Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel

2. Übung Mathematische Logik

Abgabe: bis Mittwoch, den 31.10. um 10:00 Uhr am Lehrstuhl oder in der Vorlesung.

Geben Sie bitte Namen, Matrikelnummer und die Übungsgruppe an.

Aufgabe 1 10 Punkte

- (a) Beweisen Sie folgende Aussagen:
 - (i) Gilt $\Phi \models \varphi$, dann auch $\Phi' \models \varphi$ für alle Obermengen $\Phi' \supseteq \Phi$.
 - (ii) $\Phi \models \varphi$ gilt genau dann, wenn $\Phi \cup \{\neg \varphi\}$ unerfüllbar ist.
- (b) Beweisen oder widerlegen Sie folgende Aussagen:
 - (i) Aus $\Phi \cup \{\psi\} \models \varphi \text{ und } \Phi \cup \{\vartheta\} \models \varphi \text{ folgt } \Phi \cup \{\psi \vee \vartheta\} \models \varphi$.
 - (ii) Sei $\Phi \models \varphi$. Dann gilt $\Phi \models \psi$ genau dann, wenn $\Phi \cup \{\varphi\} \models \psi$.
 - (iii) Es gilt $\{\varphi, \psi\} \models \vartheta$ genau dann, wenn $\varphi \models \vartheta$ oder $\psi \models \vartheta$.

Aufgabe 2 10 Punkte

In einem Chemielabor stehen die Apparaturen zur Verfügung, um folgende chemische Reaktionen durchzuführen:

$$\begin{array}{c} 2\,H_2+O_2\rightarrow 2\,H_2O\\ CaCO_3\rightarrow CaO+CO_2\\ 2\,NaHCO_3\rightarrow Na_2CO_3+H_2O+CO_2\\ NaCl+NH_3+H_2O+CO_2\rightarrow NH_4Cl+NaHCO_3 \end{array}$$

Ferner sind in dem Labor folgende Grundstoffe vorhanden: H_2 , O_2 , $CaCO_3$, NaCl und NH_3 . Man beweise (durch geeignete Anwendung des Erfüllbarkeitsalgorithmus für Hornformeln), dass es unter diesen Voraussetzungen möglich ist, Na_2CO_3 herzustellen.

Aufgabe 3 10 Punkte

- (a) Welche der folgenden Formeln sind zu einer Horn-Formel äquivalent? Verwenden Sie, dass die Menge der Modelle einer Hornformel unter Schnitt abgeschlossen ist (siehe Gruppenübung Nr. 2, Aufgabe 2).
 - $\begin{array}{ll} \text{(i)} & (X \to Y) \vee (X \to Z); \\ \text{(iii)} & (X \to Y) \vee (X \to \neg Z); \end{array} \\ \end{array} \\ \begin{array}{ll} \text{(ii)} & Y \vee ((X \to Y) \wedge (X \to Z)); \\ \text{(iv)} & \neg (X \to Y) \vee \neg (Y \to Z). \end{array}$
- (b) Überprüfen Sie mit Hilfe des Markierungsalgorithmus aus der Vorlesung, ob nachstehende Folgerung gilt:

$$\{A \land B \to C, \ D \land E \to A, \ C \land F \to D, \ F \land D \to E\} \models B \lor C \lor (F \to B).$$

Aufgabe 4 10 Punkte

Sei Φ eine beliebige Menge aussagenlogischer Formeln. Eine Menge Ψ heißt Φ -verwerfend, wenn für alle Formeln $\varphi \in AL$ mit $\Phi \models \varphi$, gilt $\Psi \models \neg \varphi$. Zeigen Sie, dass jede Φ -verwerfende Menge Ψ äquivalent ist zu einer endlichen Teilmenge $\Psi_0 \subseteq \Psi$, d.h. für alle $\psi \in \Psi$, gilt $\Psi_0 \models \psi$.