Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, B. Puchala, R. Rabinovich

9. Übung Mathematische Logik II

Abgabe: bis Montag, 5. Januar um 12:00 Uhr am Lehrstuhl.

Aufgabe 1 2+2+2 Punkte

Sei $\mathfrak{N}=(\mathbb{N},+,\cdot)$, P die Menge aller Primzahlen und für jede Teilmenge $X\subseteq P$ sei $\Phi_X=\{\varphi_p(x)\,|\,p\in X\}\cup\{\neg\varphi_p(x)\,|\,p\in P\setminus X\}$. Dabei sei für jedes $p\in P$ die Formel $\varphi_p(x)\in FO(\{+,\cdot\})$ so, dass für alle $k\in\mathbb{N}$ genau dann $\mathfrak{N}\models\varphi_p(k)$ gilt, wenn p ein Teiler von k ist. Ferner sei $\varphi_{\mathrm{prim}}(x)\in FO(\{+,\cdot\})$ so, dass für alle $k\in\mathbb{N}$ genau dann $\mathfrak{N}\models\varphi_{\mathrm{prim}}(k)$ gilt, wenn $k\in P$ ist.

- (a) Für welche $X \subseteq P$ ist Φ_X ein Typ von \mathfrak{N} über \emptyset ?
- (b) Für welche $X \subseteq P$ ist Φ_X in \mathfrak{N} realisiert?
- (c) Zeigen Sie, dass es eine elementare Erweiterung $\mathfrak{N} \leq \mathfrak{M}$ gibt, die eine Nicht-Standard-Primzahl p^* enthält. (Das heißt $\mathfrak{M} \models \varphi_{\text{prim}}(p^*)$ und $p^* \notin \mathbb{N}$.)

Aufgabe 2 1 + 3 Punkte

Sei $\mathfrak A$ eine τ -Struktur und sei $B\subseteq A$. Ein n-Typ p von $\mathfrak A$ über B ist ein Haupttyp, falls eine Formel $\varphi(\overline{x})\in p$ existiert, so dass $\mathfrak A_B\models \forall \overline{x}(\varphi(\overline{x})\to\psi(\overline{x}))$ für jede Formel $\psi(\overline{x})\in p$.

- (a) Sei p ein vollständiger Typ von \mathfrak{A} über B, der von einem Tupel $\overline{b} \subseteq B$ realisiert wird. Zeigen Sie, dass p ein Haupttyp ist.
- (b) Zeigen Sie, dass alle Haupttypen von $\mathfrak A$ über B in $\mathfrak A$ realisiert sind.

Aufgabe 3 3 + 5 Punkte

Seien $\mathfrak{A} \subseteq \mathfrak{B}$ zwei τ -Strukturen für eine Signatur τ . Zeigen Sie folgende Aussagen:

- (a) Wenn für alle endlichen Mengen $C \subseteq A$ und alle $b \in B$ ein Automorphismus f von \mathfrak{B} existiert mit f(c) = c für alle $c \in C$, der $f(b) \in A$ erfüllt, dann ist $\mathfrak{A} \preceq \mathfrak{B}$.
- (b) Die Umkehrung von (a) gilt nicht.

Aufgabe 4 1+2+4 Punkte

Wir betrachten $(\mathbb{Q}, <)$.

- (a) Geben Sie einen 1-Typen über \mathbb{Q} an, der in $(\mathbb{Q},<)$ realisiert ist.
- (b) Geben Sie einen 1-Typen über \mathbb{Q} an, der in $(\mathbb{R},<)$, aber nicht in $(\mathbb{Q},<)$ realisiert ist.
- (c) Geben Sie drei verschiedene 1-Typen über \mathbb{Q} an, die nicht in $(\mathbb{R}, <)$ realisiert sind.

Geben Sie für jeden Typen eine Struktur an, die diesen Typen realisiert.

http://logic.rwth-aachen.de/Teaching/MaLo2-WS08

Aufgabe 5 3 Punkte

Sei $\varphi \in FO(\tau)$ für eine Signatur τ ein beliebiger Satz, so dass φ unter Substrukturen erhalten bleibt. Zeigen Sie an Hand des Satzes von Łos-Tarski (wie er in der Vorlesung bewiesen wurde, für Formelmengen und Äquivalenz modulo einer Theorie T), dass es einen Π_1 -Satz $\psi \in FO(\tau)$ gibt, so dass $\varphi \equiv \psi$ gilt.

Aufgabe 6* $2^* + 6^* + 6^*$ Punkte

Es sei $\mathfrak{A} := (\mathbb{N}, S, 0)$.

- (a) Beschreiben Sie alle vollständigen 1-Typen von \mathfrak{A} , die auch Haupttypen sind.
- (b) Für $B \subseteq \mathbb{N}$ sei $S^n_{\mathfrak{A}}(B)$ die Menge aller vollständigen n-Typen von \mathfrak{A} über B (Stone-Raum). Sei $p_n = \operatorname{tp}_{\mathfrak{A}}(n/\emptyset)$ für $n \in \mathbb{N}$ und sei p_{∞} ein vollständiger 1-Typ von \mathfrak{A} über der leeren Menge mit $\{x \neq S^n(0) \mid n \in \mathbb{N}\} \subseteq p_{\infty}$. Begründen Sie, dass $S^1_{\mathfrak{A}}(\emptyset) = \{p_n \mid n \in \mathbb{N}\} \cup \{p_{\infty}\}$.
- (c) Klassifizieren Sie mit Hilfe der elementaren Äquivalenz von $\{f\}$ -Strukturen alle vollständigen 1-Typen über der leeren Menge von Strukturen der Form (X, f) mit bijektiver Funktion $f: X \to X$. Welche dieser Typen sind Haupttypen?