Aufgabe 1

Sei 0 ein Konstantensymbol, s ein einstelliges Funktionssymbol, a ein zweistelliges Funktionssymbol und R ein einstelliges Relationssymbol. Wir betrachten die folgende Menge T von atomaren Sätzen.

$$T := \{a00 = 0, as0s0 = ss0, as00 = s0\}$$

 $\cup \{ast_1t_2 = sat_1t_2, at_1st_2 = sat_1t_2 \mid t_1, t_2 \text{ Grundterme}\}$
 $\cup \{Rs^p0 \mid p \in \mathbb{P}\}$

Dabei steht s^p0 für den Term $\underbrace{s \dots s}_{p\text{-mal}}0$, und s^00 steht für den Term 0.

- (a) Sei Σ der Abschluss von T unter Substitution. Beschreiben Sie Σ .
- (b) Beschreiben Sie die Herbrandstruktur $\mathfrak{H}(\Sigma)$. Gilt $\mathfrak{H}(\Sigma) \models T$?
- (c) Sei \sim die von Σ induzierte Kongruenzrelation auf $\mathfrak{H}(\Sigma)$. Beschreiben Sie das kanonische Modell $\mathfrak{A}(\Sigma) = (\mathfrak{H}(\Sigma)/\sim)$ und zeigen Sie, dass es zu einer "bekannten" Struktur isomorph ist.

Aufgabe 2

Sei $\mathfrak{A}=(\mathbb{Z},+,\cdot)$ mit der üblichen Addition und Multiplikation. Für jede Zahl $n\in\mathbb{N}$ mit n>0 definieren wir die Relation \sim_n auf \mathbb{Z} wie folgt:

Für alle $a, b \in \mathbb{Z}$ gelte $a \sim_n b$ genau dann, wenn es ein $z \in \mathbb{Z}$ gibt, sodass $a - b = z \cdot n$.

- (a) Zeigen Sie für jedes n > 0, dass \sim_n eine Äquivalenzrelation auf $\mathbb Z$ ist.
- (b) Zeigen Sie, dass \sim_n auch eine Kongruenzrelation auf $\mathfrak A$ ist.
- (c) Wie sehen die Faktorstrukturen \mathfrak{A}/\sim_n , abhängig von n, aus? Zu welcher "bekannten" Struktur sind sie jeweils isomorph?