Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel, S. Lessenich

8. Übung Mathematische Logik

Abgabe: bis Mittwoch, den 12.6. um 13:00 Uhr am Lehrstuhl.

Geben Sie bitte Namen, Matrikelnummer und die Übungsgruppe an.

Hinweis: Aufgaben, die mit einem * versehen sind, sind Zusatzaufgaben und geben Zusatzpunkte. Die Aufgaben sind nicht zwingend schwieriger, aber dafür interessanter.

Aufgabe 1* 10* Punkte

Im Folgenden soll gezeigt werden, dass jeder erfüllbare FO-Satz ein abzählbares Modell besitzt. Sei τ eine beliebige Signatur, $\tau_0 \subseteq \tau$ eine endliche Teilmenge und \mathfrak{B} eine τ_0 -Struktur.

- (a) Zeigen Sie, dass für jede nicht-leere endliche Teilmenge $M \subseteq B$ eine abzählbare minimale Substruktur $\mathfrak{A}_M \subseteq \mathfrak{B}$ existiert, deren Universum M enthält. (Mit anderen Worten: Die von M induzierte Substruktur ist abzählbar.)
- (b) Sei $\varphi = \forall x_1 \cdots \forall x_k \, \eta \in FO(\tau_0)$ ein Satz, wobei η quantorenfrei ist. Zeigen Sie, dass $\mathfrak{B} \models \varphi$ genau dann gilt, wenn $\mathfrak{A}_M \models \varphi$ für alle nicht-leeren endlichen Teilmengen $M \subseteq B$ gilt.
- (c) Verwenden Sie (a) und (b) sowie den Satz über die Skolem-Normalform aus der Vorlesung, um zu zeigen: Ist $\psi \in FO(\tau)$ ein erfüllbarer Satz, so besitzt ψ ein abzählbares Modell.
- (d) Hat auch jede erfüllbare Satzmenge $\Phi \subseteq FO(\tau)$ stets ein abzählbares Modell?

Aufgabe 2 10 Punkte

Im Folgenden betrachten wir lineare Ordnungen (A, <). Geben Sie für die folgenden Eigenschaften jeweils eine Formel über der Signatur $\tau = \{<\}$ an, so dass eine lineare Ordnung (A, <) die Formeln genau dann erfüllt, wenn die jeweilige Eigenschaft gilt. Achten Sie hierbei auf die freien Variablen. Sie können voraussetzen, dass (A, <) eine lineare Ordnung ist.

- (a) Die lineare Ordnung ist dicht.
- (b) Die lineare Ordnung ist diskret.
- (c) Die lineare Ordnung ist diskret und besitzt kein maximales Element.
- (d) Die lineare Ordnung ist dicht und endlich.
- (e) Die lineare Ordnung ist weder dicht noch diskret.
- (f) Das Intervall [x, y] enthält 15 Elemente.
- (g) Jedes Element hat einen eindeutigen Nachfolger, x ist ein Limespunkt (d.h. ein Punkt ohne eindeutigen Vorgänger) und nicht das maximale Element.

Aufgabe 3 10 Punkte

(a) Bringen Sie die folgenden beiden Formeln in Skolem-Normalform.

$$\forall x((\neg \forall y(x+y=y) \to \exists y \exists z(x+z+z=y+y)) \land \forall x \exists y(x \neq y)) \lor x+x=x$$

$$x = y \to (\exists x(x \neq y) \lor ((\forall y(y=y)) \to \exists y(x=y))) \land \forall x \neg \exists y \neg \forall z(x=z \lor z=y)$$

(b) Sei τ eine funktionale Signatur, und sei \mathfrak{A} eine τ -Struktur mit Universum A. Sei $\tau_R = \{R_f \mid f \in \tau\}$, wobei R_f ein n+1-stelliges Relationssymbol ist, wenn f eine n-stellige Funktion ist. Die *Relationalisierung* $R(\mathfrak{A})$ ist die τ_R -Struktur, die man erhält, wenn man jede Funktion $f^{\mathfrak{A}}$ durch ihren Graph ersetzt.

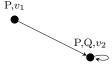
Sei $\varphi \in FO(\tau)$ eine Formel. Zeigen Sie, dass eine Formel $\varphi' \in FO(\tau_R)$ existiert, so dass für alle τ -Strukturen $\mathfrak A$ gilt:

$$\mathfrak{A} \models \varphi$$
 genau dann, wenn $R(\mathfrak{A}) \models \varphi'$.

Hinweis: Benutzen Sie, dass zu jeder Formel eine äquivalente Formel existiert, die termreduziert ist.

Aufgabe 4 10 Punkte

Wir betrachten den folgenden Graphen G mit Knotenbeschriftungen:



Konstruieren Sie das Auswertungsspiel für $\varphi = \forall x (Qx \to \exists y (Eyx)) \land \exists x (Px \land \neg Qx)$ auf G und geben Sie eine Gewinnstrategie für den Falsifizierer oder die Verifiziererin an.