Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel

10. Übung Mathematische Logik

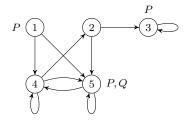
Abgabe: bis Mittwoch, den 9.1. um 10:00 Uhr am Lehrstuhl.

Geben Sie bitte Namen, Matrikelnummer und die Übungsgruppe an.

Hinweis: Alle Punkte dieser Übung zählen als **Zusatzpunkte**. Um den Vorlesungsstoff nachzuarbeiten, sollten Sie jedoch mindestens die ersten beiden Aufgaben lösen!

Aufgabe 1 10 Punkte

Sei \mathcal{K} die folgende Kripkestruktur:



- (a) Geben Sie für jede der folgenden Knotenmengen M eine ML-Formel ψ mit $\llbracket \psi \rrbracket^{\mathcal{K}} = M$ an.
 - (i) {1},
 - (ii) $\{2,5\},$
 - (iii) $\{3, 5\}$.
- (b) In welchen Knoten von \mathcal{K} gelten folgende CTL-Formeln?
 - (i) $\mathsf{EF}(\mathsf{AG}\,P)$,
 - (ii) $A(P \cup EG(P \rightarrow Q))$,
 - (iii) $E(P \cup E((\neg P) \cup AG P))$.

Aufgabe 2 10 Punkte

Eine Formel $\varphi(x) \in FO$ ist abwicklungsinvariant, wenn für alle Kripkestrukturen \mathcal{K} und alle Zustände v für die Abwicklung $\mathcal{T}_{\mathcal{K},v}$ gilt: $\mathcal{T}_{\mathcal{K},v}, v \models \varphi \Leftrightarrow \mathcal{K}, v \models \varphi$.

- (a) Welche der folgenden Formeln sind invariant unter Abwicklungen?
 - (i) $\varphi_1(x) := \forall y (Exy \vee Py)$
 - (ii) $\varphi_2(x) := \exists a \exists b \exists c (Exa \land Exb \land Eac \land Ebc)$
 - (iii) $\varphi_3(x) := \exists y \exists z (Exy \land Eyz \land y \neq z \land Pz)$
 - (iv) $\varphi_4(x) := \exists y \exists z (Exy \land Exz \land y \neq z \land (Py \leftrightarrow Pz))$
- (b) Geben Sie eine FO-Formel an, welche abwicklungs- aber nicht bisimulationsinvariant ist.

Aufgabe 3 20 Punkte

Beschreiben Sie das Auswertungsspiel für die Modallogik. Zeigen Sie, dass man jeder endlichen Kripkestruktur \mathcal{K} , jedem Zustand v in \mathcal{K} und jeder Formel $\psi \in \mathrm{ML}$ in Negationsnormalform, ein Spiel $\mathrm{MC}(\mathcal{K},v,\psi)$ der Größe $||\mathcal{K}||\cdot|\psi|$ zuordnen kann, welches genau dann von einer bestimmten Anfangsposition aus eine Gewinnstrategie für die Verifiziererin erlaubt, wenn $\mathcal{K},v\models\psi$.

Aufgabe 4 20 Punkte

Beweisen Sie, dass CTL bisimulationsinvariant ist, und folgern Sie daraus, dass CTL die Baummodelleigenschaft hat.

Aufgabe 5 10 Punkte

Geben Sie eine CTL-Formel φ an, so dass $\mathcal{G}, v \models \varphi$ für jeden gerichteten Graphen $\mathcal{G} = (V, E)$ und für alle $v \in V$ genau dann gilt, wenn \mathcal{G} 2-färbbar ist, oder zeigen Sie, dass eine solche Formel nicht existiert.