Aufgabe 1

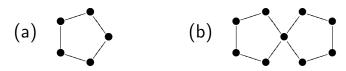
Untersuchen Sie für die unten angegebenen Tripel $(\mathfrak{A},\mathfrak{B},f:\mathfrak{A}\to\mathfrak{B})$, ob f (i) ein Homomorphismus, (ii) eine Einbettung und/oder (iii) ein Isomorphismus von \mathfrak{A} nach \mathfrak{B} ist.

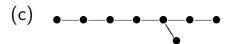
(a)
$$\mathfrak{A} := (\mathbb{N}, \max, \min)$$
$$\mathfrak{B} := (\mathcal{P}(\mathbb{N}), \cup, \cap)$$
$$f(n) := \{0, \dots, n\}$$

(b)
$$\mathfrak{A}:=(\mathbb{R},+,0)$$

$$\mathfrak{B}:=(\mathbb{R}^{>0},\cdot,1)$$

$$f(x):=e^x$$


Aufgabe 2


Sei $\mathfrak{A}:=(\mathbb{N},\leq)$ und $\mathfrak{B}:=(\{0,1\}^*,\preceq)$, wobei \preceq die Präfix-Relation auf Wörtern bezeichnet, d. h. $u\preceq v$ gdw. ein Wort $z\in\{0,1\}^*$ mit uz=v existiert.

- (a) Geben Sie je einen Homomorphismus von $\mathfrak A$ nach $\mathfrak B$ und von $\mathfrak B$ nach $\mathfrak A$ an.
- (b) Geben Sie je einen starken Homomorphismus von $\mathfrak A$ nach $\mathfrak B$ und von $\mathfrak B$ nach $\mathfrak A$ an, oder beweisen Sie, dass es einen solchen nicht gibt.

Aufgabe 3

Bestimmen Sie die Automorphismengruppe der folgenden Graphen:

