · · × {0} if it is odd. The initial state is m0 = (0, . . . , 0),
and the transition function δ(v, c) with c = (c0, 0, c2, 0, . . . , cm) is given

29

2.1 Parity Games

by

δ(v, c) =

(c0, 0, c2, 0, . . . , cΩ(v) + 1, 0, . . . , 0) if Ω(v) is even,

(c0, 0, c2, 0, . . . , cΩ(v)−1, 0, 0, . . . , 0) otherwise.

The set FP contains all tuples (c0, 0, c2, . . . , cm) in which some counter
cj = nj + 1 reached the maximum possible value.

The intuition behind MP is that it counts, for each even priority p,
how many positions with priority p were seen without any lower
priority in between. If more than np such positions are seen, then at
least one must have been repeated, which guarantees that MP is a
judge.

Lemma 2.12. For each finite parity game G the automaton MP con-
structed above is a judge for G.

Proof. We need to show that MP exhibits the two properties character-
ising a judge:

(1) if v0 . . . is winning for Player 0, then there is a k such that mk ∈ F,
(2) if, for some k, mk ∈ F, then there exist i < j ≤ k such that vi = vj

and min{Ω(vi+1), Ω(vi+2), . . . , Ω(vj)} is even.

To see (1), assume that v0v1 . . . is a play winning for Player 0. Let
k be such an index that Ω(vk) is even, appears infinitely often in
Ω(vk)Ω(vk+1) . . ., and no priority higher than Ω(vk) appears in this
play suffix. Then, starting from vk, the counter cΩ(vk) will never be
decremented, but it will be incremented infinitely often. Thus, for a
finite game G, it will reach nΩ(vk) + 1 at some point, i.e. a state in FP.

To prove (2), let v0v1 . . . vk be such a prefix of a play that after vk

some counter cp is set to np + 1 for an even priority p. Let vi0 be the last
position at which this counter was 0, and vim the subsequent positions
at which it was incremented, up to inp = k. All positions vi0 , vi1 , . . . , vinp

have priority p, but since there are only np different positions with
priority p, we get that, for some k < l, vik

= vil
. Now ik and il are the

positions required to witness (2), because indeed the minimum priority
between ik and il is p since cp was not reset in between. q.e.d.

30

2 Parity Games and Fixed-Point Logics

For a parity game G with an even number of priorities d, the above
presented judge has size n0 · n2 · · · nd, which is at most (n

d/2)d/2. We
get the following corollary.

Corollary 2.13. Parity games can be solved in time O((n
d/2)d/2).

Notice that the algorithm using a judge has high space demand:
Since the product game G ×MP must be explicitly constructed, the
space complexity of this algorithm is the same as its time complexity.
There is a method to improve the space complexity by storing the
maximal counters the judge MP uses in each position and lifting such
annotations. This method is called game progress measures for parity
games. We will not define it here, but the equivalence to modal µ-
calculus proven in the next chapter will provide another algorithm for
solving parity games with polynomial space complexity.

2.2 Fixed-Point Logics

We will define two fixed-point logics, the modal µ-calculus, Lµ, and the
first-order least fixed-point logic, LFP, which extend modal logic and
first-order logic, respectively, with the operators for least and greatest
fixed-points.

The syntax of Lµ is analogous to modal logic, with two additional
rules for building least and greatest fixed-point formulas:

µX.ϕ(X) and νX.ϕ(X)

are Lµ formulas if ϕ(X) is, where X is a variable that can be used in ϕ

the same way as predicates are used, but must occur positively in ϕ, i.e.
under an even number of negations (or, if ϕ is in negation normal form,
simply non-negated).

The syntax of LFP is analogous to first-order logic, again with two
additional rules for building fixed-points, which are now syntactically
more elaborate. Let ϕ(T, x1, x2, . . . xn) be a LFP formula where T stands
for an n-ary relation and occurs only positively in ϕ. Then both

[lfp Tx̄.ϕ(T, x̄)](ā) and [gfp Tx̄.ϕ(T, x̄)](ā)

31

2.2 Fixed-Point Logics

are LFP formulas, where a = a1 . . . an.
To define the semantics of Lµ and LFP, observe that each formula

ϕ(X) of Lµ or ϕ(T, x̄) of LFP defines an operator Jϕ(X)K : P(V) →
P(V) on states V of a Kripke structure K and Jϕ(T, x̄)K : P(An) →
P(An) on tuples from the universe of a structure A. The operators
are defined in the natural way, mapping a set (or relation) to a set or
relation of all these elements, which satisfy ϕ with the former set taken
as argument:

Jϕ(X)K(B) = {v ∈ K : K, v |= ϕ(B)}, and

Jϕ(T, x̄)K(R) = {ā ∈ A : A |= ϕ(R, ā)}.

An argument B is a fixed-point of an operator f if f (X) = X, and to
complete the definition of the semantics, we say that µX.ϕ(X) defines
the smallest set B that is a fixed-point of Jϕ(X)K, and νX.ϕ(X) defines the
largest such set. Analogously, [lfp Tx̄.ϕ(T, x̄)](x̄) and [gfp Tx̄.ϕ(T, x̄)](x̄)
define the smallest and largest relations being a fixed-point of Jϕ(T, x̄)K,
respectively. In a few paragraphs, we will give an alternative characteri-
sation of least and greatest fixed-points, which is better tailored towards
an algorithmic computation.

To justify this definition, we have to assure that all notions are well-
defined, i.e., in particular, we have to show that the operators actually
have fixed-points, and that least and greatest fixed-points always exist.
In fact, this relies on the monotonicity of the operators used.

Definition 2.14. An operator F is monotone if

X ⊆ Y =⇒ F(X) ⊆ F(Y).

The operators Jϕ(X)K and Jϕ(T, x̄)K are monotone because we
assumed that X (or T) occurs only positively in ϕ, and, except for
negation, all other logical operators are monotone (the fixed-point
operators as well, as we will see). Each monotone operator not only
has unique least and greatest fixed-points, but these can be calculated
iteratively, as stated in the following theorem.

Definition 2.15. Let A be a set, and F : P(Ak) → P(Ak) be a monotone

32

2 Parity Games and Fixed-Point Logics

operator. We define the stages Xα of an inductive fixed-point process:

X0 := ∅

Xα+1 := f (Xα)

Xλ :=
⋃

α<λ

Xα for limit ordinals λ.

Due to the monotonicity of F, the sequence of stages is increasing, i.e.
Xα ⊆ Xβ for α < β, and hence for some γ, called the closure ordinal,
we have Xγ = Xγ+1 = F(Xγ). This fixed-point is called the inductive
fixed-point and denoted by X∞.

Analogously, we can define the stages of a similar process:

X0 := Ak

Xα+1 := F(Xα)

Xλ :=
⋂

α<λ

Xα for limit ordinals λ.

which yields a decreasing sequence of stages Xα that leads to the
inductive fixed-point X∞ := Xγ for the smallest γ such that Xγ = Xγ+1.

Theorem 2.16 (Knaster, Tarski). Let F be a monotone operator. Then
the least fixed-point lfp(F) and the greatest fixed-point gfp(F) of F
exist, they are unique and correspond to the inductive fixed-points, i.e.
lfp(F) = X∞, and gfp(F) = X∞.

To understand the inductive evaluation let us consider an example.
We will evaluate the formula µX.(P ∨ ♦X) on the following Kripke
structure:

K = ({0, . . . , n}, {(i, i + 1) | i < n}, {n}).

The structure K represents a path of length n + 1 ending in a position
marked by the predicate P. The evaluation of this least fixed-point
formula starts with X0 = ∅ and X1 = P = {n}, and in step i + 1 all
nodes having a successor in Xi are added. Therefore, X2 = {n− 1, n},
X3 = {n− 2, n− 1, n}, and in general Xk = {n− k + 1, . . . , n}. Finally,
Xn+1 = Xn+2 = {0, . . . , n}. As you can see, the formula µX.(P ∨ ♦X)

33

2.3 Model Checking Games for Fixed-Point Logics

describes the set of nodes from which P is reachable. This example
shows one motivation for the study of fixed-point logics: It is possible
to express transitive closures of various relations in such logics.

2.3 Model Checking Games for Fixed-Point Logics

In this section we will see that parity games are the model checking
games for LFP and Lµ.

We will construct a parity game G(A, Ψ(ā)) from a formula Ψ(x̄) ∈
LFP, a structure A and a tuple ā by extending the FO game with the
moves

[fp Tx̄.ϕ(T, x̄)](ā) → ϕ(T, ā)

and

Tb̄ → ϕ(T, b̄).

We assign priorities Ω(ϕ(ā)) ∈ N to every instantiation of a subformula
ϕ(x̄). Therefore, we need to make some assumptions on Ψ:

• Ψ is given in negation normal form, i.e. negations occur only in
front of atoms.

• Every fixed-point variable T is bound only once in a formula
[fp Tx̄.ϕ(T, x̄)].

• In a formula [fp Tx̄.ϕ(T, x̄)] there are no other free variables besides
x̄ in ϕ.

Then we can assign the priorities using the following schema:

• Ω(Tā) is even if T is a gfp-variable, and Ω(Tā) is odd if T is an
lfp-variable.

• If T′ depends on T (i.e. T occurs freely in [fp T′ x̄.ϕ(T, T′, x̄)]), then
Ω(Tā) ≤ Ω(T′ b̄) for all ā, b̄.

• Ω(ϕ(ā)) is maximal if ϕ(ā) is not of the form Tā.

Remark 2.17. The minimal number of different priorities in the game
G(A, Ψ(ā)) corresponds to the alternation depth of Ψ.

Before we provide the proof that parity games are in fact the
appropriate model checking games for LFP and Lµ, we introduce the
notion of an unfolding of a parity game.

34

2 Parity Games and Fixed-Point Logics

Let G = (V, V0, V1, E, Ω) be a parity game. We assume that the
lowest priority m = minv∈V Ω(v) is even and that for all positions
v ∈ V with minimal priority Ω(v) = m we have a unique successor
vE = {s(v)}. This assumption can be easily satisfied by changing the
game slightly.

We define the set

T = {v ∈ V : Ω(v) = m}

of positions with minimal priority. For any such set T we get a modified
game G− = (V, V0, V1, E−, Ω) with E− = E \ (T ×V), i.e., positions in
T are rendered terminal positions.

Additionally, we define a sequence of games Gα = (V, Vα
0 , Vα

1 , E−, Ω)
that only differ in the assignment of the terminal positions in T to
the players. For this purpose, we use a sequence of disjoint pairs
of sets Tα

0 and Tα
1 such that each pair partitions the set T, and let

Vα
σ = (Vσ \ T) ∪ Tα

1−σ, i.e., Player σ wins at final positions v ∈ Tα
σ . The

sequence of partitions is inductively defined depending on the winning
regions of the players in the games Gα as follows:

• T0
0 := T,

• Tα+1
0 := {v ∈ T : s(v) ∈ Wα

0 } for any ordinal α,

• Tλ
0 :=

⋃
α<λ Tα

0 if λ is a limit ordinal,

• Tα
1 = T \ Tα

0 for any ordinal α.

We have

• W0
0 ⊇ W1

0 ⊇ W2
0 ⊇ . . . ⊇ Wα

0 ⊇ Wα+1
0 . . .

• W0
1 ⊆ W1

1 ⊆ W2
1 ⊆ . . . ⊆ Wα

1 ⊆ Wα+1
1 . . .

So there exists an ordinal α ≤ |V| such that Wα
0 = Wα+1

0 = W∞
0 and

Wα
1 = Wα+1

1 = W∞
1 .

Lemma 2.18 (Unfolding Lemma).

W0 = W∞
0 and W1 = W∞

1 .

Proof. Let α be such that W∞
0 = Wα

0 and let f α be a positional winning

35

2.3 Model Checking Games for Fixed-Point Logics

strategy for Player 0 from Wα
0 in G. Define:

f : V0 → V : v 7→
 f α(v) if v ∈ V0 \ T,

s(v) if v ∈ V0 ∩ T.

A play π consistent with f that starts in W∞
0 never leaves W∞

0 :

• If π(i) ∈ W∞
0 \ T, then π(i + 1) = f α(π(i)) ∈ Wα

0 = W∞
0 (fα is a

winning strategy in Gα).

• If π(i) ∈ W∞
0 ∩ T = Wα

0 ∩ T = Wα+1
0 ∩ T, then π(i) ∈ Tα+1

0 , i.e.
π(i) is a terminal position in Gα from which Player 0 wins, so by
the definition of Tα+1

0 we have π(i + 1) = s(v) ∈ Wα
0 = W∞

0 .

Thus, we can conclude that Player 0 wins π:

• If π hits T only finitely often, then from some point onwards π is
consistent with f α and stays in Wα

0 which results in a winning play
for Player 0.

• Otherwise, π(i) ∈ T for infinitely many i. Since we had Ω(t) =
m ≤ Ω(v) for all v ∈ V, t ∈ T, the lowest priority seen infinitely
often is m, which we have assumed to be even, so Player 0 wins π.

For v ∈ W∞
1 , we define ρ(v) = min{β : v ∈ Wβ

1 } and let gβ be

a positional winning strategy for Player 1 on Wβ
1 in Gβ. We define a

positional strategy g of Player 1 in G∞ by:

g : V1 → V, v 7→

gρ(v)(v) if v ∈ W∞

1 \ T ∩V1

s(v) if v ∈ T ∩V1

arbitrary otherwise

Let π = π(0)π(1) . . . be a play consistent with g and π(0) ∈ W∞
1 .

Claim 2.19. Let π(i) ∈ W∞
1 . Then

(1) π(i + 1) ∈ W∞
1 ,

(2) ρ(π(i + 1)) ≤ ρ(π(i))

(3) π(i) ∈ T ⇒ ρ(π(i + 1)) < ρ(π(i)).

36

2 Parity Games and Fixed-Point Logics

Proof. Case (1): π(i) ∈ W∞
1 \ T, ρ(π(i)) = β (so π(i) ∈ Wβ

1). We

have π(i + 1) = g(π(i)) = gβ(π(i)), so π(i + 1) ∈ Wβ
1 ⊆ W∞

1 and
ρ(π(i + 1)) ≤ β = ρ(π(i)).
Case (2): π(i) ∈ W∞

1 ∩ T, ρ(π(i)) = β. Then we have π(i) ∈ W∞
1 ,

β = γ + 1 for some ordinal γ, and π(i + 1) = s(π(i)) ∈ Wγ
1 , so

π(i + 1) ∈ W∞
1 and ρ(π(i + 1)) ≤ γ < β = ρ(π(i)). q.e.d.

As there is no infinite descending chain of ordinals, there exists an
ordinal β such that ρ(π(i)) = ρ(π(k)) = β for all i ≥ k, which means
that π(i) ̸∈ T for all i ≥ k. As π(k)π(k + 1) . . . is consistent with gβ

and π(k) ∈ Wβ
1 , so π is won by Player 1.

Therefore we have shown that Player 0 has a winning strategy
from all vertices in W∞

0 and Player 1 has a winning strategy from all
vertices in W∞

1 . As V = W∞
0 ∪W∞

1 , this shows that W0 = W∞
0 and

W1 = W∞
1 . q.e.d.

We can now give the proof that parity games are indeed appropriate
model checking games for LFP and Lµ.

Theorem 2.20. If A |= Ψ(ā), then Player 0 has a winning strategy in the
game G(A, Ψ(ā)) starting at position Ψ(ā).

Proof. By structural induction over Ψ(ā). We will only consider the inter-
esting cases Ψ(ā) = [gfp Tx̄.ϕ(T, x̄)](ā) and Ψ(ā) = [lfp Tx̄.ϕ(T, x̄)](ā).

Let Ψ(ā) = [gfp Tx̄.ϕ(T, x̄)](ā). In the game G(A, Ψ(ā)), the posi-
tions Tb̄ have priority 0. Every such position has a unique successor
ϕ(T, b̄), so the unfoldings Gα(A, Ψ(ā)) are well defined.

Let us take the chain of steps of the gfp-induction of ϕ(x̄) on A.

X0 ⊇ X1 ⊇ . . . ⊇ Xα ⊇ Xα+1 ⊇ . . .

We have

A |= Ψ(ā) ⇔ ā ∈ gfp(ϕA)

⇔ ā ∈ Xα for all ordinals α

⇔ ā ∈ Xα+1 for all ordinals α

⇔ (A, Xα) |= ϕ(ā) for all ordinals α.

37

2.3 Model Checking Games for Fixed-Point Logics

Induction hypothesis: For every X ⊂ Ak

(A, X) |= ϕ(b̄) iff Player 0 has a winning strategy in

G((A, xα), ϕ(ā)) from ϕ(ā).

We show: If Player 0 has a winning strategy in G((A, xα), ϕ(ā)) starting
at position ϕ(ā), then Player 0 has a winning strategy in Gα(A, Ψ(ā))
starting at position ϕ(ā).

By the unfolding lemma, the second statement is true for all or-
dinals α if and only if Player 0 has a winning strategy in G(A, Ψ(ā)
starting at ϕ(ā).

As ϕ(ā) is the only successor of Ψ(ā) = [gfp Tx̄.ϕ(T, x̄)](ā), this
holds exactly if Player 0 has a winning strategy in G(A, Ψ(ā)) starting
at Ψ(ā).

It remains to show that Player 0 has indeed a winning strategy in
the game G((A, xα), ϕ(ā)) starting at the position ϕ(ā).

There are few differences between G((A, xα), ϕ(ā)) and the unfold-
ing Gα(A, Ψ(ā)):

• In Gα(A, Ψ(ā)), there is an additional position Ψ(ā), but this posi-
tion is not reachable.

• The assignment of the atomic propositions Tb̄:

– Player 0 wins at position Tb̄ in G((A, xα), ϕ(ā)) if and only if
b̄ ∈ Xα.

– Player 0 wins at position Tb̄ in Gα(A, Ψ(ā)) if and only if
Tb̄ ∈ Tα

0 .

So we need to show using an induction over α that

b̄ ∈ Xα iff Tb̄ ∈ Tα
0 .

Base case α = 0: X0 = Ak and T0
α = T = {Tb̄ : b̄ ∈ Ak}.

Induction step α = γ + 1: Then b̄ ∈ Xα = Xα+1 if and only if (A, Xγ) |=
ϕ(b̄), which in turn holds if Player 0 wins G((A, Xγ), ϕ(b̄)) starting
at ϕ(b̄). By induction hypothesis, this holds if and only if Player 0
wins the unfolding Gγ(A, Ψ(ā)) starting at ϕ(b̄) = s(Tb̄) if and only if
Tb̄ ∈ Tγ+1

0 = Tα
0 .

38

2 Parity Games and Fixed-Point Logics

Induction step with α being a limit ordinal: We have that b̄ ∈ Xα if b̄ ∈ Xγ

for all ordinals γ < α, which holds, by induction hypothesis, if and only
if Tb̄ ∈ Tγ

0 for all γ < α, which is equivalent to Tb̄ ∈ Tα
0 .

The proof for Ψ(ā) = [gfp Tx̄.ϕ(T, x̄)](ā) is analogous. q.e.d.

2.3.1 Defining Winning Regions in Parity Games

To conclude, we consider the converse question—whether winning
regions in a parity game can be defined in fixed-point logic—and show
that, given an appropriate representation of parity games as structures,
winning regions are definable in the µ-calculus.

To represent a parity game G = (V, V0, V1, E, Ω) with priori-
ties Ω(V) = {0, 1, . . . , d − 1}, we use the Kripke structure KG =
(V, V0, V1, E, P0, . . . , Pd−1). The universe and edge relation of this Kripke
structure are the same as in the parity game, and so are the predicates
V0 and V1 assigning positions to players. The only difference is in
the predicates Pj, which are used to explicitly represent positions with
priority j, i.e. we define Pj = {v ∈ V : Ω(v) = j}.

Given the above representation, the µ-calculus formula

ϕWin
d = νX0.µX1.νX2. . . . λXd−1

d−1∨
j=0

(
(V0 ∧ Pj ∧♦Xj)∨

(V1 ∧ Pj ∧�Xj)
)
,

where λ = ν if d is odd, and λ = µ otherwise, defines the winning
region of Player 0 in the sense of the following theorem.

Theorem 2.21. KG , v |= ϕWin
d if and only if Player 0 has a winning

strategy from v0 in G.

Proof (Idea). The model checking game for ϕWin
d on KG is essentially the

same as the game G itself, up to some negligible modifications:

• eliminate moves after which the opponent wins in at most two
steps (e.g. Verifier would never move to a position (V0 ∧ Pj ∧♦Xj, v)
if v was not a vertex of Player 0 or did not have priority j),

• contract sequences of trivial moves and remove the intermediate
positions.

A schematic view of a model checking game for ϕWin
d is sketched in

Figure 2.2. q.e.d.

39

2.3 Model Checking Games for Fixed-Point Logics

µX
0

...
νX

1
...

µX
2

...
...

µ
X

k
...

...

λ
X

d−
1 ∨

...

∨
d−

1
j=

0
((V

0 ∧
Pj ∧

♦
X

j)∨
(V

1 ∧
Pj ∧

�
X

j))∨
Λ

V
0 ∧

P0 ∧
♦

X
0

V
1 ∧

P0 ∧
�

X
0

...
V

0 ∧
Pk ∧

♦
X

k
V

1 ∧
Pk ∧

�
X

k
...

V
0 ∧

Pd−
1 ∧

♦
X

d−
1

V
1 ∧

Pd−
1 ∧

�
X

d−
1

V
0

♦
X

k
Pk

V
1

�
X

k

X
k

...

...

...

Figure
2.2.Part

of
a

m
odelchecking

gam
e

for
ϕ

W
in

d
.

40

3 Infinite Games

In this chapter we want to discuss a special kind of two-player zero-sum
games of perfect information. These games are played by two players, and
one player’s gain is compensated by the other player’s loss, hence the
name zero-sum games. Chess and Go are examples of zero-sum games:
a win for one player is a loss for the other.

We will start with formal definitions of the basic notions that are
used throughout this chapter.

A game is a pair G = (G, Win) where G = (V, V0, V1, E, Ω) is a
directed graph with V = V0 ·∪ V1 and Ω : V → C for a finite set C of
priorities and Win ⊆ Cω . We call G the arena of G and Win the winning
condition of G.

We will often use the identity function for Ω if we want to define
winning conditions depending on the visited vertices of a play. Note
that this violates the assumption that the set of priorities is finite if G
itself is infinite.

A play of G is a finite or infinite sequence π = v0v1v2 . . . ∈ V≤ω

such that (vi, vi+1) ∈ E for all i. A finite play is lost by the player
who cannot move any more. An infinite play π is won by Player 0 if
Ω(π) = Ω(v0)Ω(v1) . . . ∈ Win, otherwise Player 1 wins (there are no
draws).

A strategy for Player σ is a function f : V∗Vσ → V such that
(v, f (xv)) ∈ E for all x ∈ V∗ and v ∈ Vσ. Thus, a strategy maps prefixes
of plays which end in a position in Vσ to legal moves of Player σ.

A play π = v0v1 . . . is consistent with a strategy f for Player σ

if for all proper prefixes v0 . . . vn of π such that vn ∈ Vσ we have
vn+1 = f (v0 . . . vn). We say that f is a winning strategy from position v0

if every play starting in v0 that is consistent with f is won by Player σ.

41

3.1 Topology

The set

Wσ = {v ∈ V : Player σ has a winning strategy from v}

is the winning region of Player σ. In zero-sum games it always holds
that W0 ∩W1 = ∅.

We call a game G determined if W0 ∪W1 = V, i.e. if from each
position one player has a winning strategy.

As shown in the first chapter, games where Win is a reachability
condition are determined. Recall that Win is a reachability condition if
there exists a subset D ⊆ C such that each play that reaches D is won
by Player 0, i.e. π ∈ Win iff π[i] ∈ D for some i.

In the previous chapter, we learnt that parity games are determined
as well. But what are the properties of Win that guarantee determinacy?
Are there non-determined games at all? To answer these questions, we
need topological arguments.

3.1 Topology

Definition 3.1. A topology on a set S is defined by a collection of open
subsets of S. It is required that

• ∅, and S are open;
• if X and Y are open, then X ∩Y is open;
• if {Xi : i ∈ I} is a family of open sets, then

⋃
i∈I Xi is open.

If O ⊆ P(S) is a collection of open sets, we call the pair (S,O) a
topological space.

Often, a topology is defined by its base: A set B of open subsets of
S such that every open set can be represented as a union of sets in B.

Example 3.2. The standard topology on R is defined by the base consist-
ing of all open intervals (a, b) ⊆ R.

In our setting, we will only be concerned with the following topol-
ogy on Bω , which is due to Cantor. Its base consists of all sets of the
form z↑ := z · Bω for z ∈ B∗. Consequently, a set X ⊆ Bω is open if
it is the union of sets z↑, i.e. if there exists a set W ⊆ B∗ such that

42

3 Infinite Games

X = W · Bω . Moreover, a set X ⊆ Bω is closed if its complement Bω \ X
is open. For B = {0, 1}, this topology is called the Cantor space, and for
B = ω it is called the Baire space.

B∗z

z↑ Bω

Figure 3.1. Base sets in the Cantor space

Example 3.3.

• The base sets z↑ are both open and closed (clopen) since we have
Bω \ z↑ = Wz · Bω where Wz = {y ∈ B∗ | y ̸≤ z and z ̸≤ y}. (Here,
u ≤ v means that u is a prefix of v.)

• 0∗1{0, 1}ω is open. The complement {0ω} is closed, but not open.
• Ld = {x ∈ ωω : x contains d infinitely often} =

⋂
n∈ω

(ω∗ · d)n · ωω

is a countable union of open sets.

Next, we will give another useful characterisation of closed sets. A
tree T ⊆ B∗ is a prefix-closed set of finite words, i.e., z ∈ T and y ≤ z
implies y ∈ T. For a tree T let [T] be the set of infinite paths through T
(note: T ⊆ B∗, but [T] ⊆ Bω).

Example 3.4. Let T = 0∗ = {0n : n ∈ ω}. Then [T] = {0ω}.

Lemma 3.5. X ⊆ Bω is closed if and only if there exists a tree T ⊆ B∗

such that X = [T].

Proof.
(⇒) Let X be closed. Then there is a W ⊆ B∗ such that Bω \X = W · Bω .
Let T := {w ∈ B∗ | ∀z(z ≤ w ⇒ z /∈ W)}. T is closed under prefixes
and [T] = X.

43

3.1 Topology

(⇐) Let X = [T]. For every x /∈ [T] there exists a smallest prefix
wx ≤ x such that wx /∈ T. Let W := {wx : x /∈ X}. Then Bω \ X =
W · Bω is open, thus X is closed. q.e.d.

We call a set W ⊆ B∗ prefix-free if there is no pair x, y ∈ W such
that x < y.

Lemma 3.6.

(1) For every open set A ⊆ Bω there is a prefix-free set W ⊆ B∗ such
that A = W · Bω .

(2) Let B be a finite alphabet. A ⊆ Bω is clopen if and only if there is
a finite set W ⊆ B∗ such that A = W · Bω .

Proof.

(1) Let A = U · Bω for some open U ⊆ B∗. Define

W := {w ∈ U : U contains no proper prefix of w}.

W is prefix-free and W · Bω = U · Bω = A.

(2) (⇒) Let A ⊆ Bω be clopen. Thus there exist prefix-free sets U, V ⊆
B∗ such that A = U · Bω and Bω \ A = V · Bω . We will show that
U ∪ V is finite. Let T = {w ∈ B∗ | w has no prefix in U ∪ V}. If
T is finite, then U ∪ V is also finite. If U (or V) is infinite, then
T is also infinite since it contains all prefixes of elements of U
(respectively V). T is a finitely branching tree (since B is finite) that
contains no infinite path, since otherwise there exists an infinite
word x ∈ Bω corresponding to this path with x /∈ U · Bω ∪V · Bω =
A∪ (Bω \ A) = Bω . By König’s Lemma, this implies that T is finite.
(⇐) Let A = W · Bω where W ⊆ B∗ is finite. Let l = max{|w| :
w ∈ W}. Then Bω \ A = Z · Bω where

Z = {z ∈ B∗ : |z| = l and no prefix of z is in W}.

Thus, A is clopen. q.e.d.

Remark 3.7. Lemma 3.6 (2) does not hold for infinite alphabets B.

44

3 Infinite Games

Since we are investigating games on graphs, the topological space
that interests us is the space of all sequences in Vω (or Cω) that are
plays of a game G. As not all such sequences correspond to feasible
plays in G, it is not directly clear that the topological notions we defined
for Vω can be used for the space of all plays of G. But this is indeed
the case, as stated by the following lemma (which immediately follows
from Lemma 3.5 by considering the unravelling of G).

Lemma 3.8. Let G be a game with positions V. The set of all plays of G
is a closed subset of Vω .

Definition 3.9. Let T = (S,O) be a topological space. The class of Borel
sets is the smallest class B ⊆ P(S) that contains all open sets and is
closed under countable unions and complementation:

• O ⊆ B;
• If X ∈ B then S \ X ∈ B;
• If {Xn : n ∈ ω} ⊆ B then

⋃
n∈ω Xn ∈ B.

Most of the ω-languages L ⊆ Bω occurring in Computer Science
are Borel sets. Borel sets form a natural hierarchy of sets Σ0

α and Π0
α for

0 ≤ α < ω1, where ω1 is the first uncountable ordinal number.

• Σ0
1 = O;

• Π0
α = coΣ0

α := {S \ X : X ∈ Σ0
α} for every α;

• Σ0
α = {⋃n∈ω Xn : Xn ∈ Π0

β for β < α} for α > 0.

We are especially interested in the first levels of the Borel hierarchy:

• Σ0
1: Open sets

• Π0
1: Closed sets

• Σ0
2: Countable unions of closed sets

• Π0
2: Countable intersections of open sets

• Σ0
3: Countable unions of Π0

2-sets
• Π0

3: Countable intersections of Σ0
2-sets

Example 3.10. Let d ∈ B.

Ld = {x ∈ Bω : x contains d infinitely often} =
⋂

n∈ω

(B∗ · d)n · Bω︸ ︷︷ ︸
∈Σ0

1

.

Hence, Ld ∈ Π0
2.

45

3.1 Topology

To determine the membership of an ω-language in a class Σ0
α or

Π0
α of the Borel hierarchy and to relate the classes, we need a notion of

reducibility between ω-languages.

Definition 3.11. A function f : Bω → Cω is called continuous if f−1(Y)
is open for every open set Y ⊆ Cω .

Let X ⊆ Bω , Y ⊆ Cω . We say that X is Wadge reducible to Y, X ≤ Y,
if there exists a continuous function f : Bω → Cω such that f−1(Y) = X,
i.e. x ∈ X iff f (x) ∈ Y for all x ∈ Bω . For any such function f , we
write f : X ≤ Y.

Exercise 3.1. Prove that the relation≤ satisfies the following properties:

• X ≤ Y and Y ≤ Z imply X ≤ Z;
• X ≤ Y implies Bω \ X ≤ Cω \Y.

Theorem 3.12. Let X ≤ Y for Y ∈ Σ0
α (or Y ∈ Π0

α). Then X ∈ Σ0
α

(respectively X ∈ Π0
α).

Proof. The claim is true by definition for Σ0
1 (the open sets) and thus

also for Π0
1.

Let α > 1, f : X ≤ Y and Y ∈ Σ0
α. Y =

⋃
n∈ω Yn where Yn ∈⋃

β<α Π0
β. Define Xn := f−1(Yn). Then Xn ≤ Yn for all n ∈ ω, and thus

by induction hypothesis Xn ∈ ⋃β<α Π0
β. We have:

x ∈ X ⇔ f (x) ∈ Y

⇔ f (x) ∈ Yn for some n ∈ ω

⇔ x ∈ Xn for some n ∈ ω.

Hence, X =
⋃

n∈ω Xn ∈ Σ0
α. q.e.d.

In the following we will present a game-theoretic characterisation
of the relation ≤ in terms of the so-called Wadge game.

Definition 3.13. Let X ⊆ Bω , Y ⊆ Cω . The Wadge game W(X, Y) is an
infinite game between two players 0 and 1 who move in alternation.
In the i-th round, Player 0 chooses a symbol xi ∈ B, and afterwards
Player 1 chooses a (possibly empty) word yi ∈ C∗. After ω rounds,

46

3 Infinite Games

Player 0 has produced an ω-word x = x0x1x2 · · · ∈ Bω , and Player 1
has produced a finite or infinite word y = y0y1y2 · · · ∈ C≤ω . Player 1
wins the play (x, y) if and only if y ∈ Cω and x ∈ X ⇔ y ∈ Y.

Example 3.14. Let B = C = {0, 1}.

• Player 1 wins W(0∗1{0, 1}ω , (0∗1)ω).
Winning strategy for Player 1: Choose 0 until Player 0 chooses 1 for
the first time. Afterwards, always choose 1.

• Player 0 wins W((0∗1)ω , 0∗1{0, 1}ω).
Winning strategy for Player 0: Choose 1 until Player 1 chooses a
word containing 1 for the first time. Afterwards, always choose 0.

Theorem 3.15 (Wadge). Let X ⊆ Bω , Y ⊆ Cω . Then X ≤ Y if and only
if Player 1 has a winning strategy for W(X, Y).

Proof.
(⇐) A winning strategy of Player 1 for W(X, Y) induces a mapping
f : Bω → Cω such that x ∈ X iff y ∈ Y. It remains to show that f is
continuous. Let Z = U · Cω be open. For every u ∈ U denote by Vu

the set of all words v = x0x1 . . . xn ∈ B∗ such that u is the answer of
Player 1 to v, i.e. u = f (x0) f (x1) . . . f (xn). Then f−1(U · Cω) = V · Bω

where V :=
⋃

u∈U Vu.
(⇒) Let f : X ≤ Y. We construct a strategy for Player 1 as

follows. Player 1 has to answer Player 0’s moves x0x1x2 . . . by an ω-
word y0y1y2 . . . , but Player 1 can delay choosing yi until he knows
x0x1 . . . xn for some appropriate n ≥ i.

Choice of y0: Consider the partition Bω = ·⋃c∈C f−1(c · Cω). Since
c · Cω is clopen, f−1(c · Cω) is also clopen. For every x ∈ Bω there
exists c ∈ C such that x ∈ f−1(c · Cω), and since f−1(c · Cω) is clopen,
there is a prefix wx ≤ x such that wx · Bω ⊆ f−1(c · Cω). So Player 1
can wait until Player 0 has chosen a prefix w ∈ B∗ that determines the
set f−1(c · Cω) the word x will belong to and choose y0 = c.

The subsequent choices are done analogously. Let y0 . . . yi ∈ C∗ be
Player 1’s answer to x0 . . . xn ∈ B∗. For the choice of yi+1 we consider
the partition

x0 · · · xn · Bω = ·⋃
c∈C

f−1(y0 · · · yi · c · Cω).

47

3.1 Topology

Since the sets f−1(y0 · · · yi · c ·Cω) are clopen, after finitely many moves,
by choosing a prolongation x0 · · · xnxn+1 · · · xk, Player 0 has determined
in which set f−1(y0 · · · yi · c · Cω) the word x will be. Player 1 then
chooses yi+1 = c.

By using this strategy, Player 1 constructs the answer y = f (x) for
the sequence x chosen by Player 0. Otherwise, there would be a smallest
i such that yi ̸= f (xi). This is impossible since x ∈ f−1(y0 · · · yi · Cω).
Since f : X ≤ Y, we have x ∈ X iff y ∈ Y. q.e.d.

Definition 3.16. A set Y ⊆ Cω is Σ0
α-complete if:

• Y ∈ Σ0
α;

• X ≤ Y for all X ∈ Σ0
α.

Π0
α-completeness is defined analogously.

Note that Y is Σ0
α-complete if and only if Cω \Y is Π0

α-complete.

Proposition 3.17. Let B = {0, 1}. Then:

• 0∗1{0, 1}ω is Σ0
1-complete;

• {0ω} is Π0
1-complete;

• {0, 1}∗0ω is Σ0
2-complete;

• (0∗1)ω is Π0
2-complete.

Proof. By the above remark, it suffices to show that 0∗1{0, 1}ω and
(0∗1)ω are Σ0

1-complete and Π0
2-complete, respectively.

• We know that 0∗1{0, 1}ω ∈ Σ0
1. Let X = W · Bω be open. We

describe a winning strategy for Player 1 in W(X, 0∗1{0, 1}ω): Pick
0 until Player 0 has completed a word contained in W; from this
point onwards, pick 1. Hence, X ≤ 0∗1{0, 1}ω .

• We know that (0∗1)ω ∈ Π0
2. Let X =

⋂
n∈ω Wn · Bω ∈ Π0

2. We
describe a winning strategy for Player 1 in W(X, {0, 1}∗0ω): Start
with i := 0; for arbitrary i, answer with 1 and set i := i + 1 if the
sequence x0 . . . xk of symbols chosen by Player 0 so far has a prefix
in Wi, otherwise answer with 0 and leave i unaffected. q.e.d.

48

3 Infinite Games

3.2 Gale-Stewart Games

In this chapter we will show that, using the Axiom of Choice, one
can construct a non-determined game. Later, we will mention which
topological properties guarantee determinacy and how this is related to
logic. Before we proceed to discuss the games, we shortly introduce the
basic notions of ordinals, as these will be used in the proofs extensively.

3.2.1 Ordinals

The standard basic notion used in mathematics is the notion of a set,
and all mathematical theorems follow from the axioms of set theory. The
standard set of axioms, which (among others) guarantee the existence
of an empty set, an infinite set, and the powerset of any set, and that
no set is a member of itself (i.e. ∀x ¬x ∈ x) is called the Zermelo-Fränkel
Set Theory ZF. It is standard in mathematics to use ZF extended by the
axiom of choice AC, which together are called ZFC.

Since everything is a set in mathematics, there is a need to represent
numbers as sets. The standard way to do this is to start with the empty
set, let 0 = ∅, and proceed by induction, defining n + 1 = n ∪ {n}.
Here are the first few numbers in this coding:

• 0 = ∅,
• 1 = {∅},
• 2 = {∅, {∅}},
• 3 = {∅, {∅}, {∅, {∅}}}.

Observe that for each number n (as a set) it holds that

m ∈ n =⇒ m ⊆ n.

In particular, the relation ∈ is transitive in such sets, i.e. if k ∈ m and
m ∈ n then k ∈ n. We use this property of sets to define a more general
class of numbers.

Definition 3.18. A set α is an ordinal number if ∈ is transitive in α.

Except for natural numbers, what other ordinal numbers are there?
The first example is ω =

⋃
n n, the union of all natural numbers. Indeed,

49

3.2 Gale-Stewart Games

it is easy to check that the union of ordinals is always an ordinal as well
(as long as it is a set at all).

What is the next ordinal number after ω? We can again apply the
+1 operation in the same way as for natural numbers, so

ω + 1 = ω ∪ {ω} = {0, 1, 2, . . . , {0, 1, . . .}}.

But does it make sense to say that ω + 1 is the next ordinal, is there
an order on ordinals? In fact both, each ordinal as a set and all ordinals
as a class, are well-ordered, i.e. the following holds:

• for any two ordinal numbers α and β either α ⊆ β or β ⊆ α;

• there exists no infinite sequence of ordinals

α0 ⊇ α1 ⊇ α3 ⊇ · · · ;

• each ordinal α is well-ordered by ∈.

The well-ordering of ordinals follows from the mentioned axiom that
no set is a member of itself, ∀x ¬x ∈ x.

Ordinals are intimately connected to well-orders, in fact any struc-
ture (A, <) where < is a well-ordering is isomorphic to some ordinal
α. To get an intuition on how ordinals look like, consider the following
examples of countable ordinals: ω + 1, ω + ω, ω2, ω3, ωω .

The well-ordering of ordinals allows to define and prove the prin-
ciple of transfinite induction. This principle states that the class of all
ordinals is generated from ∅ by taking the successor (+1) and the union
on limit steps, as shown on the examples before. Specifically, for each
ordinal α it holds that either

• there exists an ordinal β < α such that α = β + 1 = β ∪ {β}, or

• there exist ordinals βγ < α such that α =
⋃

γ βγ.

Besides ordinals, we sometimes need cardinal numbers. A cardinal
number κ is the smallest ordinal α for which a bijection to κ exists.

50

3 Infinite Games

3.2.2 Non-determined Games

Let B be an alphabet (especially: B = {0, 1} or B = ω). In a Gale-
Stewart game the players alternately choose symbols from B and create
an infinite sequence π ∈ Bω . Gale-Stewart games can be described as
graph games in different ways. For B = {0, 1}, for example, as a game
on the infinite binary tree

T 2 = ({0, 1}∗, V0, V1, E, Ω),

where

V0 =
⋃

n∈ω

{0, 1}2n,

V1 =
⋃

n∈ω

{0, 1}2n+1,

E = {(x, xi) : x ∈ {0, 1}∗, i ∈ {0, 1}},

and Ω : {0, 1}∗ → {0, 1, ε} : ε 7→ ε, xi 7→ i. Alternatively, it can be
described as a game on the graph depicted in Figure 3.2. Similar game
graphs can be defined for arbitrary B.

0 0

1 1

Figure 3.2. Game graph for Gale-Stewart game over B = {0, 1}

Theorem 3.19 (Gale-Stewart). There exists a non-determined game.

We will present two proofs: The first one uses ordinal numbers
to enumerate the set of all strategies. The second one uses ultrafilters.
Both rely on the Axiom of Choice (AC).

Proof. Let T0 = {x ∈ B∗ : |x| even} and T1 = {x ∈ B∗ : |x| odd}. Then

F = { f : T0 → B} and G = {g : T1 → B}

51

3.2 Gale-Stewart Games

are the sets of strategies for Player 0 and for Player 1. Since B is
countable, we have |F| = |G| = |P(ω)| = 2ω . Thus, using the well-
ordering principle (which is equivalent to AC) we can enumerate the
strategies by ordinals less than 2ω :

F = { fα : α < 2ω} and G = {gα : α < 2ω}.

For strategies f and g let f ˆg ∈ Bω be the play uniquely defined by
f and g. We will construct two increasing sequences of sets Xα, Yα ⊆ Bω

for α < 2ω such that:

(1) Xα ∩Yα = ∅,
(2) |Xα|, |Yα| < 2ω ,
(3) for all β < α there exists f ∈ F such that f ˆgβ ∈ Xα,
(4) for all β < α there exists g ∈ G such that fβˆg ∈ Yα.

The construction proceeds as follows. For α = 0 let Xα := Yα := ∅.
For limit ordinals λ let Xλ :=

⋃
β<λ Xβ and Yλ :=

⋃
β<λ Yβ. Observe

that the properties above are indeed satisfied.
For a successor ordinal α = β + 1 consider the strategy fβ. The

cardinality of Xβ and Yβ is smaller than 2ω by Property (2). But there
are 2ω different plays consistent with fβ, so there is one of them which
is not yet in Xβ. Choose such a play (AC again) and add it to Yβ to
construct Yα. Analogously, find such a play for gβ (which additionally
is not in Yα) and add it to Xβ to construct Xα. Finally, we define
Win =

⋃
α<2ω Xα.

Assume that f = fα for some α < 2ω is a winning strategy for
Player 0. By the construction of Win, there is a strategy g ∈ G such that
fαˆg ∈ Yα and thus fαˆg /∈ Win, a contradiction.

Now assume that g = gα for some α < 2ω is a winning strategy for
Player 1. Analogously, there is a strategy f ∈ F such that f ˆgα ∈ Xα ⊆
Win, a contradiction as well. q.e.d.

The second proof we will present uses the concept of an ultrafilter.
The intuition behind a filter is that it is a family of large sets.

Definition 3.20. Let I be a non-empty set. A non-empty set F ⊆ P(I)
is a filter if

52

3 Infinite Games

(1) ∅ /∈ F,
(2) x ∈ F, y ∈ F ⇒ x ∩ y ∈ F, and
(3) x ∈ F, y ⊇ x ⇒ y ∈ F.

Example 3.21. The set {x ⊆ ω : ω \ x is finite} is a filter. We call it the
Fréchet filter.

Definition 3.22. An ultrafilter is a filter that satisfies the additional
requirement:

(4) for all x ⊆ I either x ∈ F or I \ x ∈ F.

Example 3.23. Fix n0 ∈ ω. Then U = {a ⊆ ω : n0 ∈ a} is an ultrafilter.

Note that the Fréchet filter is not an ultrafilter. Observe as well,
that any ultrafilter that contains a finite set must contain a singleton set
as well, so it is of the form presented in the example above. Does there
exist an ultrafilter which contains no finite set, i.e. one that contains the
Fréchet filter? Indeed, we can show it does.

Theorem 3.24. The Fréchet filter F can be expanded to an ultrafilter
U ⊃ F.

The proof uses AC or Zorn’s Lemma or the compactness theorem
for propositional logic and holds for every filter F ⊆ 2ω such that
a1 ∩ · · · ∩ am ̸= ∅ for all m ∈ N, a1, . . . , am ∈ F.

Proof. Let F be the Fréchet filter. We use propositional variables Xa for
every a ∈ P(ω). Let Φ = ΦU ∪ΦF where

ΦU = {¬X∅}
∪ {Xa ∧ Xb → Xa∩b : a, b ⊆ ω}
∪ {Xa → Xb : a ⊆ b, a, b ⊆ ω}
∪ {Xa ↔ ¬Xω\a : a ⊆ ω}

and

ΦF = {Xa : a ∈ F}.

Every model I of Φ defines an ultrafilter U which expands F,
namely U = {a ⊆ ω : I(Xa) = 1}. It remains to show that Φ is
satisfiable.

53

3.2 Gale-Stewart Games

By the compactness theorem, it suffices to show that every finite
subset of Φ is satisfiable. Hence, let Φ0 be a finite subset of Φ. Then
the set F0 = {a ∈ F : Xa ∈ Φ0 ∩ΦF} is also finite. Now consider the
following two cases:

• F0 = ∅. Define the interpretation I by

I(Xa) =

1 if 0 ∈ a,

0 otherwise.

Then I |= Φ0.
• F0 = {a1, . . . , am}. Since F is a filter, there exists n0 ∈ a1 ∩ · · · ∩ am.

Define the interpretation I by

I(Xa) =

1 if n0 ∈ a

0 otherwise

Again, we have I |= Φ0.

Hence, Φ0 is satisfiable. q.e.d.

We are now able to give an alternative proof of the fact that there
exists a non-determined game.

Proof (of Theorem 3.19). Let U be an ultrafilter that expands the Fréchet
filter. We construct a non-determined Gale-Stewart game over B = ω

with winning condition WinU as follows. Player 0 wins a play x =
x0x1 . . . ∈ ωω if

• Player 1 has played a number that is not higher than the previously
played one, i.e. min{j : xj+1 ≤ xj} exists and is odd, or

• x0 < x1 < x2 < . . . and

A(x) := [0, x0) ∪
⋃

i∈ω

[x2i+1, x2i+2) ∈ U

(see Figure 3.3).

We claim that the Gale-Stewart game with winning condition WinU

is not determined. Towards a contradiction, assume that Player 0 has a

54

3 Infinite Games

0 x0 x1 x2 x3 x4 x5 x6

Figure 3.3. The winning condition of the ultrafilter game

winning strategy f . Then we can construct the following play, which is
consistent with f :

• To x0 = f (ε), Player 1 answers with an arbitrary number x1 > x0.

• To x2i for i > 0, Player 1 chooses the number chosen by f for the
play prefix x0x2x3 . . . x2i.

Consequently, Player 1 plays with strategy f against strategy f .

0

1

0

1

x0

x1

x2

x3

x4

x5

x0

x2

x3

x4

x5

f f

f f

Figure 3.4. Playing the Ultrafilter game

This results in two plays x = x0x1x2 . . . and x′ = x0x2x3x4 . . . , where

x2i+2 = f (x0x1 . . . x2i+1),

but also

x2i+1 = f (x0x1 . . . x2i).

Both plays are consistent with the winning strategy f for Player 0. Thus
we have A(x) ∈ U and A(x′) ∈ U. But

A(x) = [0, x0) ∪
⋃

i∈ω

[x2i+1,x2i+2)

55

3.2 Gale-Stewart Games

and

A(x′) = [0, x0) ∪
⋃

i∈ω

[x2i+2,x2i+3).

Thus A(x) ∩ A(x′) = [0, x0) ∈ U. However, since U expands the
Fréchet filter, the co-finite set ω \ [0, x0) is in U and thus [0, x0) ̸∈ U, a
contradiction.

Analogously, one derives a contradiction from the assumption that
Player 1 has a winning strategy. q.e.d.

3.2.3 Determined Games

We call a game G = (V, V0, V1, E, Win) clopen, open, closed, etc., or sim-
ply a Borel game, if the winning condition Win ⊆ Vω has the respective
property.

Clopen games are basically finite games: If A ⊆ Bω is clopen, then
for every x ∈ Bω there exists a finite prefix wx ≤ x such that:

• If x ∈ A then wx ↑ ⊆ A;

• If x /∈ A then wx ↑ ⊆ Bω \ A.

Therefore, the game is equivalent to a finite game, in which a
play is decided after a prefix w has been seen such that w↑ ⊆ A or
w↑ ⊆ Bω \ A. To be more precise: Given a game G and a starting
position v0, consider the tree TG(v0), i.e. the unfolding of G to the tree
of all possible paths starting in v0. If A = W · Bω and Bω \ A = W ′ · Bω ,
then the tree can be truncated at the positions in W ∪W ′. The resulting
game is equivalent to the original game but allows only finite plays.

Corollary 3.25. Clopen games are determined.

A stronger result is the following:

Theorem 3.26. Every open game, and thus every closed game, is deter-
mined.

Proof. Let G = (V, V0, V1, E, Win) where Win = U · Vω is open. First,
we consider finite plays: Let Tσ = {v ∈ V1−σ : vE = ∅} and Aσ =

56

3 Infinite Games

Attrσ(Tσ). From every position v ∈ Aσ Player σ wins after finitely many
moves with the attractor strategy.

For the infinite plays consider

G ′ := G � V \ (A0 ∪ A1)

with positions V′ := V \ (A0 ∪ A1). In G ′ every play is infinite, and
Player 0 wins π = v0v1v2 . . . if and only if π ∈ U · Vω . Obviously,
Player 0 wins in G ′ starting from v0 if she can enforce a sequence
v0v1 . . . vn ∈ U. Then every infinite prolongation of this sequence is a
play in U ·Vω .

Instead of G ′ we consider again the equivalent game on the trees
T (v) = TG (v), the unfolding of G from v ∈ V. Positions in T (v) are
words over V: T (v) ⊆ V∗. Now consider the set

B0 = {v ∈ V′ : v ∈ AttrT (v)
0 (U ·V∗)}

of positions from where player 0 can enforce a play prefix in U · V∗.
From every position in V′ \ A0, Player 1 has a strategy to guarantee
that the play never reaches U · V∗ since V′ \ A0 is a trap for Player 0.
But a play that never reaches U ·V∗ is won by Player 1. It follows that
W0 = A0 ∪ B0 and W1 = A1 ∪ (V′ \ B0), and thus V = W0 ∪W1. q.e.d.

A much more subtle result was proven by Tony Martin in 1975.

Theorem 3.27 (Martin). All Borel games are determined.

Here are some winning conditions for frequently used games in
Computer Science:

• Muller conditions: Let B be finite, F0 ⊆ P(B), F1 = P(B) \ F0.
Player σ wins π ∈ Bω if and only if

Inf(π) := {b ∈ B : b appears infinitely often in π} ∈ Fσ.

Hence, the winning condition is the set

{x ∈ Bω : Inf(π) ∈ Fσ} =
⋃

X∈F0

(⋂
d∈X

Ld ∩
⋃

d/∈X
(Bω \ Ld)

)
,

57

3.3 Muller Games and Game Reductions

a finite Boolean combination of Π0
2-sets.

• Parity conditions (see previous chapter) are special cases of Muller
conditions and thus also finite Boolean combinations of Π0

2-sets.
• Every ω-regular language is a Boolean combination of Π0

2-sets.
This follows from the recognisability of ω-regular languages by
Muller automata and the fact that Muller conditions are Boolean
combinations of Π0

2-sets.

In practice, winning conditions are often specified in a suitable logic:
ω-words x ∈ Bω are interpreted as structures Ax = (ω, <, (Pb)b∈B)
with unary predicates Pb = {i ∈ ω : xi = b}. A sentence ψ (for example
in FO, MSO, etc.) over the signature {<} ∪ {Pb : b ∈ B} defines the
ω-language (winning condition) L(ψ) = {x ∈ Bω : Ax |= ψ}.

Example 3.28. Let B = {0, . . . , m}. The parity condition is specified by
the FO sentence

ψ :=
∧

b≤m
b odd

(
∃y∀z (y < z → ¬Pbz) ∨ ∧

c<b
∀y∃z (y < z ∧ Pcz)

)
.

We have:

• FO and LTL define the same ω-languages (winning conditions);
• MSO defines exactly the ω-regular languages;
• There are ω-languages that are definable in MSO but not in FO;
• ω-regular languages are Boolean combinations of Π0

2-sets.

In particular, graph games with winning conditions specified in LTL,
FO, MSO, etc. are Borel games and therefore determined.

3.3 Muller Games and Game Reductions

Muller games are infinite games played over an arena G = (V0, V1, E, Ω :
V → C) with a winning condition depending only on the set of pri-
orities seen infinitely often in a play. It is specified by a partition
P(C) = F0 ·∪ F1, and a play π = v0v1v2 . . . is won by Player σ if

Inf(π) = {c : Ω(vi) = c for infinitely many i ∈ ω} ∈ Fσ.

58

3 Infinite Games

We will only consider the case that the set C of priorities is finite. Then
Muller games are Borel games specified by the FO sentence

∨
X∈Fσ

(∧
c∈X

∀x∃y(x < y ∧ Pcy) ∧ ∧
c/∈X

∃x∀y(x < y → ¬Pcy)

)
.

So Muller games are determined. Parity conditions are special Muller
conditions, and we have seen that games with parity winning conditions
are even positionally determined. The question arises what kind of
strategies are needed to win Muller games. Unfortunately, there are
simple Muller games that are not positionally determined, even solitaire
games.

Example 3.29. Consider the game arena depicted in Figure 3.5 with the
winning condition F0 = {{1, 2, 3}}, i.e. all positions have to be visited
infinitely often. Obviously, player 0 has winning a winning strategy, but
no positional one: Any positional strategy of player 0 will either visit
only positions 1 and 2 or positions 2 and 3.

1 2 3

Figure 3.5. A solitaire Muller game

Although Muller games are, in general, not positionally deter-
mined, we will see that Muller games are determined via winning
strategies that can be implemented using finite memory. To this end, we
introduce the notions of a memory structure and of a memory strategy.
Although we will not require that the memory is finite, we will use
finite memory in most cases.

Definition 3.30. A memory structure for a game G with positions in V
is a triple M = (M, update, init), where M is a set of memory states,
update : M×V → M is a memory update function and init : V → M is a
memory initialisation function. The size of the memory is the cardinality
of the set M.

A strategy with memory M for Player σ is given by a next-move
function F : Vσ × M → V such that F(v, m) ∈ vE for all v ∈ Vσ, m ∈

59

3.3 Muller Games and Game Reductions

M. If a play, from starting position v0, has gone through positions
v0v1 . . . vn, the memory state is m(v0 . . . vn), defined inductively by
m(v0) = init(v0), and m(v0 . . . vivi+1) = update(m(v0 . . . vi), vi+1), and
in case vn ∈ Vσ the strategy leads to position F(vn, m(v0 . . . , vn)).

Remark 3.31. In case |M| = 1, the strategy is positional, and it can be
described by a function F : Vσ → V.

Definition 3.32. A game G is determined via memory M if it is deter-
mined and both players have winning strategies with memory M on
their winning regions.

Example 3.33. In the game from Example 3.29, Player 0 wins with a
strategy with memory M = ({1, 3}, update, init) where

• init(1) = init(2) = 1, init(3) = 3 and

• update(m, v) =

v if v ∈ {1, 3},

m if v = 2.

The corresponding strategy is defined by

F(v, m) =

2 if v ∈ {1, 3},

3 if v = 2, m = 1,

1 if v = 2, m = 3.

Let us consider a more interesting example now.

Example 3.34. Consider the game DJW2 with its arena depicted in
Figure 3.6. Player 0 wins a play π if the maximal number in Inf(π) is
equal to the number of letters in Inf(π). Formally:

F0 = {X ⊆ {1, 2, a, b} : |X ∩ {a, b}| = max(X ∩ {1, 2})}.

Player 0 has a winning strategy from every position, but no po-
sitional one. Assume that f : {a, b} → {1, 2} is a positional winning
strategy for Player 0. If f (a) = 2 (or f (b) = 2), then Player 1 always
picks a (respectively b) and wins, since this generates a play π with
Inf(π) = {a, 2} (respectively Inf(π) = {b, 2}). If f (a) = f (b) = 1, then
Player 1 alternates between a and b and wins, since this generates a play

60

3 Infinite Games

a 1

b 2

Figure 3.6. Muller game G = DJW2

π with Inf(π) = {a, b, 1}. However, Player 0 has a winning strategy that
uses the memory depicted in Figure 3.7. The corresponding strategy is
defined as follows:

F(c, m) =

1 if m = c#d,

2 if m = #cd.

b#a

#ab #ba

a#b

a, 1, 2

b

1, 2

b

b, 1, 2

a

a

1, 2

a

b

Figure 3.7. Memory for Player 0

Why is this strategy winning? If from some point onwards Player 1
picks only a or only b, then, from this point onwards, the memory state
is always b#a or a#b, respectively, and according to F Player 0 always

61

3.3 Muller Games and Game Reductions

picks 1 and wins. In the other case, Player 1 picks a and b again and
again and the memory state is #ab or #ba infinitely often. Thus Player 0
picks 2 infinitely often and wins as well.

The memory structure used in this example is a special case of the
LAR memory structure, which we will use for arbitrary Muller games.
But first, let us look at a Muller game with infinitely many priorities
that allows no winning strategy with finite memory but one with a
simple infinite memory structure:

Example 3.35. Consider the game with its arena depicted in Figure 3.8
and with winning condition F0 = {{0}}. It is easy to see that every
finite-memory strategy of Player 0 (the player who moves at position
0) is losing. A winning strategy with infinite memory is given by
the memory structure M = (ω, init, update) where init(v) = v and
update(m, v) = max(m, v) together with the strategy F defined by
F(0, m) = m + 1.

0

1 2 · · · n · · ·

Figure 3.8. A game where finite-memory strategies do not suffice

Given a game graph G = (V, V0, V1, E) and a memory structure
M = (M, update, init), we obtain a new game graph

G×M = (V × M, V0 × M, V1 × M, Eupdate)

where

Eupdate = {((v, m), (v′, m′)
)

: (v, v′) ∈ E and m′ = update(m, v′)}.

Obviously, every play (v0, m0)(v1, m1) . . . in G×M has a unique
projection to the play v0v1 . . . in G. Conversely, every play v0, v1, . . . in

62

3 Infinite Games

G has a unique extension to a play (v0, m0)(v1, m1) . . . in G×M with
m0 = init(v0).

Definition 3.36. For games G = (G, Ω, Win) and G ′ = (G′, Ω′, Win′),
we say that G reduces to G ′ via memory M, G ≤M G ′, if G′ = G×M and
every play in G ′ is won by the same player as the projected play in G.

Given a memory structure M for G and a memory structure M′

for G×M, we obtain a memory structure M∗ = M×M′ for G. The set
of memory locations is M× M′, and we have memory initialisation

init∗(v) = (init(v), init′(v, init(v)))

with the update function

update∗((m, m′), v) =

(update(m, v), update′(m′, (v, update(m, v)))).

Theorem 3.37. Suppose that G reduces to G ′ via memory M and that
Player σ has a winning strategy for G ′ with memory M′ from position
(v0, init(v0))). Then Player σ has a winning strategy for G with memory
M×M′ from position v0.

Proof. Given a strategy F′ : (Vσ × M)× M′ → (V × M) for Player σ

in G ′, we have to construct a strategy F : (Vσ × (M × M′)) → V for
Player σ in G. For any v ∈ Vσ and any pair (m, m′) ∈ M × M′ we
have that F′((v, m), m′) = (w, update(m, w)) for some w ∈ vE. We put
F(v, (m, m′)) = w. If a play in G that is consistent with F proceeds from
position v with current memory location (m, m′) to a new position w,
then the memory is updated to (n, n′) with n = update(m, w) and n′ =
update′(m′, (w, n)). In the extended play in G ′, we have an associated
move from (v, m) to (w, n) with memory update from m′ to n′. Thus,
every play in G from initial position v0 that is consistent with F is the
projection of a play in G ′ from (v0, init(v0)) that is consistent with F′.
Therefore, if F′ is a winning strategy from (v0, init(v0)), then F is a
winning strategy from v0. q.e.d.

63

3.3 Muller Games and Game Reductions

Corollary 3.38. Every game that reduces via memory M to a position-
ally determined game is determined via memory M.

Obviously, memory reductions between games can be composed.
If G reduces to G ′ with memory M = (M, update, init) and G ′ reduces
to G ′′ with memory M′ = (M′, update′, init′) then G reduces to G ′′ with
memory (M× M′, update′′, init′′) where

init′′(v) = (init(v), init′(v, init(v)))

and
update′′((m, m′), v) =

(update(m, v), update′(m′, (v, update(m, v)))).

The classical example of a game reduction with finite memory is
the reduction of Muller games to parity games via latest appearance
records. Intuitively, a latest appearance record (LAR) is a list of priorities
ordered by their latest occurrence. More formally, for a finite set C of
priorities, LAR(C) is the set of sequences c1 . . . ck#ck+1 . . . cl of elements
from C ·∪ {#} in which each priority c ∈ C occurs at most once and #
occurs precisely once. At a position v, the LAR c1 . . . ck#ck+1 . . . cl is
updated by moving the priority Ω(v) to the end, and moving # to the
previous position of Ω(v) in the sequence. For instance, at a position
with priority c2, the LAR c1c2c3#c4c5 is updated to c1#c3c4c5c2. (If Ω(v)
did not occur in the LAR, we simply append Ω(v) at the end). Thus,
the LAR memory for an arena with priority labelling Ω : V → C is the
triple (LAR(C), update, init) with init(v) = #Ω(v) and

update(c1 . . . ck#ck+1 . . . cl , v) =c1 . . . ck#ck+1 . . . clΩ(v) if Ω(v) ̸∈ {c1, . . . cl},

c1 . . . cm−1#cm+1 . . . clcm if Ω(v) = cm.

The hit set of an LAR c1 . . . ck#ck+1 . . . cl is the set {ck+1 . . . cl} of
priorities occurring after the symbol #. Note that if in a play π =
v0v1 . . . the LAR at position vn is c1 . . . ck#ck+1 . . . cl , then Ω(vn) = cl

64

3 Infinite Games

and the hit set {ck+1 . . . cl} is the set of priorities that have been visited
since the latest previous occurrence of cl in the play.

Lemma 3.39. Let π be a play of a Muller game G with finitely many
priorities, and let Inf(π) be the set of priorities occurring infinitely often
in π. Then the hit set of the latest appearance record is, from some
point onwards, always a subset of Inf(π) and infinitely often coincides
with Inf(π).

Proof. For each play π = v0v1v2 . . . there is a position vm such that
Ω(vn) ∈ Inf(π) for all n ≥ m. Since no priority outside Inf(π) is
seen after position vm, the hit set will, from that position onwards,
always be contained in Inf(π), and the LAR will always have the form
c1 . . . cj−1cj . . . ck#ck+1 . . . cl where c1, . . . cj−1 remains fixed and
Inf(π) = {cj, . . . , cl}. Since all priorities in Inf(π) are seen again and
again, it happens infinitely often that, among these, the one occurring
leftmost in the LAR is hit. At such positions, the LAR is updated to
c1, . . . , cj−1#cj+1 . . . clcj, and the hit set coincides with Inf(π). q.e.d.

Theorem 3.40. Every Muller game with finitely many priorities reduces
via LAR memory to a parity game.

Proof. Let G be a Muller game with game graph G, priority labelling
Ω : V → C and winning condition (F0,F1). We have to prove that
G ≤LAR G ′ for a parity game G ′ with game graph G× LAR(C) and an
appropriate priority labelling Ω′ on V × LAR(C), which is defined as
follows:

Ω′(v, c1c2 . . . ck#ck+1 . . . cl) =

2k if {ck+1, . . . , cl} ∈ F0,

2k + 1 if {ck+1, . . . , cl} ∈ F1.

Let π = v0v1v2 . . . be a play on G and fix a number m such that,
for all n ≥ m, Ω(vn) ∈ Inf(π) and the LAR at position vn has the form
c1 . . . cjcj+1 . . . ck#ck+1 . . . cl where Inf(π) = {cj+1, . . . cl} and the prefix
c1 . . . cj remains fixed. In the corresponding play π′ = (v0, r0)(v1, r1) . . .
in G ′, all nodes (vn, rn) for n ≥ m have a priority 2k + ρ with k ≥ j and
ρ ∈ {0, 1}. Assume that the play π is won by Player σ, i.e., Inf(π) ∈ Fσ.

65

3.3 Muller Games and Game Reductions

Since the hit set of the LAR coincides with Inf(π) infinitely often, the
minimal priority seen infinitely often on the extended play is 2j + σ.
Thus the extended play in the parity game G ′ is won by the same player
as the original play in G. q.e.d.

Corollary 3.41. Muller games are determined via finite memory strate-
gies. The size of the memory is bounded by (|C|+ 1)!.

The question arises which Muller conditions (F0,F1) guarantee
positional winning strategies for arbitrary game graphs? One obvious
answer are parity conditions. But there are others:

Example 3.42. Let C = {0, 1}, F0 = {C} and F1 = P(C) \ {C} =
{{0}, {1}, ∅}. (F0,F1) is not a parity condition, but every Muller game
with winning condition (F0,F1) is positionally determined.

Definition 3.43. The Zielonka tree for a Muller condition (F0,F1) over
C is a tree Z(F0,F1) whose nodes are labelled with pairs (X, σ) such
that X ∈ Fσ. We define Z(F0,F1) inductively as follows. Let C ∈ Fσ

and C0, . . . , Ck−1 be the maximal sets in {X ⊆ C : X ∈ F1−σ}. Then
Z(F0,F1) consists of a root, labelled with (C, σ), to which we attach as
subtrees the Zielonka trees Z(F0 ∩ P(Ci),F1 ∩ P(Ci)), i = 0, . . . , k− 1.

Example 3.44. Let C = {0, 1, 2, 3, 4} and F0 = {{0, 1}, {2, 3, 4}, {2, 3},
{2, 4}, {3}, {4}}, F1 = P(C) \ F0. The Zielonka tree Z(F0,F1) is de-
picted in Figure 3.9.

A set Y ⊆ C belongs to Fσ if there is a node of Z(F0,F1) that is
labelled with (X, σ) for some X ⊇ Y and for all children (Z, 1− σ) of
(X, σ) we have Y ̸⊆ Z.

Example 3.45. Consider again the tree Z(F0,F1) from Example 3.44. It
is the case that {2, 3} ∈ F0, since ({2, 3, 4}, 0) is a node of Z(F0,F1)
and

• {2, 3} ⊆ {2, 3, 4};

• {2, 3} ̸⊆ {2};

• {2, 3} ̸⊆ {3, 4}.

66

3 Infinite Games

C, 1

{0, 1}, 0

{0}, 1 {1}, 1

{2, 3, 4}, 0

{2}, 1 {3, 4}, 1

{3}, 0

∅, 1

{4}, 0

∅, 1

Figure 3.9. A Zielonka tree

{0, . . . , m− 1}, 0

{1, . . . , m− 1}, 1

{2, . . . , m− 1}, 0

{m− 2, m− 1}, σ

{m− 1}, 1− σ

Figure 3.10. The Zielonka tree of a parity-condition with m priorities

67

3.3 Muller Games and Game Reductions

The Zielonka tree of a parity-condition is especially simple, as
Figure 3.10 shows.

Besides parity games there are other important special cases of
Muller games. Of special relevance are games with Rabin and Streett
conditions because these admit positional winning strategies for one
player.

Definition 3.46. A Streett-Rabin condition is a Muller condition
(F0,F1) such that F0 is closed under union.

In the Zielonka tree for a Streett-Rabin condition, the nodes labelled
with (X, 1) have only one successor. It follows that if both F0 and F1

are closed under union, then the Zielonka tree Z(F0,F1) is a path,
which implies that (F0,F1) is equivalent to a parity condition.

In a Streett-Rabin game, Player 1 has a positional winning strat-
egy on his winning region. On the other hand, Player 0 can win on
his winning region via a finite-memory strategy, and the size of the
memory can be directly read off from the Zielonka tree. We present an
elementary proof of this result.

Theorem 3.47. Let G = (V, V0, V1, E, Ω) be a game with a Streett-Rabin
winning condition (F0,F1). Then G is determined, i.e. V = W0 ∪W1,
with a finite memory winning strategy for Player 0 on W0, and a
positional winning strategy for Player 1 on W1. The size of the memory
required by the winning strategy for Player 0 is bounded by the number
of leaves of the Zielonka tree Z(F0,F1).

Proof. We proceed by induction on the number of priorities in C or,
equivalently, the depth of the Zielonka tree Z(F0,F1). Let l be the
number of leaves of Z(F0,F1). We distinguish two cases.

Case 1: C ∈ F1. Let

X0 :=

{
v :

Player 0 has a winning strategy with memory

of size ≤ l from v

}
,

and X1 = V \ X0. It suffices to prove that Player 1 has a positional
winning strategy on X1. To construct this strategy, we combine three

68

3 Infinite Games

positional strategies of Player 1: A trap strategy, an attractor strategy,
and a winning strategy on a subgame with fewer priorities.

At first, we observe that X1 is a trap for Player 0. This means that
Player 1 has a positional trap strategy t on X1 to enforce that the play
stays within X1.

Since F0 is closed under union, there is a unique maximal sub-
set C′ ⊆ C with C′ ∈ F0. Let Y := X1 ∩ Ω−1(C \ C′), and let
Z = Attr1(Y) \ Y. Observe that Player 1 has a positional attractor
strategy a, by which he can force, from any position z ∈ Z, that the play
reaches Y.

Finally, let V′ = X1 \ (Y ∪ Z) and let G ′ be the subgame of G in-
duced by V′, with winning condition (F0 ∩ P(C′),F1 ∩ P(C′)) (see
Figure 3.11). Since this game has fewer priorities, the induction hypoth-
esis applies, i.e. we have V′ = W ′

0 ∪W ′
1, and Player 0 has a winning

strategy with memory ≤ l on W ′
0, whereas Player 1 has a positional

winning strategy g′ on W ′
1. However, W ′

0 = ∅: Otherwise we could
combine the strategies of Player 0 to obtain a winning strategy with
memory ≤ l on X0 ∪W ′

0) X0, a contradiction to the definition of X0.
Hence W ′

1 = V′.

X0

X1V′ Z Y

Ω−1(C′) Ω−1(C \ C′)

Figure 3.11. Constructing a winning strategy for Player 1

We can now define a positional strategy g for Player 1 on X1 by

69

3.3 Muller Games and Game Reductions

g(x) =

g′(x) if x ∈ V′,
a(x) if x ∈ Z,

t(x) if x ∈ Y.

Consider any play π that starts at a position v ∈ X1 and is consis-
tent with g. We have to show that π is won by Player 1. Obviously, π

stays within X1. If it hits Y ∪ Z only finitely often, then from some point
onwards it stays within V′ and coincides with a play consistent with
g′. It is therefore won by Player 1. Otherwise, π hits Y ∪ Z, and hence
also Y, infinitely often. Thus, Inf(π) ∩ (C \ C′) ̸= ∅ and Inf(π) ∈ F1.
So Player 1 has a positional winning strategy on X1.

Case 2: C ∈ F0. There exist maximal subsets C0, . . . , Ck−1 ⊆ C with
Ci ∈ F1 (see Figure 3.12). Observe that if D ∩ (C \ Ci) ̸= ∅ for all i < k
then D ∈ F0. Now let

X1 := {v ∈ V : Player 1 has a positional winning strategy from v},

and X0 = V \ X1. We claim that Player 0 has a finite memory winning
strategy of size ≤ l on X0. To construct this strategy, we proceed in
a similar way as above, for each of the sets C \ Ci. We will obtain
strategies f0, . . . , fk−1 for Player 0 such that each fi has finite memory
Mi, and we will use these strategies to build a winning strategy f on
X0 with memory M0 ∪ · · · ∪ Mk−1.

(C, 0)

(C0, 1) (C1, 1) . . . (Ck−1, 1)

Figure 3.12. The top of the Zielonka tree Z(F0,F1)

For i = 0, . . . , k− 1, let Yi = X0 ∩Ω−1(C \Ci), and Zi = Attr0(Yi) \
Yi, and let ai be a positional attractor strategy by which Player 0 can force
a play from any position in Zi to reach Yi. Furthermore, let Ui = X0 \

70

3 Infinite Games

(Yi ∪ Zi), and let Gi be the subgame of G induced by Ui with winning
condition (F0 ∩ P(Ci),F1 ∩ P(Ci)). The winning region of Player 1
in Gi is empty: Indeed, if Player 1 could win Gi from v, then, by the
induction hypothesis, he could win with a positional winning strategy.
By combining this strategy with the positional winning strategy of
Player 1 on X1, this would imply that v ∈ X1, but v ∈ Ui ⊆ V \ X1.

Hence, by the induction hypothesis, Player 0 has a winning strategy
fi with finite memory Mi on Ui. Let (fi + ai) be the combination of fi

with the attractor strategy ai, defined by

(fi + ai)(v) :=

 fi(v) if v ∈ Ui,

ai(v) if v ∈ Zi.
.

From any position v ∈ Ui ∪ Zi this strategy ensures that the play either
remains inside Ui and is winning for Player 1, or that it eventually
reaches a position in Yi.

We now combine the strategies (f0 + a0), . . . , (fk−1 + ak−1) to a
winning strategy f on X0, which ensures that either the play ultimately
remains within one of the regions Ui and coincides with a play ac-
cording to fi, or that it cycles infinitely often through all the regions
Y0, . . . , Yk−1.

At positions in Ỹ :=
⋂

i<k Yi, Player 0 just plays with a (positional)
trap strategy t ensuring that the play remains in X0. At the first position
v ̸∈ Ỹ, Player 0 takes the minimal i such that v ̸∈ Yi, i.e. v ∈ Ui ∪ Zi,
and uses the strategy (fi + ai) until a position w ∈ Yi is reached. At this
point, Player 0 switches from i to j = i + l (mod k) for the minimal l
such that w ̸∈ Yj. Hence w ∈ Uj ∪ Zj; Player 0 now plays with strategy
(f j + aj) until a position in Yj is reached. There Player 0 again switches
to the appropriate next strategy, as he does every time he reaches Ỹ.

Assuming that Mi ∩ Mj = ∅ for i ̸= j, it is not difficult to see that
f can be implemented with memory M = M0 ∪ · · · ∪ Mk−1. We leave
the formal definition of f as an exercise.

Note that, by the induction hypothesis, the size of the memory Mi

is bounded by the number of leaves of the Zielonka subtrees Z(F0 ∩

71

3.4 Complexity

P(Ci),F1 ∩ P(Ci)). Consequently, the size of M is bounded by the
number of leaves of Z(F0,F1).

It remains to prove that f is winning on X0. Let π be a play that
starts in X0 and is consistent with f . If π eventually remains inside
some Ui, then from some point onwards it coincides with a play that
is consistent with fi and is therefore won by Player 0. Otherwise, it is
easy to see that π hits each of the sets Y0, . . . , Yk−1 infinitely often. But
this means that Inf(π) ∩ (C \ Ci) ̸= ∅ for all i ≤ k; as observed above
this implies that Inf(π) ∈ F0. q.e.d.

An immediate consequence of Theorem 3.47 is that parity games
are positionally determined.

3.4 Complexity

We will now determine the complexity of computing the winning
regions for games over finite game graphs. The associated decision
problem is

Given: Game graph G, winning condition (F0,F1), v ∈ V,
σ ∈ {0, 1}.
Question: v ∈ Wσ?

For parity games, we already know that this problem is in NP∩ coNP,
and it is conjectured to be in P. Moreover, for many special cases, we
know that it is indeed in P. Now we will examine the complexity of
Streett-Rabin games and games with arbitrary Muller conditions.

Theorem 3.48. Deciding whether Player σ wins from a given position
in a Streett-Rabin game is

• coNP-hard for σ = 0,

• NP-hard for σ = 1.

Proof. It is sufficient to prove the claim for σ = 1 since Streett-Rabin
games are determined. We will reduce the satisfiability problem for

72

3 Infinite Games

Boolean formulae in CNF to the given problem. For every formula

Ψ =
∧
i

Ci, Ci =
∨

j
Yij

in CNF, we define the game GΨ as follows: Positions for Player 0 are the
literals X1, . . . , Xk,¬X1, . . . ,¬Xk occurring in Ψ; positions for Player 1
are the clauses C1, . . . , Cn. Player 1 can move from a clause C to a literal
Y ∈ C; Player 0 can move from Y to any clause. The winning condition
is given by

F0 = {Z : {X,¬X} ⊆ Z for at least one variable X}.

Obviously, (F0,F1) is a Streett-Rabin condition.

We claim that Ψ is satisfiable if and only if Player 1 wins GΨ (from
any initial position).

(⇒) Assume that Ψ is satisfiable. There exists a satisfying interpre-
tation I : {X1, . . . , Xk} → {0, 1}. Player 1 moves from a clause C to a
literal Y ∈ C such that JYKI = 1. In the resulting play only literals withJYKI = 1 are seen, and thus Player 1 wins.

(⇐) Assume that Ψ is unsatisfiable. It is sufficient to show that
Player 1 has no positional winning strategy. Every positional strategy
f for Player 1 chooses a literal Y = f (C) ∈ C for every clause C.
Since Ψ is unsatisfiable, there exists clauses C, C′ and a variable X such
that f (C) = X, f (C′) = ¬X. Otherwise, f would define a satisfying
interpretation for Ψ. Player 0’s winning strategy is to move from ¬X to
C and from any other literal to C′. Then X and ¬X are seen infinitely
often, and Player 0 wins. Thus, f is not a winning strategy for Player 1.
If Player 1 has no positional winning strategy, he has no winning
strategy at all.

Is Ψ 7→ GΨ a polynomial reduction? The problem that arises is the
winning condition: Both F0 and F1 contain exponentially many sets.
Moreover, the Zielonka tree Z(F0,F1) has exponential size. On the
other hand, F0 and F1 can be represented in a very compact way using
a Boolean formula in the following sense: Let (F0,F1) be a Muller
condition over C. A Boolean formula Ψ with variables in C defines the

73

3.4 Complexity

set FΨ = {Y ⊆ C : IY |= Ψ} where

IY(c) =

1 if c ∈ Y

0 if c /∈ Y.

Ψ defines (F0,F1) if FΨ = F0 (and thus F¬Ψ = F1). Representing
the winning condition by a Boolean formula makes the reduction a
polynomial reduction. q.e.d.

Another way of defining Streett-Rabin games is by a collection
of pairs (L, R) with L, R ⊆ C. The collection {(L1, R1), . . . , (Lk, Rk)}
defines the Muller condition (F0,F1) given by:

F0 = {X ⊆ C : X ∩ Li ̸= ∅ ⇒ X ∩ Ri ̸= ∅ for all i ≤ k}.

We have:

• Every Muller condition defined by a collection of pairs is a Streett-
Rabin condition.

• Every Streett-Rabin condition is definable by a collection of pairs.

• Representing a Streett-Rabin condition by a collection of pairs can
be exponentially more succinct than a representation by its Zielonka
tree or an explicit enumeration of F0 or F1: There are Streett-Rabin
conditions definable with k pairs such that the corresponding
Zielonka tree has k! leaves.

The reduction Ψ 7→ GΨ can be modified such that the winning
condition is given by 2m pairs, where m is the number of variables in Ψ:

L2i = {Xi}, R2i = {¬Xi}, L2i−1 = {¬Xi}, R2i−1 = {Xi}.

For the Streett-Rabin condition defined by {(L1, R1), . . . , (L2m, R2m)}
we have that

F1 =

Z :

Z contains a Literal Xi (or ¬Xi) such that the

complementary literal ¬Xi (respectively Xi) is

not contained in Z

 .

74

3 Infinite Games

The winning strategies used in the proof remain winning for the modi-
fied winning condition.

To prove the upper bounds for the complexity of Streett-Rabin
games we will consider solitaire games first.

Theorem 3.49. Let G be a Streett-Rabin game such that only Player 0
can do non-trivial moves. Then the winning regions W0 and W1 can be
computed in polynomial time.

Proof. Let us assume that the winning condition is given by the collec-
tion P = {(L1, R1), . . . , (Lk, Rk)} of pairs. It is sufficient to prove the
claim for W0 since Streett-Rabin games are determined. Every play π

will ultimately stay in a strongly connected set U ⊆ V such that all
positions in U are seen infinitely often. Therefore, we call a strongly
connected set U good for Player 0 if for all i ≤ k

Ω(U) ∩ Li ̸= ∅ ⇒ Ω(U) ∩ Ri ̸= ∅.

For every such U, Attr0(U) ⊆ W0. If U is not good for Player 0 then
there is a node in U which violates a pair (Li, Ri). In this case Player 0
wants to find a (strongly connected) subset of U where she can win
nevertheless. We can eliminate the pairs (Li, Ri) where Ω(U) ∩ Li = ∅
since they never violate the winning condition. On the other hand,
Player 0 loses if a node of

Ũ = {u ∈ U | Ω(u) ∈ Li for some i such that Ω(U) ∩ Ri = ∅}

is visited again and again. Thus we will reduce the game from U
to U \ Ũ with the modified winning condition P ′ = {(Li, Ri) ∈ P :
Ω(U) ∩ Li ̸= ∅}. This yields Algorithm 3.1.

The SCC decomposition can be computed in linear time. The
decomposition algorithm will be called less than |V| times, the rest are
elementary steps. Therefore, the algorithm runs in polynomial time.

It remains to show that W0 = WinReg(G,P):
(⊆) Let v ∈ W0. Player 0 can reach from v a strongly connected set

S that satisfies the winning condition. S is a subset of an SCC U of G. If
U satisfies the winning condition, then v ∈ WinReg(G,P). Otherwise,

75

3.4 Complexity

Algorithm 3.1. A polynomial time algorithm solving solitaire Streett-
Rabin games

Algorithm WinReg(G,P)
Input: Streett-Rabin game with game graph G and pairs condition P .
Output: W0, the winning region for Player 0.

W0 := ∅;
Decompose G into its SCCs;
For every SCC U do

P ′ := {(Li, Ri) : Ω(U) ∩ Li ̸= ∅};
Ũ := {u ∈ U : Ω(u) ∈ Li for some i such that Ω(U) ∩ Ri = ∅};
if Ũ = ∅ then W := W ∪U;
else W := W ∪WinReg(G �U\(̃U),P ′);

enddo;
W0 := Attr0(W);
Output W0;

S ⊆ U \ Ũ, and S is contained in an SCC of G �U\Ũ . The repetition of
the argument leads to S ⊆ W and therefore v ∈ WinReg(G,P)

(⊇) Let v ∈ WinReg(G,P). The algorithm finds a strongly con-
nected set U (an SCC of a subgraph) that is reachable from v and that
satisfies the winning condition. By moving from v into U, staying there,
and visiting all positions in U infinitely often, Player 0 wins. Thus
v ∈ W0. q.e.d.

Theorem 3.50. Deciding whether Player σ wins from a given position
in a Streett-Rabin game is

• coNP-complete for σ = 0,
• NP-complete for σ = 1.

Proof. It suffices to prove the claim for Player 1 since W0 is the comple-
ment of W1. Hardness follows from Theorem 3.48. To decide whether
v ∈ W1, guess a positional strategy for Player 1 and construct the in-
duced solitaire game, in which only Player 0 has non-trivial moves.
Then decide in polynomial time whether v is in the winning region of
Player 1 in the solitaire game (according to Theorem 3.49), i.e. whether

76

3 Infinite Games

the strategy is winning from v. If this is the case, accept; otherwise
reject. q.e.d.

Remark 3.51. The complexity of computing the winning regions in arbi-
trary Muller games depends to a great amount on the representation of
the winning condition. For any reasonable representation, the problem
is in Pspace, and many representations are so succinct as to render the
problem Pspace-hard. Only recently, it was shown that, given an ex-
plicit representation of the winning condition, the problem of deciding
the winner is in P.

77

4 Basic Concepts of Mathematical Game
Theory

Up to now we considered finite or infinite games

• with two players,
• played on finite or infinite graphs,
• with perfect information (the players know the whole game, the

history of the play and the actual position),
• with qualitative (win or loss) winning conditions (zero-sum games),
• with ω-regular winning conditions (or Borel winning conditions)

specified in a suitable logic or by automata, and
• with asynchronous interaction (turn-based games).

Those games are used for verification or to evaluate logic formulae.
In this section we move to concurrent multi-player games in which

players get real-valued payoffs. The games will still have perfect infor-
mation and additionally throughout this chapter we assume that the
set of possible plays is finite, so there exist only finitely many strategies
for each of the players.

4.1 Games in Strategic Form

Definition 4.1. A game in strategic form is described by a tuple Γ =
(N, (Si)i∈N , (pi)i∈N) where

• N = {1, . . . , n} is a finite set of players
• Si is a set of strategies for Player i
• pi : S → R is a payoff function for Player i

and S := S1 × · · · × Sn is the set of strategy profiles. Γ is called a zero-sum
game if ∑i∈N pi(s) = 0 for all s ∈ S.

79

4.1 Games in Strategic Form

The number pi(s1, . . . , sn) is called the value or utility of the strategy
profile (s1, . . . , sn) for Player i. The intuition for zero-sum games is that
the game is a closed system.

Many important notions can best be explained by two-player games,
but are defined for arbitrary multi-player games.

In the sequel, we will use the following notation: Let Γ be a game.
Then S−i := S1 × · · · × Si−1 × Si+1 × · · · × Sn is the set of all strategy
profiles for the players except i. For s ∈ Si and s−i ∈ S−i, (s, s−i) is
the strategy profile where Player i chooses the strategy s and the other
players choose s−i.

Definition 4.2. Let s, s′ ∈ Si. Then s dominates s′ if

• for all s−i ∈ S−i we have pi(s, s−i) ≥ pi(s′, s−i), and

• there exists s−i ∈ S−i such that pi(s, s−i) > pi(s′, s−i).

A strategy s is dominant if it dominates some other strategy of the player.

Definition 4.3. An equilibrium in dominant strategies is a strategy profile
(s1, . . . , sn) ∈ S such that all si are dominant strategies.

Definition 4.4. A strategy s ∈ Si is a best response to s−i ∈ S−i if
pi(s, s−i) ≥ pi(s′, s−i) for all s′ ∈ Si.

Remark 4.5. A dominant strategy is a best response for all strategy
profiles of the other players.

Example 4.6.

• Prisoner’s Dilemma:

Two suspects are arrested, but there is insufficient evidence for
a conviction. Both prisoners are questioned separately, and are
offered the same deal: if one testifies for the prosecution against
the other and the other remains silent, the betrayer goes free and
the silent accomplice receives the full 10-year sentence. If both stay
silent, both prisoners are sentenced to only one year in jail for a
minor charge. If both betray each other, each receives a five-year
sentence. So this dilemma poses the question: How should the

80

4 Basic Concepts of Mathematical Game Theory

prisoners act?

stay silent betray

stay silent (−1,−1) (−10, 0)

betray (0,−10) (−5,−5)

An entry (a, b) at position i, j of the matrix means that if profile
(i, j) is chosen, Player 1 (who chooses the rows) receives payoff a
and Player 2 (who chooses the columns) receives payoff b.

Betraying is a dominant strategy for every player, call this strategy b.
Therefore, (b, b) is an equilibrium in dominant strategies. Problem:
The payoff (−5,−5) of the dominant equilibrium is not optimal.

The Prisoner’s Dilemma is an important metaphor for many de-
cision situations, and there exists extensive literature concerned
with the problem. Especially interesting is the situation, where the
Prisoner’s Dilemma is played infinitely often.

• Battle of the sexes:

meat fish

red wine (2, 1) (0, 0)

white wine (0, 0) (1, 2)

There are no dominant strategies, and thus there is no dominant
equilibrium. The pairs (red wine, meat) and (white wine, fish)
are distinguished since every player plays with a best response
against the strategy of the other player: No player would change
his strategy unilaterally.

Definition 4.7. A strategy profile s = (s1, . . . , sn) ∈ S is a Nash equilib-
rium in Γ if

pi(si, s−i︸ ︷︷ ︸
s

) ≥ pi(s′, s−i)

holds for all i ∈ N and all strategies s′i ∈ Si, i.e., for every Player i, si is
a best response for s−i.

81

4.1 Games in Strategic Form

Is there a Nash equilibrium in every game? Yes, but not necessarily in
pure strategies!

Example 4.8. Rock, paper, scissors:

rock scissors paper

rock (0, 0) (1,−1) (−1, 1)

scissors (−1, 1) (0, 0) (1,−1)

paper (1,−1) (−1, 1) (0, 0)

There are no dominant strategies and no Nash equilibria: For every pair
(f , g) of strategies one of the players can change to a better strategy.
Note that this game is a zero-sum game. But there is a reasonable
strategy to win this game: Randomly pick one of the three actions with
equal probability.

This observation leads us to the notion of mixed strategies, where
the players are allowed to randomise over strategies.

Definition 4.9. A mixed strategy of Player i in Γ is a probability distribu-
tion µi : Si → [0, 1] on Si where ∑s∈Si

µ(s) = 1.
∆(Si) denotes the set of probability distributions on Si. ∆(S) :=
∆(S1)× · · · ×∆(Sn) is the set of all strategy profiles in mixed strategies.
The expected payoff is p̂i : ∆(S) → R,

p̂i(µ1, . . . , µn) = ∑
(s1,...,sn)∈S

∏
j∈N

µj(sj)

 · pi(s1, . . . , sn)

For every game Γ = (N, (Si)i∈N , (pi)i∈N) we define the mixed
expansion Γ̂ = (N, (∆(Si))i∈N , (p̂i)i∈N).

Definition 4.10. A Nash equilibrium of Γ in mixed strategies is a Nash
equilibrium in Γ̂, i.e. a Nash equilibrium in Γ in mixed strategies is
a mixed strategy profile µ = (µ1, . . . , µn) ∈ ∆(S) such that, for every
player i and every µ′i ∈ ∆(S), p̂i(µi, µ−i) ≥ p̂i(µ′i , µ−i).

Theorem 4.11 (Nash). Every finite game Γ in strategic form has at least
one Nash equilibrium in mixed strategies.

82

4 Basic Concepts of Mathematical Game Theory

To prove this theorem, we will use a well-known fixed-point theorem.

Theorem 4.12 (Brouwer’s fixed-point theorem). Let X ⊆ Rn be compact
(i.e., closed and bounded) and convex. Then every continuous function
f : X → X has a fixed point.

Proof (of Theorem 4.11). Let Γ = (N, (Si)i∈N , (pi)i∈N). Every mixed
strategy of Player i is a tuple µi = (µi,s)s∈Si ∈ [0, 1]|Si | such that

∑s∈Si
µi,s = 1. Thus, ∆(Si) ⊆ [0, 1]|Si | is a compact and convex set,

and the same applies to ∆(S) = ∆(S1)× · · · ×∆(Sn) for N = {1, . . . , n}.
For every i ∈ N, every pure strategy s ∈ Si and every mixed strategy
profile µ ∈ ∆(S) let

gi,s(µ) := max
(

p̂i(s, µ−i)− p̂i(µ), 0
)

be the gain of Player i if he unilaterally changes from the mixed profile
µ to the pure strategy s (only if this is reasonable).

Note that if gi,s(µ) = 0 for all i and all s ∈ Si, then µ is a Nash
equilibrium. We define the function

f : ∆(S) → ∆(S)

µ 7→ f (µ) = (ν1, . . . , νn)

where νi : Si → [0, 1] is a mixed strategy defined by

νi,s =
µi,s + gi,s(µ)

1 + ∑s∈Si
gi,s(µ)

.

For every Player i and all s ∈ Si, µ 7→ νi,s is continuous since p̂i is
continuous and thus gi,s, too. f (µ) = (ν1, . . . , νn) is in ∆(S): Every
νi = (νi,s)s∈Si is in ∆(Si) since

∑
s∈Si

νi,s =
∑s∈Si

µi,s + ∑s∈Si
gi,s(µ)

1 + ∑s∈Si
gi,s(µ)

=
1 + ∑s∈Si

gi,s(µ)
1 + ∑s∈Si

gi,s(µ)
= 1.

By the Brouwer fixed point theorem f has a fixed point. Thus, there is
a µ ∈ ∆(S) such that

83

4.1 Games in Strategic Form

µi,s =
µi,s + gi,s(µ)

1 + ∑s∈Si
gi,s(µ)

for all i and all s.
Case 1: There is a Player i such that ∑s∈Si

gi,s(µ) > 0.
Multiplying both sides of the fraction above by the denominator, we get
µi,s ·∑s∈Si

gi,s(µ) = gi,s(µ). This implies µi,s = 0 ⇔ gi,s(µ) = 0, and
thus gi,s(µ) > 0 for all s ∈ Si where µi,s > 0.

But this leads to a contradiction: gi,s(µ) > 0 means that it is
profitable for Player i to switch from (µi, µ−i) to (s, µ−i). This cannot
be true for all s where µi,s > 0 since the payoff for (µi, µ−i) is the mean
of the payoffs (s, µ−i) with arbitrary µi,s. However, the mean cannot be
smaller than all components:

p̂i(µi, µ−i) = ∑
s∈Si

µi,s · p̂i(s, µ−i)

= ∑
s∈Si

µi,s>0

µi,s · p̂i(s, µ−i)

> ∑
s∈Si

µi,s>0

µi,s · p̂i(µi, µ−i)

= p̂i(µi, µ−i)

which is a contradiction.
Case 2: gi,s(µ) = 0 for all i and all s ∈ Si, but this already means that µ

is a Nash equilibrium as stated before. q.e.d.

The support of a mixed strategy µi ∈ ∆(Si) is supp(µi) = {s ∈ Si :
µi(s) > 0}.

Theorem 4.13. Let µ∗ = (µ1, . . . , µn) be a Nash equilibrium in mixed
strategies of a game Γ. Then for every Player i and every pure strategy
s, s′ ∈ supp(µi)

p̂i(s, µ−i) = p̂i(s′, µ−i).

Proof. Assume p̂i(s, µ−i) > p̂i(s′, µ−i). Then Player i could achieve a

84

4 Basic Concepts of Mathematical Game Theory

higher payoff against µ−i if she played s instead of s′: Define µ̃i ∈ ∆(Si)
as follows:

• µ̃i(s) = µi(s) + µi(s′),

• µ̃i(s′) = 0,

• µ̃i(t) = µi(t) for all t ∈ Si − {s, s′}.

Then

p̂i(µ̃i, µ−i) = p̂i(µi, µ−i) + µi(s′)︸ ︷︷ ︸
>0

· (p̂i(s, µ−i)− p̂i(s′, µ−i)
)︸ ︷︷ ︸

>0

> p̂i(µi, µ−i)

which contradicts the fact that µ is a Nash equilibrium. q.e.d.

We want to apply Nash’s theorem to two-person games. First, we
note that in every game Γ = ({0, 1}, (S0, S1), (p0, p1))

max
f∈∆(S0)

min
g∈∆(S1)

p0(f , g) ≤ min
g∈∆(S1)

max
f∈∆(S0)

p0(f , g).

The maximal payoff which one player can enforce cannot exceed the
minimal payoff the other player has to cede. This is a special case of the
general observation that for every function f : X×Y → R

sup
x

inf
y

h(x, y) ≤ inf
y

sup
x

h(x, y).

(For all x′, y: h(x′, y) ≤ supx h(x, y). Thus infy h(x′, y) ≤ infy supx
h(x, y) and supx infy h(x, y) ≤ infy supx h(x, y).)

Remark 4.14. Another well-known special case is

∃x ∀y Rxy |= ∀y ∃x Rxy.

Example 4.15. Consider the following two-player “traveller” game Γ =
({1, 2}, (S1, S2), (p1, p2)) with S1 = S2 = {2, . . . , 100} and

85

4.1 Games in Strategic Form

p1(x, y) =

x + 2 if x < y,

y− 2 if y < x,

x if x = y,

p2(x, y) =

x− 2 if x < y,

y + 2 if y < x,

y if x = y.

Let’s play this game! These are the results from the lecture in 2009:

2, 49, 49, 50, 51, 92, 97, 98, 99, 99, 100.

But what are the Nash equilibria? Observe that the only pure-strategy
Nash equilibrium is (2, 2) since for each (i, j) with i ̸= j the player that
has chosen the greater number, say i, can do better by switching to j− 1,
and also, for every (i, i) with i > 2 each player can do better by playing
i− 1 (and getting the payoff i + 1 then). But would you really expect
such a good payoff playing 2? Look at how others played: 97 seems to
be much better against what people do in most cases!

Theorem 4.16 (v. Neumann, Morgenstern).
Let Γ = ({0, 1}, (S0, S1), (p,−p)) be a two-person zero-sum game. For
every Nash equilibrium (f ∗, g∗) in mixed strategies

max
f∈∆(S0)

min
g∈∆(S1)

p(f , g) = p(f ∗, g∗) = min
g∈∆(S1)

max
f∈∆(S0)

p(f , g).

In particular, all Nash equilibria have the same payoff which is called
the value of the game. Furthermore, both players have optimal strategies
to realise this value.

Proof. Since (f ∗, g∗) is a Nash equilibrium, for all f ∈ ∆(S0), g ∈ ∆(S1)

p(f ∗, g) ≥ p(f ∗, g∗) ≥ p(f , g∗).

Thus

min
g∈∆(S1)

p(f ∗, g) = p(f ∗, g∗) = max
f∈∆(S1)

p(f , g∗).

86

4 Basic Concepts of Mathematical Game Theory

So

max
f∈∆(S0)

min
g∈∆(S1)

p(f , g) ≥ p(f ∗, g∗) ≥ min
g∈∆(S1)

max
f∈∆(S0)

p(f , g)

and

max
f∈∆(S0)

min
g∈∆(S1)

p(f , g) ≤ min
g∈∆(S1)

max
f∈∆(S0)

p(f , g)

imply the claim. q.e.d.

4.2 Iterated Elimination of Dominated Strategies

Besides Nash equilibria, the iterated elimination of dominated strategies
is a promising solution concept for strategic games which is inspired
by the following ideas. Assuming that each player behaves rational in
the sense that he will not play a strategy that is dominated by another
one, dominated strategies may be eliminated. Assuming further that
it is common knowledge among the players that each player behaves
rational, and thus discards some of her strategies, such elimination
steps may be iterated as it is possible that some other strategies become
dominated due to the elimination of previously dominated strategies.
Iterating these elimination steps eventually yields a fixed point where
no strategies are dominated.

Example 4.17.

L R L R

T (1, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 0)

B (1, 1, 1) (0, 0, 1) (1, 1, 1) (1, 0, 0)

X Y

Player 1 picks rows, Player 2 picks columns, and Player 3 picks matrices.

• No row dominates the other (for Player 1);
• no column dominates the other (for Player 2);
• matrix X dominates matrix Y (for Player 3).

87

4.2 Iterated Elimination of Dominated Strategies

Thus, matrix Y is eliminated.

• In the remaining game, the upper row dominates the lower one
(for Player 1).

Thus, the lower row is eliminated.

• Of the remaining two possibilities, Player 2 picks the better one.

The only remaining profile is (T, R, X).

There are different variants of strategy elimination that have to be
considered:

• dominance by pure or mixed strategies;
• (weak) dominance or strict dominance;
• dominance by strategies in the local subgame or by strategies in the

global game.

The possible combinations of these parameters give rise to eight differ-
ent operators for strategy elimination that will be defined more formally
in the following.

Let Γ = (N, (Si)i∈N , (pi)i∈N) such that Si is finite for every Player i.
A subgame is defined by T = (T1, . . . , Tn) with Ti ⊆ Si for all i. Let
µi ∈ ∆(Si), and si ∈ Si. We define two notions of dominance:

(1) Dominance with respect to T:
µi >T si if and only if

• pi(µi, t−i) ≥ pi(si, t−i) for all t−i ∈ T−i

• pi(µi, t−i) > pi(si, t−i) for some t−i ∈ T−i.

(2) Strict dominance with respect to T:
µi ≫T si if and only if pi(µi, t−i) > pi(si, t−i) for all t−i ∈ T−i.

We obtain the following operators on T = (T1, . . . , Tn), Ti ⊆ Si,
that are defined component-wise:

ML(T)i := {ti ∈ Ti : ¬∃µi ∈ ∆(Ti) µi >T ti},

MG(T)i := {ti ∈ Ti : ¬∃µi ∈ ∆(Si) µi >T ti},

PL(T)i := {ti ∈ Ti : ¬∃t′i ∈ Ti t′i >T ti}, and

PG(T)i := {ti ∈ Ti : ¬∃si ∈ Si si >T ti}.

88

4 Basic Concepts of Mathematical Game Theory

MLS, MGS, PLS, PGS are defined analogously with ≫T instead of >T .
For all T we have the following obvious inclusions:

• Every M-operator eliminates more strategies than the correspond-
ing P-operator.

• Every operator considering (weak) dominance eliminates more
strategies than the corresponding operator considering strict domi-
nance.

• With dominance in global games more strategies are eliminated
than with dominance in local games.

MG(T) MGS(T)

ML(T) MLS(T)

PG(T) PGS(T)

PL(T) PLS(T)

Figure 4.1. Inclusions between the eight strategy elimination operators

Each of these operators is deflationary, i.e. F(T) ⊆ T for every T
and every operator F. We iterate an operator beginning with T = S,
i.e. F0 := S and Fα+1 := F(Fα). Obviously, F0 ⊇ F1 ⊇ · · · ⊇ Fα ⊇ Fα+1.
Since S is finite, we will reach a fixed point Fα such that Fα = Fα+1 =:
F∞. We expect that for the eight fixed points MG∞, ML∞, etc. the same
inclusions hold as for the operators MG(T), ML(T), etc. But this is not
the case: For the following game Γ = ({0, 1}, (S0, S1), (p0, p1)) we have
ML∞ * PL∞.

X Y Z

A (2, 1) (0, 1) (1, 0)

B (0, 1) (2, 1) (1, 0)

C (1, 1) (1, 0) (0, 0)

D (1, 0) (0, 1) (0, 0)

89

4.2 Iterated Elimination of Dominated Strategies

We have:

• Z is dominated by X and Y.

• D is dominated by A.

• C is dominated by 1
2 A + 1

2 B.

Thus:

ML(S) = ML1 = ({A, B}, {X, Y}) ⊂ PL(S) = PL1

= ({A, B, C}, {X, Y}).

ML(ML1) = ML1 since in the following game there are no domi-
nated strategies:

X Y

A (2, 1) (0, 1)

B (0, 1) (2, 1)

PL(PL1) = ({A, B, C}, {X}) = PL2 $ PL1 since Y is dominated by
X (here we need the presence of C). Since B and C are now dominated
by A, we have PL3 = ({A}, {X}) = PL∞. Thus, PL∞ $ ML∞ although
ML is the stronger operator.

We are interested in the inclusions of the fixed points of the dif-
ferent operators. But we only know the inclusions for the operators.
So the question arises under which assumptions can we prove, for two
deflationary operators F and G on S, the following claim:

If F(T) ⊆ G(T) for all T, then F∞ ⊆ G∞?

The obvious proof strategy is induction over α: We have F0 = G0 = S,
and if Fα ⊆ Gα, then

Fα+1 = F(Fα) ⊆ G(Fα)

F(Gα) ⊆ G(Gα) = Gα+1

If we can show one of the inclusions F(Fα) ⊆ F(Gα) or G(Fα) ⊆
G(Gα), then we have proven the claim. These inclusions hold if the

90

4 Basic Concepts of Mathematical Game Theory

operators are monotone: H : S → S is monotone if T ⊆ T′ implies
H(T) ⊆ H(T′). Thus, we have shown:

Lemma 4.18. Let F, G : P(S) → P(S) be two deflationary operators
such that F(T) ⊆ G(T) for all T ⊆ S. If either F or G is monotone, then
F∞ ⊆ G∞.

Corollary 4.19. PL and ML are not monotone on every game.

Which operators are monotone? Obviously, MGS and PGS are
monotone: If µi ≫T si and T′ ⊆ T, then also µi ≫T′ si. Let T′ ⊆ T and
si ∈ PGS(T′)i. Thus, there is no µi ∈ Si such that µi ≫T′ si, and there
is also no µi ∈ Si such that µi ≫T si and we have si ∈ PGS(T)i. The
reasoning for MGS is analogous if we replace Si by ∆(Si).

MLS and PLS are not monotone. Consider the following simple
game:

X

A (1, 0)

B (0, 0)

MLS({A, B}, {X}) = PLS({A, B}, {X}) = ({A}, {X}) and

MLS({B}, {X}) = PLS({B}, {X}) = ({B}, {X}),

but ({B}, {X}) ̸⊆ ({A}, {X}).
Thus, none of the local operators (those which only consider domi-

nant strategies in the current subgame) is monotone. We will see that
also MG and PG are not monotone in general. The monotonicity of
the global operators MGS and PGS will allow us to prove the expected
inclusions ML∞ ⊆ MLS∞ ⊆ PLS∞ and PL∞ ⊆ PLS∞ between the local
operators. To this end, we will show that the fixed points of the local
and corresponding global operators coincide (although the operators
are different).

Lemma 4.20. MGS∞ = MLS∞ and PGS∞ = PLS∞.

Proof. We will only prove PGS∞ = PLS∞. Since PGS(T) ⊆ PLS(T) for
all T and PGS is monotone, we have PGS∞ ⊆ PLS∞. Now we will

91

4.2 Iterated Elimination of Dominated Strategies

prove by induction that PLSα ⊆ PGSα for all α. Only the induction step
α 7→ α + 1 has to be considered: Let si ∈ PLSα+1

i . Therefore, si ∈ PLSα
i

and there is no s′i ∈ PLSα
i such that s′i ≫PLSα si. Assume si /∈ PGSα+1

i ,
i.e.

A = {s′i ∈ Si : s′i ≫PGSα si} ̸= ∅

(note: By induction hypothesis PGSα = PLSα). Pick an s∗i ∈ A which
is maximal with respect to ≫PLSα . Claim: s∗i ∈ PLSα. Otherwise, there
exists a β ≤ α and an si′ ∈ Si with s′i ≫PLSβ si∗ . Since PLSβ ⊇ PLSα,
it follows that s′i ≫PLSα s∗i ≫PLSα si. Therefore, s′i ∈ A and s∗i is not
maximal with respect to ≫PLSα in A. Contradiction.

But if s∗i ∈ PLSα and s∗i ≫PLSα si, then si /∈ PLSα+1 which again
constitutes a contradiction.

The reasoning for MGS∞ and MLS∞ is analogous. q.e.d.

Corollary 4.21. MLS∞ ⊆ PLS∞.

Lemma 4.22. MG∞ = ML∞ and PG∞ = PL∞.

Proof. We will only prove PG∞ = PL∞ by proving PGα = PLα for all α

by induction. Let PGα = PLα and si ∈ PGα+1
i . Then si ∈ PGα

i = PLα
i

and hence there is no s′i ∈ Si such that s′i >PGα si. Thus, there is no
s′i ∈ PLα

i such that s′i >PLα si and si ∈ PLα+1. So, PGα+1 ⊆ PLα+1.
Now, let si ∈ PLα+1

i . Again we have si ∈ PLα
i = PGα

i . Assume
si /∈ PGα+1

i . Then

A = {s′i ∈ Si : s′i >PLα si} ̸= ∅.

For every β ≤ α let Aβ = A ∩ PLβ
i . Pick the maximal β such that

Aβ ̸= ∅ and a s∗i ∈ Aβ which is maximal with respect to >PLβ .

Claim: β = α. Otherwise, si ̸∈ PLβ+1
i . Then there exists an s′i ∈ PLβ

i
with s′i >PLβ s∗i . Since PLβ ⊇ PLα and s∗i >PLα si, we have s′i >PLα si, i.e.
s′i ∈ Aβ which contradicts the choice of s∗i . Therefore, s∗i ∈ PLα

i . Since
s∗i >PLα si, we have si /∈ PLα+1

i . Contradiction, hence the assumption
is wrong, and we have si ∈ PGα+1. Altogether PGα = PLα. Again, the
reasoning for MG∞ = ML∞ is analogous. q.e.d.

92

4 Basic Concepts of Mathematical Game Theory

Corollary 4.23. PL∞ ⊆ PLS∞ and ML∞ ⊆ MLS∞.

Proof. We have PL∞ = PG∞ ⊆ PGS∞ = PLS∞ where the inclusion
PG∞ ⊆ PGS∞ holds because PG(T) ⊆ PGS(T) for any T and PGS is
monotone. Analogously, we have ML∞ = MG∞ ⊆ MGS∞ = MLS∞.

q.e.d.

This implies that MG and PG cannot be monotone. Otherwise, we
would have ML∞ = PL∞. But we know that this is wrong.

4.3 Beliefs and Rationalisability

Let Γ = (N, (Si)i∈N , (pi)i∈N) be a game. A belief of Player i is a proba-
bility distribution over S−i.

Remark 4.24. A belief is not necessarily a product of independent proba-
bility distributions over the individual Sj (j ̸= i). A player may believe
that the other players play correlated.

A strategy si ∈ Si is called a best response to a belief γ ∈ ∆(S−i) if
p̂i(si, γ) ≥ p̂i(s′i , γ) for all s′i ∈ Si. Conversely, si ∈ Si is never a best
response if si is not a best response for any γ ∈ ∆(S−i).

Lemma 4.25. For every game Γ = (N, (Si)i∈N , (pi)i∈N) and every si ∈
Si, si is never a best response if and only if there exists a mixed strategy
µi ∈ ∆(Si) such that µi ≫S si.

Proof. If µi ≫S si, then p̂i(µi, s−i) > p̂i(si, s−i) for all s−i ∈ S−i. Thus,
p̂i(µi, γ) > p̂i(si, γ) for all γ ∈ ∆(S−i). Then, for every belief γ ∈
∆(S−i), there exists an s′i ∈ supp(µi) such that p̂i(s′i , γ) > p̂i(si, γ).
Therefore, si is never a best response.

Conversely, let s∗i ∈ Si be never a best response in Γ. We define a
two-person zero-sum game Γ′ = ({0, 1}, (T0, T1), (p,−p)) where T0 =
Si − {s∗i }, T1 = S−i and p(si, s−i) = pi(si, s−i)− pi(s∗i , s−i). Since s∗i is
never a best response, for every mixed strategy µ1 ∈ ∆(T1) = ∆(S−i)
there is a strategy s0 ∈ T0 = Si − {s∗i } such that p̂i(s0, µ1) > p̂i(s∗i , µ1)
(in Γ), i.e. p(s0, µ1) > 0 (in Γ′). So, in Γ′

min
µ1∈∆(T1)

max
s0∈T0

p(s0, µ1) > 0,

93

4.3 Beliefs and Rationalisability

and therefore

min
µ1∈∆(T1)

max
µ0∈∆(T0)

p(µ0, µ1) > 0.

By Nash’s Theorem, there is a Nash equilibrium (µ∗0 , µ∗1) in Γ′. By von
Neumann and Morgenstern we have

min
µ1∈∆(T1)

max
s0∈∆(T0)

p(µ0, µ1) = p(µ∗0 , µ∗1)

= max
s0∈∆(T0)

min
µ1∈∆(T1)

p(µ0, µ1) > 0.

Thus, 0 < p(µ∗0 , µ∗1) ≤ p(µ∗0 , µ1) for all µ1 ∈ ∆(T1) = ∆(S−i). So,
we have in Γ p̂i(µ∗0 , s−i) > pi(s∗i , s−i) for all s−i ∈ S−i which means
µ∗0 ≫S s∗i . q.e.d.

Definition 4.26. Let Γ = (N, (Si)i∈N , (pi)i∈N) be a game. A strategy
si ∈ Si is rationalisable in Γ if for any Player j there exists a set Tj ⊆ Sj

such that

• si ∈ Ti, and

• every sj ∈ Tj (for all j) is a best response to a belief γj ∈ ∆(S−j)
where supp(γj) ⊆ T−j.

Theorem 4.27. For every finite game Γ we have: si is rationalisable if
and only if si ∈ MLS∞

i . This means, the rationalisable strategies are
exactly those surviving iterated elimination of strategies that are strictly
dominated by mixed strategies.

Proof. Let si ∈ Si be rationalisable by T = (T1, . . . , Tn). We show
T ⊆ MLS∞. We will use the monotonicity of MGS and the fact that
MLS∞ = MGS∞. This implies MGS∞ = gfp(MGS) and hence, MGS∞

contains all other fixed points. It remains to show that MGS(T) = T.
Every sj ∈ Tj is a best response (among the strategies in Sj) to a belief
γ with supp(γ) ⊆ T−j. This means that there exists no mixed strategy
µj ∈ ∆(Sj) such that µj ≫T sj. Therefore, sj is not eliminated by MGS:
MGS(T) = T.

94

4 Basic Concepts of Mathematical Game Theory

Conversely, we have to show that every strategy si ∈ MLS∞
i is ra-

tionalisable by MLS∞. Since MLS∞ = MGS∞, we have MGS(MLS∞) =
MLS∞. Thus, for every si ∈ MLS∞

i there is no mixed strategy µi ∈ ∆(Si)
such that µi ≫MLS∞ si. So, si is a best response to a belief in
MLS∞

i . q.e.d.

Intuitively, the concept of rationalisability is based on the idea that
every player keeps those strategies that are a best response to a possible
combined rational action of his opponents. As the following example
shows, it is essential to also consider correlated actions of the players.

Example 4.28. Consider the following cooperative game in which every
player receives the same payoff:

L R L R L R L R

T 8 0 4 0 0 0 3 3

B 0 0 0 4 0 8 3 3

1 2 3 4

Matrix 2 is not strictly dominated. Otherwise there were p, q ∈ [0, 1]
with p + q ≤ 1 and

8 · p + 3 · (1− p− q) > 4 and

8 · q + 3 · (1− p− q) > 4.

This implies 2 · (p + q) + 6 > 8, i.e. 2 · (p + q) > 2, which is impossible.
So, matrix 2 must be a best response to a belief γ ∈ ∆({T, B} ×

{L, R}). Indeed, the best responses to γ = 1
2 · ((T, L) + (B, R)) are

matrices 1, 2 or 3.
On the other hand, matrix 2 is not a best response to a belief of

independent actions γ ∈ ∆({T, B})× ∆({L, R}). Otherwise, if matrix
2 was be a best response to γ = (p · T + (1− p) · B, q · L + (1− q) · R),
we would have that

4pq + 4 · (1− p) · (1− q) ≥ max{8pq, 8 · (1− p) · (1− q), 3}.

We can simplify the left side: 4pq + 4 · (1− p) · (1− q) = 8pq− 4p−
4q + 4. Obviously, this term has to be greater than each of the terms

95

4.4 Games in Extensive Form

from which we chose the maximum:

8pq− 4p− 4q + 4 ≥ 8pq ⇒ p + q ≥ 1

and

8pq− 4p− 4q + 4 ≥ 8 · (1− p) · (1− q) ⇒ p + q ≤ 1.

So we have p + q = 1, or q = 1− p. But this allows us to substitute q by
p− 1, and we get

8pq− 4p− 4q + 4 = 8p · (1− p).

However, this term must still be greater or equal than 3, so we get

8p · (1− p) ≥ 3

⇔ p · (1− p) ≥ 3
8

,

which is impossible since max(p · (1− p)) = 1
4 (see Figure 4.2).

1
4

3
8

− 1
4

− 1
4

1
4

1
2

3
4

1 1 1
4

Figure 4.2. Graph of the function p 7→ p · (1− p)

4.4 Games in Extensive Form

A game in extensive form (with perfect information) is described by a
game tree. For two-person games this is a special case of the games on
graphs which we considered in the earlier chapters. The generalisation
to n-person games is obvious: G = (V, V1, . . . , Vn, E, p1, . . . , pn) where

96

4 Basic Concepts of Mathematical Game Theory

(V, E) is a directed tree (with root node w), V = V1 ⊎ · · · ⊎Vn, and the
payoff function pi : Plays(G) → R for Player i, where Plays(G) is the
set of paths through (V, E) beginning in the root node, which are either
infinite or end in a terminal node.

A strategy for Player i in G is a function f : {v ∈ Vi : vE ̸= ∅} → V
such that f (v) ∈ vE. Si is the set of all strategies for Player i. If all
players 1, . . . , n each fix a strategy fi ∈ Si, then this defines a unique
play f1ˆ · · · ˆ fn ∈ Plays(G).

We say that G has finite horizon if the depth of the game tree (the
length of the plays) is finite.

For every game G in extensive form, we can construct a game
S(G) = (N, (Si)i∈N , (pi)i∈N) with N = {1, . . . , n} and pi(f1, . . . , fn) =
pi(f1ˆ · · · ˆ fn). Hence, we can apply all solution concepts for strategic
games (Nash equilibria, iterated elimination of dominated strategies,
etc.) to games in extensive form. First, we will discuss Nash equilibria
in extensive games.

Example 4.29. Consider the game G (of finite horizon) depicted in
Figure 4.3 presented as (a) an extensive-form game and as (b) a strategic-
form game. The game has two Nash equilibria:

• The natural solution (b, d) where both players win.
• The second solution (a, c) which seems to be irrational since both

players pick an action with which they lose.

What seems irrational about the second solution is the following ob-
servation. If Player 0 picks a, it does not matter which strategy her
opponent chooses since the position v is never reached. Certainly, if
Player 0 switches from a to b, and Player 1 still responds with c, the
payoff of Player 0 does not increase. But this threat is not credible since
if v is reached after action a, then action d is better for Player 1 than c.
Hence, Player 0 has an incentive to switch from a to b.

This example shows that the solution concept of Nash equilibria
is not sufficient for games in extensive form since they do not take the
sequential structure into account. Before we introduce a stronger notion
of equilibrium, we will need some more notation: Let G be a game in
extensive form and v a position of G. G �v denotes the subgame of G

97

4.4 Games in Extensive Form

w

(0, 1)

a

v

(0, 0)

c

(1, 1)

d

b

(a) extensive form

c d
a (0, 1) (0, 1)
b (0, 0) (1, 1)

(b) strategic form

Figure 4.3. A game of finite horizon

beginning in v (defined by the subtree of G rooted at v). Payoffs: Let hv

be the unique path from w to v in G. Then pG�v
i (π) = pGi (hv · π). For

every strategy f of Player i in G let f �v be the restriction of f to G �v.

Definition 4.30. A subgame perfect equilibrium of G is a strategy pro-
file (f1, . . . , fn) such that, for every position v, (f1 �v, . . . , fn �v) is a
Nash equilibrium of G �v. In particular, (f1, . . . , fn) itself is a Nash
equilibrium.

In the example above, only the natural solution (b, d) is a subgame
perfect equilibrium. The second Nash equilibrium (a, c) is not a sub-
game perfect equilibrium since (a�v, c�v) is not a Nash equilibrium in
G �v.

Let G be a game in extensive form, f = (f1, . . . , fn) be a strategy
profile, and v a position in G. We denote by f̃ (v) the play in G �v that is
uniquely determined by f1 . . . , fn.

Lemma 4.31. Let G be a game in extensive form with finite horizon.
A strategy profile f = (f1, . . . , fn) is a subgame perfect equilibrium of
G if and only if for every Player i, every v ∈ Vi, and every w ∈ vE:
pi(f̃ (v)) ≥ pi(f̃ (w)).

Proof. Let f be a subgame perfect equilibrium. If pi(f̃ (w)) > pi(f̃ (v))
for some v ∈ Vi, w ∈ vE, then it would be better for Player i in G �v to

98

4 Basic Concepts of Mathematical Game Theory

change her strategy in v from fi to f ′i with

f ′i (u) =

 fi(u) if u ̸= v

w if u = w .

This is a contradiction.
Conversely, if f is not a subgame perfect equilibrium, then there is a

Player i, a position v0 ∈ Vi and a strategy f ′i ̸= fi such that it is better for
Player i in G �v0 to switch from fi to f ′i against f−i. Let g := (f ′i , f−i). We
have q := pi(g̃(v0)) > pi(f̃ (v0)). We consider the path g̃(v0) = v0 . . . vt

and pick a maximal m < t with pi(g̃(v0)) > pi(f̃ (vm)). Choose v = vm

and w = vm+1 ∈ vE. Claim: pi(f̃ (v)) < pi(f̃ (w)) (see Figure 4.4):

pi(f̃ (v)) = pi(f̃ (vm)) < pi(g̃(vm)) = q

pi(f̃ (w)) = pi(f̃ (vm+1)) ≥ pi(g̃(vm+1)) = q q.e.d.

v0

< q

vm = v

< q

vm+1 = w

≥ q

q

g̃(v0)

f̃ (v0)

f̃ (vm)

f̃ (vw)

Figure 4.4. pi(f̃ (v)) < pi(f̃ (w))

If f is not a subgame perfect equilibrium, then we find a subgame
G �v such that there is a profitable deviation from fi in G �v, which only
differs from fi in the first move.

99

4.4 Games in Extensive Form

In extensive games with finite horizon we can directly define the
payoff at the terminal nodes (the leaves of the game tree). We obtain
a payoff function pi : T → R for i = 1, . . . , n where T = {v ∈ V : vE =
∅}.

Backwards induction: For finite games in extensive form we define
a strategy profile f = (f1, . . . , fn) and values ui(v) for all positions v
and every Player i by backwards induction:

• For terminal nodes t ∈ T we do not need to define f , and ui(t) :=
pi(t).

• Let v ∈ V \ T such that all ui(w) for all i and all w ∈ vE are already
defined. For i with v ∈ Vi define fi(v) = w for some w with
ui(w) = max{ui(w′) : w′ ∈ vE} and uj(v) := uj(fi(v)) for all j.

We have pi(f̃ (v)) = ui(v) for every i and every v.

Theorem 4.32. The strategy profile defined by backwards induction is
a subgame perfect equilibrium.

Proof. Let f ′i ̸= fi. Then there is a node v0 ∈ Vi with minimal height
in the game tree such that f ′i (v) ̸= fi(v). Especially, for every w ∈ vE,
˜(f ′i , f−i)(w) = f̃ (w). For w = f ′i (v) we have

pi(˜(f ′i , f−i)(v)) = pi(˜(f ′i , f−i)(w))

= pi(f̃ (w))

= ui(w) ≤ max
w′∈vE

{ui(w′)}
= ui(v)

= pi(f̃ (v)).

Therefore, f �v is a Nash equilibrium in G �v. q.e.d.

Corollary 4.33. Every finite game in extensive form has a subgame
perfect equilibrium (and thus a Nash equilibrium) in pure strategies.

100

