Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel

5. Übung Mathematische Logik

Abgabe: bis Mittwoch, den 21.11. um 10:00 Uhr am Lehrstuhl und nicht in der Vorlesung! Geben Sie bitte Namen, Matrikelnummer und die Übungsgruppe an.

Aufgabe 1 10 Punkte

Welche der folgenden Mengen sind abzählbar, welche überabzählbar?

- (a) Die Menge aller endlichen Teilmengen von \mathbb{N} .
- (b) Die Potenzmenge einer (beliebigen) endlichen Teilmenge von N.
- (c) Die Menge aller aussagenlogischen Formeln mit Aussagenvariablen $\{X_i : i \in \mathbb{N}\}$.
- (d) Die Menge aller Strukturen $\mathfrak{A} = (\mathbb{N}, \mathbb{R}^{\mathfrak{A}})$ mit einer einstelligen Relation $\mathbb{R}^{\mathfrak{A}}$.
- (e) Die Menge aller unendlichen Bitfolgen.

Aufgabe 2 10 Punkte

Die Kardinalität einer Menge A ist nicht größer als die einer Menge B ($|A| \leq |B|$), wenn eine injektive Funktion $f: A \to B$ existiert. Ordnen Sie folgende Mengen bezüglich ihrer Kardinalität, und geben Sie dabei insbesondere an, welche Mengen gleichmächtig sind, bzw. welche Mengen eine echt größere Kardinalität haben als andere.

- (a) $\mathcal{P}(\mathbb{R})$, die Potenzmenge der reellen Zahlen.
- (b) Die Menge aller Graphen mit Knotenmenge N.
- (c) Die Menge aller offenen Intervalle $(n, m) = \{x \in \mathbb{R} \mid n < x < m\}$, mit $n, m \in \mathbb{N}, n < m$.
- (d) Die Menge aller Strukturen (\mathbb{N}, f) mit einer einstelligen Funktion f.
- (e) Die Menge aller Strukturen (\mathbb{N}, f) mit einer einstelligen Funktion f, deren Bildbereich endlich ist.

Hinweis: Sie können für die Vergleiche auch das folgende Cantor-Schröder-Bernstein-Theorem benutzen: Sind $f:A\to B$ und $g:B\to A$ injektive Funktionen, dann gibt es auch eine Bijektion $h:A\to B$.

Aufgabe 3 10 Punkte

Seien $\mathfrak A$ und $\mathfrak B$ τ -Strukturen. Dann ist $\mathfrak A$ Substruktur von $\mathfrak B$ (wir schreiben $\mathfrak A \subseteq \mathfrak B$), wenn

- (1) $A \subseteq B$,
- (2) für alle $n \in \mathbb{N}$ und $R \in \mathbb{R}^n(\tau)$ gilt $\mathbb{R}^{\mathfrak{A}} = \mathbb{R}^{\mathfrak{B}} \cap \mathbb{A}^n$ und
- (3) für alle $n \in \mathbb{N}$ und $f \in F^n(\tau)$ gilt $f^{\mathfrak{A}} = f^{\mathfrak{B}}|_A$, d.h. $f^{\mathfrak{A}}$ ist die Restriktion von $f^{\mathfrak{B}}$ auf A.

Sei weiterhin \mathfrak{B} eine Struktur und $M \subseteq B$ eine Teilmenge des Universums. Die von M erzeugte Substruktur von \mathfrak{B} ist die kleinste Struktur $\mathfrak{A} \subseteq \mathfrak{B}$ mit $M \subseteq A$.

Betrachten Sie nun die Boolsche Algebra aller Teilmengen von N:

$$\mathrm{BA}(\mathbb{N}) = (\mathcal{P}(\mathbb{N}), \cup, \cap, \bar{\ }, \emptyset, \mathbb{N}).$$

- (a) Welche Substrukturen werden von folgenden Teilmengen erzeugt?
 - (i) Die Menge aller endlichen Teilmengen von \mathbb{N} .
 - (ii) Die Menge aller unendlichen Intervalle $(n, \infty) = \{k \in \mathbb{N} \mid k > n\}.$
 - (iii) Die Menge aller unendlichen Teilmengen von $\mathbb{N},$ deren Komplement ebenfalls unendlich ist.
- (b) Kann eine abzählbare Teilmenge von $\mathcal{P}(\mathbb{N})$ die ganze Struktur BA(\mathbb{N}) erzeugen?