Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, V. Barany, T. Ganzow, L. Kaiser, M. Ummels

2. Übung Mathematische Logik

Abgabe: bis Donnerstag, den 2.11. um 8:15 Uhr am Lehrstuhl oder in der Vorlesung

Aufgabe 1 10 Punkte

Zu zwei aussagenlogischen Interpretationen \mathfrak{I}_1 und \mathfrak{I}_2 über dem gleichen Definitionsbereich σ definieren wir eine neue aussagenlogische Interpretation $\mathfrak{I}_1 \cap \mathfrak{I}_2 : \sigma \to \{0,1\}$ durch

$$(\mathfrak{I}_1 \cap \mathfrak{I}_2)(X) = \begin{cases} 1 & \text{falls } \mathfrak{I}_1(X) = 1 \text{ und } \mathfrak{I}_2(X) = 1, \\ 0 & \text{sonst.} \end{cases}$$

- (a) Zeigen Sie, dass für jede Horn-Formel φ der Schnitt zweier Modelle wieder ein Modell ist, d.h. wenn $\mathfrak{I}_1 \models \varphi$ und $\mathfrak{I}_2 \models \varphi$, dann auch $\mathfrak{I}_1 \cap \mathfrak{I}_2 \models \varphi$.
- (b) Welche der folgenden Formeln sind zu einer Horn-Formel äquivalent? Beweisen Sie Ihre Antwort!

(i)
$$(X \to Y) \land (X \to \neg Z)$$
; (ii) $(X \to Y) \lor (X \to \neg Z)$; (iii) $X \lor Z \lor (X \to (Y \to Z))$.

Aufgabe 2 6 Punkte

In einem Chemielabor stehen die Apparaturen zur Verfügung, um folgende chemische Reaktionen durchzuführen:

$$MgO + H_2 \rightarrow Mg + H_2O$$

 $C + O_2 \rightarrow CO_2$
 $H_2O + CO_2 \rightarrow H_2CO_3$

Ferner sind in dem Labor folgende Grundstoffe vorhanden: MgO, H_2 , O_2 und C. Man beweise (durch geeignete Anwendung des Erfüllbarkeitsalgorithmus für Hornformeln), dass es unter diesen Voraussetzungen möglich ist, H_2CO_3 herzustellen.

Aufgabe 3 6 Punkte

Sei $\Phi \models \varphi$ und $\Psi \models \psi$. Beweisen oder widerlegen Sie die folgenden Behauptungen:

- (a) $\Phi \cup \Psi \models \varphi \wedge \psi$,
- (b) $\Phi \cap \Psi \models \varphi \vee \psi$,
- (c) $\Phi \models \varphi \rightarrow \psi$,
- (d) $\Psi \models \varphi \rightarrow \psi$.

Aufgabe 4 6 Punkte

Wir definieren eine (partielle) Ordnung \leq über Formeln durch $\varphi \leq \psi$ genau dann, wenn $\varphi \to \psi$ eine Tautologie ist. Weiter sei $\varphi < \psi$ genau dann, wenn $\varphi \leq \psi$ und $\psi \not\leq \varphi$.

- (a) Zeigen Sie, dass die so definierte Ordnung dicht ist, d.h. zu je zwei Formeln $\varphi < \psi$ existiert eine Formel ϑ mit $\varphi < \vartheta < \psi$. Hinweis: Konstruieren Sie ϑ aus φ und ψ mittels einer Aussagenvariable, die weder in φ noch in ψ vorkommt.
- (b) Zeigen Sie, dass eine unendliche aufsteigende Kette $\varphi_1 < \varphi_2 < \varphi_3 < \dots$ existiert.
- (c) Zeigen Sie, dass es für je zwei Formeln φ und ψ eine kleinste Formel ϑ gibt, so dass $\varphi \leq \vartheta$ und $\psi \leq \vartheta$, d.h. für alle Formeln η mit $\varphi \leq \eta$ und $\psi \leq \eta$ gilt auch $\vartheta \leq \eta$.

Aufgabe 5 8 Punkte

Eine Formelmenge Φ heißt unabhängig, wenn für kein $\varphi \in \Phi$ gilt: $\Phi \setminus \{\varphi\} \models \varphi$.

- (a) Wann ist eine Menge, die nur aus einer einzelnen Formel besteht, unabhängig?
- (b) Zeigen Sie, dass jede endliche Formelmenge eine äquivalente unabhängige Teilmenge enthält.
- (c) Gilt diese Eigenschaft auch für unendliche Mengen? Betrachten Sie dazu die Menge

$$\Phi = \Big\{ \bigwedge_{0 \le i \le n} X_i : n \in \mathbb{N} \Big\}.$$

Geben Sie eine zu Φ äquivalente, unabhängige Formelmenge an.

(d) Beweisen Sie, dass eine Formelmenge genau dann unabhängig ist, wenn alle ihre endlichen Teilmengen unabhängig sind.