Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel

2. Übung Mathematische Logik

Abgabe: bis Donnerstag, den 24.4. um 15:00 Uhr am Lehrstuhl.

Geben Sie bitte Namen, Matrikelnummer und die Übungsgruppe an.

Aufgabe 1 3+3+4 Punkte

(a) Überprüfen Sie mit Hilfe des Erfüllbarkeitstests für Horn-Formeln aus der Vorlesung, ob die folgende Folgerung gilt:

$$\{A \land B \to C, \ D \land E \to A, \ C \land F \to D, \ F \land D \to E\} \models B \lor C \lor (F \to B).$$

Geben Sie dabei für jeden Schritt des Algorithmus die Menge der markierten Variablen an.

(b) Zu zwei aussagenlogischen Interpretationen \mathfrak{I}_1 und \mathfrak{I}_2 über dem gleichen Definitionsbereich σ definieren wir eine neue Interpretation $\mathfrak{I}_1 \cap \mathfrak{I}_2 : \sigma \to \{0,1\}$ durch

$$(\mathfrak{I}_1 \cap \mathfrak{I}_2)(X) = \min(\mathfrak{I}_1(X), \mathfrak{I}_2(X)).$$

Zeigen Sie, dass für jede Horn-Formel φ der Schnitt zweier Modelle wieder ein Modell ist, d.h. wenn $\mathfrak{I}_1 \models \varphi$ und $\mathfrak{I}_2 \models \varphi$, dann auch $\mathfrak{I}_1 \cap \mathfrak{I}_2 \models \varphi$.

- (c) Verwenden Sie (b) um zu zeigen, dass jede der folgenden Formeln nicht äquivalent zu einer Horn-Formel ist:
 - (i) $X \to (Y \vee Z)$;
 - (ii) $(\neg Z \to (X \lor Y)) \land (Z \to Y)$.

Aufgabe 2 2+3+3+2 Punkte

Eine Formelmenge Φ heißt *abhängig*, wenn es ein $\varphi \in \Phi$ mit $\Phi \setminus \{\varphi\} \models \varphi$. gibt.

- (a) Wann ist eine Menge der Form $\{\varphi\}$ für $\varphi \in AL$ abhängig?
- (b) Zeigen Sie, dass jede endliche Formelmenge Φ eine äquivalente unabhängige Teilmenge $\Phi_0 \subseteq \Phi$ enthält, d.h. Φ_0 ist nicht abhängig, und es gilt $\Phi_0 \models \varphi$ für jedes $\varphi \in \Phi$.
- (c) Gilt diese Eigenschaft auch für unendliche Mengen? Betrachten Sie dazu die Menge

$$\Psi = \{ \bigwedge_{0 \le i \le n} X_i : n \in \mathbb{N} \}.$$

Zeigen Sie, dass jede zu Ψ äquivalente Teilmenge von Ψ abhängig ist. Geben Sie auch eine zu Ψ äquivalente, unabhängige Formelmenge an.

(d) Beweisen Sie, dass eine Formelmenge Φ genau dann abhängig ist, wenn eine endliche Teilmenge von Φ abhängig ist.

Aufgabe 3 5*2 Punkte

Sei $\Phi \subseteq AL$ und $\varphi \in AL$. Beweisen oder widerlegen Sie jeweils die folgenden Aussagen:

- (a) Wenn $\Phi \models \varphi$, dann auch $\Phi' \models \varphi$ für jede Teilmenge $\Phi' \subseteq \Phi$.
- (b) Wenn $\Phi \models \varphi$, dann auch $\Phi' \models \varphi$ für jede Obermenge $\Phi' \supseteq \Phi$.
- (c) Wenn $\Phi \models \varphi$ und $\Phi \models \neg \varphi,$ dann ist Φ unerfüllbar.
- (d) Wenn φ eine Tautolgie ist, dann gilt $\Phi \models \varphi$.
- (e) Wenn φ unerfüllbar ist, dann gilt $\Phi \not\models \varphi$.

Stimmt eine Aussage nicht, geben Sie jeweils ein konkretes Gegenbeispiel an.