Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, Dr. C. Löding, W. Pakusa

3. Übung Mathematische Logik

Abgabe: bis Mittwoch, den 25.04. um 13:00 Uhr am Lehrstuhl.

Geben Sie bitte Namen, Matrikelnummer und die Übungsgruppe an.

Aufgabe 1 10 Punkte

Zeigen oder widerlegen Sie, dass für alle $\Phi, \Psi \subseteq AL, \varphi, \psi, \vartheta, \varphi_0, \varphi_1 \in AL$ gilt:

- (a) Wenn $\Phi \models \varphi$, dann $\Psi \models \varphi$ für jede Formelmenge Ψ mit $\Psi \subseteq \Phi$.
- (b) $\{\psi, \varphi\} \models \varphi \to \psi$.
- (c) Wenn $\Phi \cup \{\psi\} \models \varphi$ und $\Phi \cup \{\neg \psi\} \models \varphi$, dann gilt bereits $\Phi \models \varphi$.
- (d) Wenn $\Phi \models \psi$, dann existiert eine endliche Teilmenge Φ_0 von Φ , so dass $\{\psi\} \models \varphi$ für alle $\varphi \in \Phi_0$.
- (e) Wenn $\varphi_0 \to \vartheta$ und $\varphi_1 \to \neg \vartheta$ Tautologien sind, dann gilt $\{\varphi_0, \varphi_1\} \models \psi$ für jedes $\psi \in AL$.
- (f) Wenn $\Phi \models \psi$ für alle $\psi \in \Psi$ und $\Psi \models \varphi$, dann auch $\Phi \models \varphi$.

Aufgabe 2 10 Punkte

Zwei Formelmengen $\Phi, \Psi \subseteq AL$ heißen $\ddot{a}quivalent$, falls sie die gleichen Modelle besitzen, d.h. wenn für jede zu $\Phi \cup \Psi$ passende Interpretation \Im gilt, dass $\Im \models \Phi$ genau dann, wenn $\Im \models \Psi$. Eine Formelmenge Φ heißt $abh\ddot{a}ngig$, wenn es ein $\varphi \in \Phi$ mit $\Phi \setminus \{\varphi\} \models \varphi$ gibt.

- (a) Wann ist eine Menge der Form $\{\varphi\}$ für $\varphi \in AL$ abhängig?
- (b) Zeigen Sie, dass jede endliche Formelmenge Φ eine äquivalente unabhängige Teilmenge $\Phi_0 \subseteq \Phi$ enthält, d.h. Φ_0 ist nicht abhängig, und es gilt $\Phi_0 \models \varphi$ für jedes $\varphi \in \Phi$.
- (c) Gilt diese Eigenschaft auch für unendliche Mengen? Betrachten Sie dazu die Menge

$$\Psi = \{ \bigwedge_{0 \le i \le n} X_i : n \in \mathbb{N} \}.$$

Zeigen Sie, dass jede zu Ψ äquivalente Teilmenge von Ψ abhängig ist. Geben Sie auch eine zu Ψ äquivalente, unabhängige Formelmenge an.

(d) Beweisen Sie, dass eine Formelmenge Φ genau dann abhängig ist, wenn eine endliche Teilmenge von Φ abhängig ist.

Aufgabe 3 10 Punkte

Sei $H = (V^H, E^H)$ ein fester endlicher Graph. Ein Graph $G = (V^G, E^G)$ heißt H-färbbar, wenn es eine Abbildung $f: V^G \to V^H$ gibt, so dass für alle $(v, w) \in E^G$ gilt, dass $(fv, fw) \in E^H$ (also genau dann, wenn es einen Homomorphismus von G nach H gibt).

Zeigen Sie mit Hilfe des Kompaktheitssatzes der Aussagenlogik, dass ein Graph genau dann H-färbbar ist, wenn jeder endliche Teilgraph H-färbbar ist.

Hinweis: Verwenden Sie Aussagenvariablen X_{gh} für $g \in V^G$ und $h \in V^H$. Identifizieren Sie geeignete Interpretationen $\mathfrak{I}(X_{gh}) = 1$ mit einem Homomorphismus $f : G \to H$ mit f(g) = h.

Aufgabe 4 10 Punkte

In dieser Aufgabe soll ein alternativer Beweis des Kompaktheitssatzes der Aussagenlogik für den Fall von *abzählbaren* Formelmengen entwickelt werden.

Sei $\Phi = \{\varphi_0, \varphi_1, \dots\}$ eine *abzählbare* Menge von aussagenlogischen Formeln mit der Eigenschaft, dass jede endliche Teilmenge $\Phi_0 \subseteq \Phi$ erfüllbar ist. Sei ferner $\tau(\Phi) := \{X_0, X_1, \dots\}$.

- (a) Konstruieren Sie per Induktion, eine Folge von Interpretationen $\mathfrak{I}_{\mathfrak{n}}: \{X_0, \dots, X_{n-1}\} \to \{0,1\}$ mit den folgenden Eigenschaften. Für alle $n \geq 0$ gilt:
 - $\mathfrak{I}_{\mathfrak{n}+1} \upharpoonright_{\{X_0,\dots,X_{n-1}\}} = \mathfrak{I}_{\mathfrak{n}}$, und
 - für jede endliche Teilmenge $\Phi_0 \subseteq \Phi$ gibt es eine $\tau(\Phi)$ -Erweiterung $\mathfrak{J}: \tau(\Phi) \to \{0,1\}$ von $\mathfrak{I}_{\mathfrak{n}}$, d.h. $\mathfrak{J} \upharpoonright_{\{X_0,\ldots,X_{n-1}\}} = \mathfrak{I}_{\mathfrak{n}}$, mit $\mathfrak{J} \models \Phi_0$.
- (b) Wir fixieren eine beliebige Folge $(\mathfrak{I}_n)_{n\geq 0}$ mit den Eigenschaften aus (a). Zeigen Sie, dass dann für die Interpretation $\mathfrak{I}: \tau(\Phi) \to \{0,1\}$ mit $\mathfrak{I}(X_i) = \mathfrak{I}_{i+1}(X_i)$ gilt, dass $\mathfrak{I} \models \Phi$.