Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, Dr. C. Löding, W. Pakusa

8. Übung Mathematische Logik

Abgabe: bis Mittwoch, den 13.06. um 13:00 Uhr am Lehrstuhl.

Geben Sie bitte Namen, Matrikelnummer und die Übungsgruppe an.

Hinweis: Aufgaben mit einem * können freiwillig bearbeitet werden und geben Zusatzpunkte.

Aufgabe 1 10 Punkte

Seien E und R zweistellige Relationssymbole und f ein zweistelliges Funktionssymbol. Formen Sie die folgenden Formeln in Negations-, Pränex- und Skolemnormalform um.

- (a) $\varphi := \exists x [\forall y \exists z (\neg Exz \land \neg Eyx) \rightarrow \forall y (Efxyz \land \forall z Rxz)].$
- (b) $\psi := [\exists z \forall x (\exists y (Exy \land Eyz) \land \forall y \forall z (Eyz \lor Exz \rightarrow y = z))] \rightarrow \forall z (Exfyz \rightarrow \exists x Rxfxy).$

Aufgabe 2 10 Punkte

Im Folgenden soll gezeigt werden, dass jeder erfüllbare FO-Satz ein abzählbares Modell besitzt. Sei τ eine beliebige Signatur, $\tau_0 \subseteq \tau$ eine endliche Teilmenge und \mathfrak{B} eine τ_0 -Struktur.

- (a) Zeigen Sie, dass für jede nicht-leere endliche Teilmenge $M \subseteq B$ eine abzählbare minimale Substruktur $\mathfrak{A}_M \subseteq \mathfrak{B}$ existiert, deren Universum M enthält (die von M erzeugte Substruktur, vgl. Übung 6, Aufgabe 1).
- (b) Sei $\varphi = \forall x_1 \cdots \forall x_k \, \eta \in FO(\tau_0)$ ein Satz, wobei η quantorenfrei ist. Zeigen Sie, dass $\mathfrak{B} \models \varphi$ genau dann gilt, wenn $\mathfrak{A}_M \models \varphi$ für alle nicht-leeren endlichen Teilmengen $M \subseteq B$ gilt.
- (c) Verwenden Sie (a) und (b) sowie den Satz über die Skolem-Normalform aus der Vorlesung, um zu zeigen: Ist $\psi \in FO(\tau)$ ein erfüllbarer Satz, so besitzt ψ ein abzählbares Modell.
- (d) Hat auch jede erfüllbare Satzmenge $\Phi \subseteq FO(\tau)$ stets ein abzählbares Modell?

Aufgabe 3* 5* Punkte

Sei $\mathfrak{A}=(\mathbb{Q}^{2\times 2},+,\cdot,P)$ die Menge der 2×2 -Matrizen über \mathbb{Q} zusammen mit der üblichen Matrizenaddition und Matrizenmultiplikation sowie

$$P:=\{\begin{pmatrix} a & b \\ c & d \end{pmatrix} : b=c=d=0\}.$$

Geben Sie FO($\{+,\cdot,P\}$)-Formeln an, die ausgewertet in $\mathfrak A$ die folgenden Sachverhalte ausdrücken.

- (a) x ist die Einheitsmatrix und det(y) = 0;
- (b) Mindestens eine der Spalten von x ist gleich $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$;
- (c) x ist eine Diagonalmatrix, d.h. $x = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$.

Aufgabe 4* 5* Punkte

Sei $\tau = \{\circ\}$, wobei \circ eine zweistellige Funktion ist. Geben Sie (möglichst endliche) Axiomensysteme für die folgenden Klassen von τ -Strukturen an.

- (a) $\mathcal{K}_1 := \{(A, \circ) : (A, \circ) \text{ ist eine unendliche, kommutative Gruppe}\};$
- (b) $\mathcal{K}_2 := \{(A, \circ) : (A, \circ) \text{ ist eine torsionsfreie Gruppe, d.h. } x^n \neq \mathrm{id} \text{ für alle } n \geq 1, x \neq \mathrm{id}\};$
- (c) $\mathcal{K}_3 := \{(A, \circ) : (A, \circ) \text{ ist unendliche Gruppe, die nur Elemente der Ordnung } \leq 17 \text{ enthält}\};$
- (d) $\mathcal{K}_4 := \{(A, \circ) : (A, \circ) \text{ ist Gruppe, in der jede Untergruppe, die von zwei beliebigen}$ Elementen erzeugt wird, kommutativ ist $\}$;
- (e) $\mathcal{K}_5 := \{(A, \circ) : (A, \circ) \text{ ist Gruppe, die für jede Primzahl } p \text{ ein Element der Ordnung } p \text{ enthält}\}.$