Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, F. Abu Zaid, S. Leßenich

7. Übung Mathematische Logik II

Abgabe: bis Montag, 3. Dezember um 12:00 Uhr am Lehrstuhl.

Aufgabe 1 2+2 Punkte

Klassifizieren Sie, für die folgenden beiden Signaturen, mit Hilfe der elementaren Äquivalenz von τ -Strukturen alle vollständigen Theorien der Sprache $FO(\tau)$.

- $\tau = \{c\}$, wobei c ein Konstantensymbol ist.
- $\tau = \{c_0, \dots, c_n\}, n \in \omega$, wobei c_1, \dots, c_n Konstantensymbole sind.

Aufgabe 2 4 + 3 Punkte

- (a) Sei $\Phi \subseteq FO(\tau)$ für eine Signatur τ eine erfüllbare Satzmenge, die ein unendliches Modell besitzt. Zeigen Sie, dass Φ für alle $\kappa \in Cn^{\infty}$ mit $\kappa \geq |\tau|$ ein Modell der Mächtigkeit κ hat. *Hinweis:* Gehen Sie wie im Beweis des Satzes von Löwenheim-Skolem vor.
- (b) Sei $\kappa \in \operatorname{Cn}^{\infty}$. Eine Theorie T heißt κ -kategorisch, falls sie bis auf Isomorphie genau ein Modell der Kardinalität κ besitzt. Sei $T \subseteq \operatorname{FO}(\tau)$ für eine Signatur τ eine Theorie mit folgenden Eigenschaften:
 - (i) Alle Modelle von T sind unendlich.
 - (ii) Es gibt ein $\kappa \in \operatorname{Cn}^{\infty}$ mit $\kappa \geq |\tau|$, so dass T κ -kategorisch ist.

Zeigen Sie, dass T vollständig ist.

Aufgabe 3 3 Punkte

Es sei $\Phi \subseteq FO(\tau)$ für eine Signatur τ ein rekursiv aufzählbares Axiomensystem. Zeigen Sie, dass Φ^{\models} bereits rekursiv axiomatisiert ist.

Hinweis: Geben Sie ein zu Φ äquivalentes Axiomensystem Φ' an, dessen Sätze der Länge nach strikt aufsteigend sortiert werden können.

Aufgabe 4 3 Punkte

Zeigen Sie, dass eine rekursiv aufzählbare Theorie T, die nur endlich viele vollständige Erweiterungen $T' \supseteq T$ hat, entscheidbar ist.

Aufgabe 5 3+3+6 Punkte

Wir definieren eine Folge $(\Phi)_{i\in\omega}$ von Erweiterungen der Peano-Arithmetik durch

- $(1) \ \Phi_0 = \Phi_{PA},$
- (2) $\Phi_{i+1} = \Phi_i \cup \{Kons_{\Phi_i}\},\$

(3)
$$\Phi_{\omega} = \bigcup_{i < \omega} \Phi_i$$
,

wobei Φ_{PA} das Axiomensystem der Peano-Arithmetik ist.

- (a) Zeigen Sie, dass alle Φ_i konsistent sind.
- (b) Zeigen Sie, dass Φ_{ω} konsistent ist.
- (c) Lösen Sie folgendes Paradoxon. Wir erweitern die Folge durch:
 - $(2') \ \Phi_{\alpha+1} = \Phi_{\alpha} \cup \{ Kons_{\Phi_{\alpha}} \},\$
 - (3') $\Phi_{\lambda} = \bigcup \Phi_{\alpha < \lambda}$ für Limesordinale λ .

Da es nur abzählbar viele Formeln gibt, existiert ein Fixpunkt Φ_{∞} der Folge $(\Phi_{\alpha})_{\alpha \in On}$, also $\Phi_{\infty} = \Phi_{\infty} \cup \{Kons_{\infty}\}$. Dann gilt $\Phi_{\infty} \vdash Kons_{\infty}$ im Widerspruch zum zweiten Gödelschen Satz.