Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, Dr. C. Löding, W. Pakusa

7. Übung Mathematische Logik

Abgabe: bis Mittwoch, den 06.06. um 13:00 Uhr am Lehrstuhl.

Geben Sie bitte Namen, Matrikelnummer und die Übungsgruppe an.

Aufgabe 1 20 Punkte

Sei $\tau = \{f, R, S, T\}$, wobei f ein einstelliges Funktionssymbol, R ein zweistelliges Relationssymbol und S, T einstellige Relationssymbole sind. Geben Sie für die folgenden Klassen von τ -Strukturen (wenn möglich endliche) Axiomensysteme an.

- (a) $\mathcal{K}_1 = \{(A, f, R, S, T) : f \text{ ist injektiv, nicht surjektiv und } S \text{ und } T \text{ parititionieren } A\}$
- (b) $\mathcal{K}_2 = \{(A, f, R, S, T) : R \text{ ist der Graph einer bijektiven Funktion zwischen } S \text{ und } T\}$
- (c) $\mathcal{K}_3 = \{(A, f, R, S, T) : \text{das Urbild von } S \text{ unter } f \text{ ist unendlich}\}$
- (d) $\mathcal{K}_4 = \{(A, f, R, S, T) : R \text{ ist eine partielle Ordnung auf } S \text{ und eine lineare Ordnung auf } T\}$
- (e) $\mathcal{K}_5 = \{(A, f, R, S, T) : \text{der gerichtete Graph } (A, R) \text{ ist kreisfrei} \}$
- (f) $\mathcal{K}_6 = \{(A, f, R, S, T) : f(s) \text{ ist von keinem } s \in S \text{ im gerichteten Graphen } (A, R) \text{ erreichbar} \}$
- (g) $\mathcal{K}_7 = \{(A, f, R, S, T) : R \text{ ist lineare Ordnung mit } (x, f^n(x)) \in R \text{ für alle } x \in A, n \in \mathbb{N} \}$
- (h) $\mathcal{K}_8 = \{(A, f, R, S, T) : R \text{ ist Äquivalenz relation}, S, T \text{ sind zwei verschiedene } R-Äquivalenz klassen}\}$
- (i) $\mathcal{K}_9 = \{(A, f, R, S, T) : \text{es gilt } T \subseteq \bigcap_{n \in \mathbb{N}} f^n(T)\}$
- (j) $\mathcal{K}_{10} = \{(A, f, R, S, T) : \text{es gilt } R = f(S) \times T\}$

Aufgabe 2 10 Punkte

Zeigen oder widerlegen Sie, dass die folgenden Aussagen für beliebige Signaturen τ , Formelmengen $\Phi \subseteq FO(\tau)$ und Formeln $\varphi, \psi \in FO(\tau)$ gelten.

- (a) Falls $\Phi \not\models \varphi \to \psi$, so ist $\psi \not\in \Phi$.
- (b) Ist x eine Variable, die nicht frei in Φ vorkommt, so gilt $\Phi \models \varphi$ genau dann, wenn $\Phi \models \forall x \varphi$.
- (c) φ ist erfüllbar genau dann, wenn $\forall x_1 \cdots \forall x_k \varphi$ erfüllbar ist.
- (d) Ist $\varphi \not\equiv \psi$, so gilt $\Phi \not\models \varphi$ oder $\Phi \not\models \varphi \to \psi$.
- (e) Es gibt unendlich viele verschiedene FO(τ)-Formeln ϑ mit $\vartheta \equiv \forall x (\varphi \lor \psi)$.
- (f) Ist $frei(\varphi) \neq frei(\psi)$, so gilt insbesondere auch $\varphi \not\equiv \psi$.
- (g) Gilt $\forall x\varphi \equiv \forall x\psi$, so gilt insbesondere auch $\exists x\varphi \equiv \exists x\psi$.

Aufgabe 3 10 Punkte

Eine lineare Ordnung (A, <) heißt dicht, wenn für alle Elemente $a, b \in A$ mit a < b ein Element $c \in A$ existiert mit a < c < b. Dagegen heißt (A, <) diskret, wenn

- zu jedem $a \in A$ entweder kein b < a existiert oder es ein b < a gibt, so dass kein c mit b < c < a existiert, sowie
- zu jedem $a \in A$ entweder kein b > a existiert oder es ein b > a gibt, so dass kein c mit a < c < b existiert.

Sei nun (A, <) eine lineare Ordnung. Wir definieren eine Äquivalenzrelation auf A durch

 $a \sim b$: \Leftrightarrow die Menge $\{c \in A : a < c < b \text{ oder } b < c < a\}$ ist endlich.

- (a) Zeigen Sie, dass \sim tatsächlich eine Äquivalenzrelation auf A ist.
- (b) Die Menge A_{\sim} der \sim -Äquivalenzklassen ist die Menge $A_{\sim}=\{[a]_{\sim}:a\in A\}$. Hierbei bezeichne $[a]_{\sim}\subseteq A$ die Äquivalenzklasse eines Elements $a\in A$ unter \sim .

Zeigen Sie, dass durch $[a]_{\sim} < [b]_{\sim} :\Leftrightarrow (a < b \text{ und } a \not\sim b)$ eine lineare Ordnung auf A_{\sim} festgelegt wird.

Die resultierende Ordnung bezeichnen wir im Folgenden mit $(A, <)/_{\sim}$.

- (c) Zu einer linearen Ordnung (A, <) betrachten wir die um \sim expandierte Struktur $(A, <, \sim)$. Geben Sie jeweils einen FO($\{<, \sim\}$)-Satz an der, ausgewertet in $(A, <, \sim)$, besagt, dass
 - die Ordnung $(A, <)/_{\sim}$ dicht ist, bzw.
 - die Ordnung $(A, <)/_{\sim}$ diskret ist.
- (d) Geben Sie eine diskrete lineare Ordnung (A, <) an, so dass $(A, <)/_{\sim}$ dicht ist.
- (e) Gibt es auch dichte lineare Ordnungen (B, <), so dass $(B, <)/_{\sim}$ diskret ist?