Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, B. Puchala, R. Rabinovich

12. Übung Mathematische Logik II

Abgabe: bis Montag, 26. Januar um 12:00 Uhr am Lehrstuhl.

Aufgabe 1 4 Punkte

Sei τ eine endliche relationale Signatur und \mathfrak{A} sowie \mathfrak{B} seien τ -Strukturen mit $\mathfrak{A} \cong_{\infty} \mathfrak{B}$. Ferner gebe es ein binäres Relationssymbol $R \in \tau$, so dass $R^{\mathfrak{A}}$ eine Wohlordnung ist. Zeigen Sie, dass $\mathfrak{A} \cong \mathfrak{B}$ gilt.

Aufgabe 2 4 Punkte

Eine partielle Ordnung (X, \leq) heißt vollständiger Verband, wenn jede Menge $Y \subseteq X$ ein Supremum $\bigvee Y$ und ein Infimum $\bigwedge Y$ besitzt. Eine Antikette auf X ist eine Menge $Y \subseteq X$, so dass je zwei verschiedene Elemente aus Y unvergleichbar sind. Wir definieren auf Antiketten eine Ordnung durch $A \leq B$, wenn für alle $x \in A$ ein $y \in B$ existiert mit $x \leq y$. Sei nun (X, \leq) ein endlicher vollständiger Verband und sei A die Menge aller Antiketten auf X. Zeigen Sie, dass (A, \leq) wieder ein vollständiger Verband ist.

Aufgabe 3 2 + 4 Punkte

Sei G = (V, E, P) ein endlicher gerichteter Graph mit einem unären Prädikat $P \subseteq V$ und für $v \in V$ sei $vE = \{w \in V \mid (v, w) \in E\}$ die Menge der direkten Nachfolger von v in G.

- (a) Wir definieren $F: 2^V \to 2^V$ durch $F(X) = P \cup \{v \in V \mid vE \cap X \neq \emptyset\}$. Zeigen Sie, dass F einen kleinsten Fixpunkt besitzt, und beschreiben Sie diesen.
- (b) Wir definieren $G: 2^V \times 2^V \to 2^V$ wie folgt.

$$G(X,Y) := (P \cap \{v \in V \mid vE \cap Y \neq \emptyset\}) \cup \{v \in V \mid vE \cap X \neq \emptyset\}.$$

Ferner seien $F_Y: 2^V \to 2^V$ und $\operatorname{lfp}_G: 2^V \to 2^V$ definiert durch $F_Y(X) = G(X,Y)$ für $X,Y \in 2^V$ und $\operatorname{lfp}_G(Y) = \operatorname{lfp}(F_Y)$ für $Y \in 2^V$. Zeigen Sie, dass F_Y für alle $Y \in 2^V$ einen kleinsten Fixpunkt hat. Zeigen Sie ferner, dass lfp_G einen größten Fixpunkt besitzt, und beschreiben Sie diesen.

Aufgabe 4 4 + 3 Punkte

Seien $\mathfrak{N} = (\mathbb{N}, S, 0)$ und $\mathfrak{Z} = (\mathbb{Z}, S, 0)$ wobei S jeweils die Nachfolgerfunktion auf \mathbb{N} beziehungsweise \mathbb{Z} ist.

- (a) Definieren Sie die Relationen $+ \subseteq \mathbb{N}^3$ und $\cdot \subseteq \mathbb{N}^3$ in LFP.
- (b) Definieren Sie die Relation $\langle \subseteq \mathbb{Z}^2$ in LFP.

Aufgabe 5 3 + 2 + 5* Punkte

Wir betrachten die Signatur $\tau = \{E, P\}$ mit einem zweistelligen Relationssymbol E und einem einstelligen Relationssymbol P.

- (a) Betrachten Sie folgende FO-Formel $\varphi \in FO(\tau)$. $\varphi(x,y) := \forall x'(Exx' \to \exists y'(Eyy' \land Rx'y')) \land \forall y'(Eyy' \to \exists x'(Exx' \land Rx'y'))$. Charakterisieren Sie die Klasse aller gerichteteten Graphen $G = (V, E^G)$ mit $G \models \exists a \exists b [gfp \ Rxy.\varphi(x,y)](a,b)$.
- (b) Geben Sie eine LFP-Formel $\varphi(x) \in \text{LFP}(\tau)$ an, so dass für jeden gerichteten Graphen $G = (V, E^G, P^G)$ und jeden Knoten $v \in V$ genau dann $G \models \varphi(v)$ gilt, wenn an jedem Terminalknoten, der von v aus erreichbar ist, P gilt.
- (c*) Geben Sie eine LFP-Formel $\varphi(x) \in \mathrm{LFP}(\tau)$ an, so dass für jeden gerichteten Graphen $G = (V, E^G, P^G)$ und jeden Knoten $v \in V$ genau dann $G \models \varphi(v)$ gilt, wenn es von v aus einen unendlichen Pfad gibt, auf dem nur endlich oft P gilt.

Aufgabe 6* 5* Punkte

Es sei R ein 1-stelliges Relationssymbol. Für eine Formel $\varphi(x) \in FO$ bezeichne $\tau(\varphi)$ die Signatur von φ und für eine Struktur $\mathfrak A$ der Signatur $\tau(\varphi) \setminus \{R\}$ sei $\varphi_R^{\mathfrak A}$ der zugehörige Fixpunkt-Operator, wie in der Vorlesung definiert.

Zeigen Sie, dass folgendes Problem unentscheidbar ist:

- Gegeben eine Formel $\varphi(x) \in FO$.
- Ist $\varphi_R^{\mathfrak{A}}$ monoton für alle Strukturen \mathfrak{A} der Signatur $\tau(\varphi) \setminus \{R\}$?