Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, F. Abu Zaid

4. Übung Mathematische Logik

Abgabe: bis Mittwoch, den 11.05. um 13:00 Uhr am Lehrstuhl.

Geben Sie bitte Namen, Matrikelnummer und die Übungsgruppe an.

Aufgabe 1 10 Punkte

- (a) Welche der folgenden Sequenzen sind gültig? Geben sie entweder einen Beweis im Sequenzenkalkül oder eine falsifizierende Interpretation an.
 - (i) $(X \to Y), (Z \to Y) \Rightarrow (X \lor Z), \neg Y;$
 - (ii) $(X \vee Y), Y \to (Z \vee X) \Rightarrow X, Z.$
- (b) Zeigen Sie, dass die Cut-Regeln $(\land \Rightarrow)$ und $(\Rightarrow \land)$ des aussagenlogischen Sequenzenkalküls korrekt sind, das heißt: Sind alle Prämissen gültig, so ist auch die Konklusion gültig.

$$(\land\Rightarrow) \quad \frac{\Gamma,\psi,\vartheta\Rightarrow\Delta}{\Gamma,\psi\wedge\vartheta\Rightarrow\Delta} \qquad \qquad (\Rightarrow\land) \quad \frac{\Gamma\Rightarrow\Delta,\psi \qquad \Gamma\Rightarrow\Delta,\vartheta}{\Gamma\Rightarrow\Delta,\psi\wedge\vartheta}$$

Aufgabe 2 10 Punkte

Sei \downarrow der logische Junktor für NOR, definiert durch $\mathfrak{I} \models (\varphi \downarrow \psi)$ gdw. $\mathfrak{I} \not\models (\varphi \lor \psi)$.

- (a) Geben Sie die Schlussregeln $(\downarrow \Rightarrow)$ und $(\Rightarrow \downarrow)$ an, die Ihnen erlauben, den Junktor \downarrow auf der linken bzw. rechten Seite der Konklusion einzuführen (analog zu den Schlussregeln $(\lor \Rightarrow)$ und $(\Rightarrow \lor)$ für \lor) und beweisen Sie die Korrektheit Ihrer Schlussregeln.
- (b) Konstruieren Sie einen Beweis für die Sequenz

$$\neg((X \downarrow Y) \downarrow \neg Z) \Rightarrow (Z \rightarrow \neg X) \land (Z \rightarrow \neg Y)$$

in dem um die Schlussregeln $(\downarrow \Rightarrow)$ und $(\Rightarrow \downarrow)$ erweiterten Sequenzenkalkül.

Aufgabe 3 10 Punkte

Seien $\mathfrak A$ und $\mathfrak B$ τ -Strukturen. Dann heißt $\mathfrak A$ Substruktur von $\mathfrak B$ (wir schreiben $\mathfrak A \subseteq \mathfrak B$), wenn

- (1) $A \subseteq B$,
- (2) für alle $n \in \mathbb{N}$ und alle n-stelligen Relationssymbole $R \in \tau$ gilt $R^{\mathfrak{A}} = R^{\mathfrak{B}} \cap A^n$ und
- (3) für alle $n \in \mathbb{N}$ und alle *n*-stelligen Funktionssymbole $f \in \tau$ gilt $f^{\mathfrak{A}} = f^{\mathfrak{B}}|_{A^n}$, d. h. $f^{\mathfrak{A}}$ ist die Restriktion von $f^{\mathfrak{B}}$ auf A.

Sei weiterhin \mathfrak{B} eine Struktur und $M \subseteq B$ eine Teilmenge des Universums. Die von M erzeugte Substruktur von \mathfrak{B} ist die kleinste Struktur $\mathfrak{A} \subseteq \mathfrak{B}$ mit $M \subseteq A$.

Betrachten Sie die Boolesche Algebra aller Teilmengen von N:

$$\mathrm{BA}(\mathbb{N}) = (\mathcal{P}(\mathbb{N}), \cup, \cap, \bar{}, \emptyset, \mathbb{N}).$$

Welche Substrukturen werden von folgenden Teilmengen erzeugt?

- (a) Die Menge aller endlichen Teilmengen von \mathbb{N} .
- (b) Die Menge aller unendlichen Intervalle $(n, \infty) = \{k \in \mathbb{N} \mid k > n\}.$
- (c) Die Menge aller unendlichen Teilmengen von N, deren Komplement ebenfalls unendlich ist.