Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel, M. Hoelzel

8. Übung Mathematische Logik

Abgabe: bis Mittwoch, den 15.06., um 12:00 Uhr im Übungskasten oder in der Vorlesung. Geben Sie bitte Namen, Matrikelnummer und die Übungsgruppe an.

Aufgabe 1 10 Punkte

Bearbeiten Sie den eTest im L2P-Lernraum¹.

Aufgabe 2 7 Punkte

Was ist jeweils die kleinste Zahl $m \in \mathbb{N}$ für die $\mathfrak{A} \not\equiv_m \mathfrak{B}$ gilt? Geben Sie einen trennenden Satz φ vom Quantorenrang m und sowie Gewinnstrategien für den Herausforderer bzw. die Duplikatorin im Spiel $\mathcal{G}_m(\mathfrak{A},\mathfrak{B})$ bzw. $\mathcal{G}_{m-1}(\mathfrak{A},\mathfrak{B})$ an.

- (a) $\mathfrak{A} := (\mathbb{N}, +^{\mathfrak{A}}, P_1^{\mathfrak{A}} := \{7\}, P_2^{\mathfrak{A}} := \{11\})$ und $\mathfrak{B} := (\mathbb{N}, +^{\mathfrak{B}}, P_1^{\mathfrak{B}} := \{7\}, P_2^{\mathfrak{B}} := \{15\})$ wobei $+^{\mathfrak{A}}$ und $+^{\mathfrak{B}}$ jeweils die Addition als 3-stellige *Relation* beschreiben.
- (b) $\mathfrak{A} := (\mathbb{Z}, +^{\mathfrak{A}})$ und $\mathfrak{B} := (\mathbb{Q}, +^{\mathfrak{B}})$ wobei $+^{\mathfrak{A}}$ und $+^{\mathfrak{B}}$ jeweils die Addition als 3-stellige *Relation* beschreiben.

Aufgabe 3 7 Punkte

Sei τ eine endliche, relationale Signatur und \mathcal{K} eine Klasse von τ -Strukturen.

- (a) Zeigen Sie: Wenn es eine τ -Struktur $\mathfrak{B} \notin \mathcal{K}$ gibt und für jedes $m \in \mathbb{N}$ ein $\mathfrak{A}_m \in \mathcal{K}$ existiert für das die Duplikatorin das Spiel $G_m(\mathfrak{A}_m,\mathfrak{B})$ gewinnt, dann ist \mathcal{K} nicht FO-axiomatisierbar, d.h. es gibt keine Formel $menge \Phi \subseteq FO(\tau)$ mit $Mod(\Phi) = \mathcal{K}$.
- (b) Benutzen Sie die Aussage aus (a), um zu zeigen, dass

 $\mathcal{K}' \coloneqq \{(A,R) : \text{ für jedes } a \in A \text{ gilt } (a,b) \in R \text{ nur für höchstens } endlich \text{ viele } b \in A \text{ gilt}\}$ nicht FO-axiomatisierbar ist.

Aufgabe 4 8 Punkte

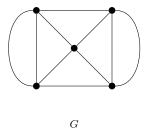
Ein Graph G heißt planar, wenn er in der 2-dimensionalen Ebene so gezeichnet werden kann, dass keine zwei verschiedenen Kanten sich überschneiden. Beweisen Sie, dass es keinen Satz $\varphi \in FO(\{E\})$ gibt mit

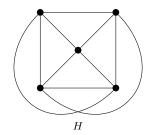
 $G \models \varphi \iff G$ ist ein planarer (ungerichteter) Graph.

 $\mathit{Hinweis}\colon$ Betrachten Sie den folgenden planaren Multi-Graphen^2 G und den nicht-planaren Graphen $H\colon$

¹https://www3.elearning.rwth-aachen.de/ss16/16ss-19269/Dashboard.aspx

²Ein Multi-Graph darf mehr als nur eine Kante zwischen zwei Knoten haben.





Konstruieren Sie nun zwei Familien $(G_n)_{n\in\mathbb{N}}$ und $(H_n)_{n\in\mathbb{N}}$ von planaren bzw. nicht-planaren ungerichteten Graphen (keine Multi-Graphen!) und verwenden Sie dann die Methode von Ehrenfeucht und Fraïssé. Es genügt, die Gewinnstrategien der Duplikatorin in den entsprechenden Ehrenfeucht-Fraïssé-Spielen nur zu skizzieren.

Aufgabe 5 8 Punkte

Sei τ eine endliche Signatur und $\mathfrak A$ eine τ -Struktur. Für $a,b\in A$ schreiben wir $a\sim b$, falls es einen Automorphismus π von $\mathfrak A$ mit $\pi(a)=b$ gibt. In der letzten Übung ist für endliche Strukturen $\mathfrak A$ gezeigt worden, dass

$$|\{X \subseteq A : X \text{ ist elementar definierbar in } \mathfrak{A}\}| = 2^{r(\mathfrak{A})}$$
 (1)

gilt, wobei $r(\mathfrak{A}) \coloneqq |A/\sim|$ die Anzahl der \sim -Äquivalenzklassen ist.

Gilt dieser Zusammenhang (1) ebenfalls für alle unendlich großen Strukturen \mathfrak{A} , bei denen $r(\mathfrak{A})$ endlich (d.h. $r(\mathfrak{A}) \in \mathbb{N}$) ist? Begründen Sie ihre Antwort!