Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, B. Puchala, R. Rabinovich

13. Übung Mathematische Logik II

Abgabe: bis Montag, 02. Februar um 12:00 Uhr am Lehrstuhl.

Aufgabe 1 (2+2)+4 Punkte

Wir betrachten die Computation Tree Logic CTL, wie aus der Vorlesung Logik I bekannt, über Graphen $G = (V, E^G, P^G)$ mit einem zweistelligen Relationssymbol E und einem einstelligen Relationssymbol P, ohne Terminalknoten.

- (a) Drücken Sie folgende Eigenschaften in CTL und in L_{μ} aus.
 - (i) Auf allen Pfaden gilt unendlich oft P.
 - (ii) Die Request-Response-Bedingung : Von jedem erreichbaren Knoten, an dem P gilt, ist ein Knoten erreichbar, an dem Q gilt.
- (b) Zeigen Sie, dass für jede Formel $\varphi \in CTL$ eine Formel $\varphi^* \in L_{\mu}$ existiert, so dass für alle Graphen G und alle Knoten $v \in V$ genau dann $G, v \models \varphi$ gilt, wenn $G, v \models \varphi^*$ gilt.

Aufgabe 2 3 + 4 Punkte

Konstruieren Sie für i = 1, 2 Sätze $\varphi_i \in \text{LFP}$ über der Signatur $\tau = \{E\}$ mit einem zweistelligen Relationssymbol E, so dass für alle endlichen ungerichteten Graphen $G = (V, E^G)$ genau dann $G \models \varphi_i$ gilt, wenn G die Eigenschaft (i) hat.

- (1) G ist ein Baum, das heißt G ist zusammenhängend und hat keine Kreise.
- (2) G ist bipartit, das heißt es gibt eine Partition $V = V_1 \cup V_2$ der Knotenmenge von G, so dass es keine Kante $(u, v) \in E$ gibt mit $u, v \in V_i$ für ein $i \in \{1, 2\}$.

Aufgabe 3 3 + 4 Punkte

- (a) Geben Sie eine LFP-Formel $\varphi(x,y,z)$ über der Signatur $\{E\}$ mit einem zweistelligen Relationssymbol E an, so dass für jeden Graphen $G=(V,E^G)$ und alle Knoten $a,b,c\in V$ genau dann $G\models\varphi(a,b,c)$ gilt, wenn die Längen der kürzesten Pfade von a nach b und von a nach c gleich sind.
- (b) Ein Schaltkreis ist gegeben durch ein Tupel $(V, E, P_{\vee}, P_{\neg}, I_0, I_1, \text{out})$, wobei (V, E) ein gerichteter azyklischer Graph mit Wurzel out ist und P_{\vee}, P_{\neg}, I_0 und I_1 disjunkte Teilmengen von V sind. P_{\vee} ist die Menge der OR-Gatter mit jeweils zwei Vorgängern, P_{\neg} ist die Menge der NOT-Gatter mit jeweils einem Vorgänger. I_0 und I_1 sind die Mengen der Eingänge mit Werten 1 bzw. 0, die keine Vorgänger haben; out ist der Ausgang, der keine Nachfolger hat. Geben Sie einen LFP-Satz an, welcher besagt, dass am Ausgang der Wert 1 anliegt.

Aufgabe 4 3 Punkte

Ein Büchi-Spiel wird von zwei Spielern, 0 und 1, auf einer Arena (V, V_0, V_1, E, v_0) gespielt. Dabei ist (V, E) ein gerichteter Graph ohne Terminalknoten, $V_0 \subseteq V$ die Menge der Positionen von Spieler 0, $V_1 \subseteq V$ die Menge der Positionen von Spieler 1 und $v_0 \in V$ die Anfangsposition. Die Gewinnbedingung ist durch eine Menge $F \subseteq V$ gegeben, wobei eine (unendliche) Partie genau dann von Spieler 0 gewonnen wird, wenn die Menge der unendlich oft besuchten Knoten einen nichtleeren Schnitt mit F hat.

Geben Sie eine LFP-Formel an, welche besagt, dass Spieler 0 von der Anfangsposition aus eine Gewinnstrategie hat.

Für die nächsten Aufgaben benötigen wir folgende Definitionen.

Es sei τ eine Signatur und \mathcal{R} sei eine Menge von Relationsvariablen R mit $\mathcal{R} \cap \tau = \emptyset$. Die Logik PFP (τ) wird analog zur Logik LFP (τ) definiert. Statt die Formeln [lfp $R\overline{x}\psi$] (\overline{t}) und [gfp $R\overline{x}\psi$] (\overline{t}) einzuführen, führen wir Formeln [pfp $R\overline{x}\psi$] (\overline{t}) ein.

Die Semantik solcher Formeln ist folgende. Die Formel $\psi \in \mathrm{PFP}(\tau)$ definiert für eine gegebene Struktur $\mathfrak A$ einen Operator $\psi_R^{\mathfrak A}: \mathcal P(A^k) \to \mathcal P(A^k)$ (wie bei LFP) und damit eine Fixpunktiteration R^0, R^1, \ldots mit $R^0 = \emptyset$. Der partielle Fixpunkt pfp $(\psi_R^{\mathfrak A})$ des Operators $\psi_R^{\mathfrak A}$ ist wie folgt definiert. Wenn die Folge einen Fixpunkt $R^m = R^{m+1}$ erreicht, ist pfp $(\psi_R^{\mathfrak A}) = R^m$. Wenn kein Fixpunkt erreicht wird, ist pfp $(\psi_R^{\mathfrak A}) = \emptyset$. Die Formel [pfp $R\overline{x}\psi$] (\overline{t}) gilt genau dann, wenn $\overline{t}^{\mathfrak A} \in \mathrm{pfp}(\psi_R^{\mathfrak A})$ ist.

Aufgabe 5* 3* Punkte

Conway's Spiel LIFE wird auf einem ungerichteten Graphen gespielt. Zu Beginn sind bestimmte Knoten mit Steinen belegt. In jedem Schritt wird folgende Regel simultan auf alle Knoten angewand: Ein belegter (unbelegter) Knoten bleibt (wird) belegt genau dann, wenn er 2 oder 3 (genau 3) belegte Nachbarknoten besitzt.

Geben Sie einen Satz in PFP mit Signatur $\{E,P\}$ an (E die Kantenrelation des Graphen und P die Menge der Knoten in der Anfangskonfiguration), welcher besagt, dass das Spiel mit dieser Anfangskonfiguration schließlich stationär wird.

Aufgabe 6* 8* Punkte

- (a) Geben Sie eine PFP-Formel $\varphi(R,x)$ über der Signatur $\{<\}$ mit einem zweistelligen Relationssymbol < an, so dass für jede lineare Ordnung $\mathfrak{A} = (A,<)$ die Fixpunktinduktion des zu φ gehörenden Fixpunktoperators $\varphi_R^{\mathfrak{A}}$ stationär wird, aber erst nach exponentiell vielen Schritten (in der Anzahl der Elemente von A).
 - Hinweis: Konstruieren Sie die Formel so, dass die Fixpunktiteration alle Teilmengen von A in einer geeigneten Ordnung durchläuft.
- (b) Zeigen Sie, dass auf endlichen geordneten Strukturen jede MSO-Formel zu einer PFP-Formel äquivalent ist.
 - Hinweis: Verwenden Sie die Formel aus (a).