Aufgabe 1

Seien A,A_0,A_1,\ldots abzählbare Mengen. Zeigen Sie, dass dann auch die folgenden Mengen abzählbar sind.

(a)
$$A_0 \times A_1$$
,

$$\begin{array}{lll} \hbox{(a)} & A_0\times A_1, & \hbox{(b)} & \prod_{i=0}^n A_i & \hbox{für alle } n\in \mathbb{N}, \\ \\ \hbox{(c)} & \bigcup_{i\in \mathbb{N}} A_i, & \hbox{(d)} & A^*. \end{array}$$

(c)
$$\bigcup_{i\in\mathbb{N}} A_i$$

(d)
$$A^*$$

Aufgabe 2

Die Kardinalität einer Menge A ist nicht größer als die einer Menge B (kurz: $|A| \leq |B|$), wenn eine injektive Funktion $f: A \to B$ existiert. Vergleichen Sie die Kardinalitäten folgender Mengen:

(c)
$$\mathcal{P}(\mathbb{N})$$

(c)
$$\mathcal{P}(\mathbb{N})$$
 (d) \mathbb{R} (e) $[0,1] \subseteq \mathbb{R}$

Hinweis: Sie können für die Vergleiche auch das folgende Cantor-Schröder-Bernstein-Theorem benutzen: Sind $f:A\to B$ und $g:B\to A$ injektive Funktionen, dann gibt es auch eine Bijektion $h: A \rightarrow B$.

Aufgabe 3

Sei $\mathfrak B$ eine Struktur und $M\subseteq B$ eine Teilmenge des Universums. Die von Merzeugte Substruktur von \mathfrak{B} ist die kleinste Struktur $\mathfrak{A} \subseteq \mathfrak{B}$ mit $M \subseteq A$.

- (a) Geben Sie alle Substrukturen von $(\mathbb{Z}/20\mathbb{Z},+,\cdot)$ an (Addition und Multiplikation modulo 20), und geben Sie zu jeder Substruktur die kleinste Menge an, die diese erzeugt.
- (b) Geben Sie die von $\{\frac{1}{n}\}$ erzeugte Substruktur der reellen Arithmetik $(\mathbb{R},+,\cdot,0,1)$ an.