Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, V. Barany, T. Ganzow, Ł. Kaiser, M. Ummels

12. Übung Mathematische Logik

Abgabe: bis Donnerstag, den 1.2 um 8:15 Uhr am Lehrstuhl oder vor Beginn der Vorlesung. Geben Sie bitte Namen, Matrikelnummer und die Übungsgruppe an.

Aufgabe 1 6 Punkte

Betrachten sie die folgenden Aussagen.

- (i) "Everybody loves my baby, but my baby loves nobody but me."
- (ii) "Everybody loves my baby, but I love nobody but me."
- (iii) "Everybody loves my baby, but everybody loves nobody but me."
- (a) Formalisieren Sie die drei Aussagen durch geeignete FO-Formeln $\varphi_i, \varphi_{ii}, \varphi_{iii}$ über der Signatur $\{loves, me, mybaby\}$.
- (b) Bestimmen Sie mit Hilfe des Sequenzenkalküls für alle Paare i, j, ob $\varphi_i \to \varphi_j$ allgemeingültig ist.
- (c) Finden Sie für jedes φ_i die kürzeste Formel ψ_i , die folgende Bedingungen erfüllt: die Formel ψ_i ist nicht allgemeingültig und $\varphi_i \Rightarrow \psi_i$ ist gültig. Beweisen Sie dies im Sequenzenkalkül.

Aufgabe 2 4 Punkte

Zeigen Sie, dass in den Regeln $(\exists \Rightarrow)$ und $(\Rightarrow \forall)$ aus dem Skript die Bedingung, dass c nicht in Γ, Δ und ψ vorkommt, nicht weggelassen werden kann.

Aufgabe 3 16 Punkte

Sei $\mathcal K$ die Klasse aller Strukturen (T,\preceq) wobei $T\subseteq\{0,1\}^*$ eine präfix-abgeschlossene Menge von Wörtern ist und

$$x \leq y : \text{gdw } y = xz \text{ für ein } z \in \{0, 1\}^*.$$

Die Struktur (T, \preceq) identifizieren wir mit einem Baum, wobei das leere Wort die Wurzel des Baumes ist und es eine Kante zwischen den Knoten $w, v \in T$ gibt wenn v = w0 oder v = w1 ist. Zu welchen der folgenden Teilklassen $\mathcal{K}_i \subseteq \mathcal{K}$ gibt es eine Formelmenge $\Phi \subseteq FO$, so dass für alle $\mathfrak{T} \in \mathcal{K}$ gilt:

$$\mathfrak{T} \models \Phi \quad \text{gdw} \quad \mathfrak{T} \in \mathcal{K}_i$$
.

Für welche Teilklassen kann Φ endlich gewählt werden?

- (a) $\mathcal{K}_a = \{(\{0,1\}^*, \preceq)\}.$
- (b) \mathcal{K}_b : die Klasse aller Bäume, in welchen es einen unendlichen Pfad gibt.

http://www-mgi.informatik.rwth-aachen.de/Teaching/MaLo-WS06/

- (c) \mathcal{K}_c : die Klasse aller Bäume ohne endliche Pfade.
- (d) \mathcal{K}_d : die Klasse aller Bäume mit unendlich vielen unendlichen Pfaden.

Zeigen Sie mit Hilfe des Kompaktheitssatzes, dass folgende Teilklassen nicht axiomatisierbar sind:

- (e) \mathcal{K}_e : die Klasse aller Bäume ohne unendliche Pfade.
- (f) \mathcal{K}_f : die Klasse aller Bäume mit endlich vielen unendlichen Pfaden.

Aufgabe 4 9 Punkte

Sei $\mathfrak{T} := (\{0,1\}^*, s_0, s_1, \preceq, \text{el})$ der binäre Baum mit

$$s_0(x) := x0, \ s_1(x) := x1,$$

 $x \leq y : \text{gdw } y = xz \text{ für ein } z,$
 $\text{el}(x, y) : \text{gdw } |x| = |y|.$

Ein deterministischer endlicher Automat \mathcal{A} ist ein Tupel $\mathcal{A} := (Q, \delta, q_0, F)$, wobei Q eine endliche Menge der Zustände ist, $\delta: Q \times \{0,1\} \to Q$ die Transitionsfunktion, $q_0 \in Q$ der Anfangszustand und $F \subseteq Q$ die Endzustände. Der Lauf von \mathcal{A} auf einem Eingabewort $w = w_0 w_1 \dots w_n$ ist die Folge der angenommenen Zustände

$$L_{\mathcal{A}}(w) = q_0 q_1 \dots q_{n+1} \text{ mit } q_{i+1} = \delta(q_i, w_i).$$

 \mathcal{A} akzeptiert ein Wort w gdw. der letzte Zustand $q_{n+1} \in F$. (Man beachte, dass der Lauf ein Symbol länger ist als die Eingabe.)

Wir können einen Lauf $q_0 \dots q_{n+1}$ als Tupel von Binärwörtern $x_q \in \mathfrak{T}$ kodieren, wobei das *i*-te Bit von x_q gleich 1 ist, wenn der Zustand q_i gleich q ist. Geben Sie für festes \mathcal{A} Formeln an, welche in \mathfrak{T} besagen, dass

- (a) das Symbol von x an Position |y| eine 1 ist, d. h. x = x'1x'' mit |x'| = |y|;
- (b) die in $(x_q)_{q\in Q}$ kodierte Zustandsfolge ein gültiger Lauf von \mathcal{A} auf Eingabe y ist;
- (c) der Automat \mathcal{A} das Wort y akzeptiert.