Aufgabe 1

Betrachten Sie folgende Strukturen. Bestimmen Sie jeweils die kleinste Zahl $m \in \mathbb{N}$ mit $\mathfrak{A} \not\equiv_m \mathfrak{B}$ oder beweisen Sie, dass $\mathfrak{A} \equiv \mathfrak{B}$. Geben Sie im ersten Fall eine Formel vom Quantorenrang m an, welche die Strukturen trennt, sowie Gewinnstrategien für Herausforderer bzw. Duplikatorin in den Spielen $G_m(\mathfrak{A},\mathfrak{B})$ und $G_{m-1}(\mathfrak{A},\mathfrak{B})$.

$$\text{(i)} \quad \mathfrak{A}_1:=\big(\{1,2,3,4\},<\big); \qquad \text{(iii)} \quad \mathfrak{A}_3:=\big(\mathbb{N},<\big)+\big(\mathbb{Z},<\big);$$

(ii)
$$\mathfrak{A}_2:=(\mathbb{N},<);$$
 (iv) $\mathfrak{A}_4:=(\mathbb{Q},<).$

Dabei bezeichnet $(\mathbb{N},<)+(\mathbb{Z},<)$ die geordnete Summe der Ordnungen $(\mathbb{N},<)$ und $(\mathbb{Z},<)$, d.h. diejenige Struktur mit Univserum $(\mathbb{N}\times\{0\})\cup(\mathbb{Z}\times\{1\})$ und mit $(n,\sigma)<(m,\sigma)$ genau dann, wenn n< m sowie (n,0)<(m,1) für alle $n\in\mathbb{N}$ und $m\in\mathbb{Z}$.