Aufgabe 1

Sei $\mathfrak{A}:=(A=\{3,4\},R,<)$ mit der einstelligen Relationen $R^{\mathfrak{A}}:=\{4\}$ und der üblichen Ordnung < auf $\{3,4\}$. Betrachten Sie den Satz

$$\psi := \forall x (Rx \rightarrow \exists y (x < y \land Ry)) \in FO(\{R, <\}).$$

- (a) Geben Sie das Auswertungsspiel $MC(\mathfrak{A}, \psi)$ an und bestimmen Sie die Gewinnregionen W_{σ} der beiden Spieler $\sigma \in \{0,1\}$. Ist das Spiel fundiert? Ist es determiniert?
- (b) Beantworten Sie, ob $\mathfrak{A} \models \psi$ gilt oder nicht, indem Sie eine Gewinnstrategie für einen der Spieler im Auswertungsspiel $MC(\mathfrak{A}, \psi)$ angeben. Ist das die einzige mögliche Gewinnstrategie?

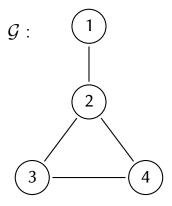
Aufgabe 2

Eine Struktur $\mathfrak{A}=(A,\tau)$ heißt *starr*, wenn die Menge der Automorphismen Aut(\mathfrak{A}) auf \mathfrak{A} nur den trivialen Automorphismus id_A enthält. Beweisen Sie: Wenn alle $a \in A$ in $\mathfrak{A}=(A,\tau)$ elementar definierbar sind, dann ist \mathfrak{A} starr.

Aufgabe 3

Beweisen oder widerlegen Sie jeweils, dass die angegebene Konstante, Funktion oder Relation in der gegebenen Struktur elementar definierbar ist.

- (a) die Konstante 2 in $(\mathbb{Z}/6\mathbb{Z},+)$ bzw. in $(\mathbb{Z}/6\mathbb{Z},+,\cdot)$
- (b) die Menge $\{3,4\}$ im folgenden ungerichteten Graphen $\mathcal{G}=(V,E)$



- (c) die ggT-Funktion in $(\mathbb{N}_{>0},\cdot,\leq)$ Begriffserklärung: Die Funktion ggT: $\mathbb{N}^2_{>0} \to \mathbb{N}_{>0}$ bildet zwei Zahlen $m,n\in\mathbb{N}_{>0}$ auf ihren größten gemeinsamen Teiler ggT(m,n) ab.
- (d) die Relation $E := \{(z_1, z_2) \in \mathbb{C}^2 \mid \mathsf{Re}(z_1) = \mathsf{Re}(z_2)\}$ in $(\mathbb{C}, +)$