Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, F. Abu Zaid, S. Leßenich

8. Übung Mathematische Logik II

Abgabe: bis Montag, 10. Dezember um 12:00 Uhr am Lehrstuhl.

Aufgabe 1 2+4+2 Punkte

Es seien $\mathfrak{A}\subseteq\mathfrak{B}\subseteq\mathfrak{C}$ drei τ -Strukturen für eine Signatur τ . Zeigen oder widerlegen Sie die folgenden Aussagen.

- (a) Sei $\mathfrak{A} \leq \mathfrak{B}$ und sei A oder B endlich. Dann gilt $\mathfrak{A} = \mathfrak{B}$.
- (b) Ist $\mathfrak{A} \leq \mathfrak{C}$, so ist auch $\mathfrak{A} \leq \mathfrak{B}$.
- (c) Gilt $\mathfrak{A} \leq \mathfrak{C}$ und $\mathfrak{B} \leq \mathfrak{C}$, so ist $\mathfrak{A} \leq \mathfrak{B}$.

Aufgabe 2 3 + 3 Punkte

Eine Theorie $T \subseteq FO(\tau)$ heißt modellvollständig, falls für beliebige τ -Strukturen $\mathfrak A$ und $\mathfrak B$ mit $\mathfrak A, \mathfrak B \models T$ aus $\mathfrak A \subseteq \mathfrak B$ bereits $\mathfrak A \preceq \mathfrak B$ folgt.

- (a) Beweisen oder widerlegen Sie die Modellvollständigkeit der Theorien $\operatorname{Th}(\mathbb{N}, S)$ mit der Nachfolgerfunktion S sowie $\operatorname{Th}(\mathbb{Z}, <)$ mit der üblichen Relation <.
- (b) Zeigen Sie, dass alle vollständigen Theorien über der Signatur $\sigma = \{P\}$ mit einem unären Relationssymbol P modellvollständig sind.

Hinweis: Verschaffen Sie sich mit Hilfe der elementaren Äquivalenz von σ -Strukturen einen Überblick über die vollständigen Theorien über σ .

Aufgabe 3 $3 + 3 + 4 + 6^*$ Punkte

Eine Theorie $T \subseteq FO(\tau)$ erlaubt Quantorenelimination, wenn für jede Formel $\varphi(\overline{x}) \in FO(\tau)$ eine quantorenfreie Formel $\vartheta(\overline{x}) \in FO(\tau)$ existiert, so dass $T \models \forall \overline{x} (\varphi(\overline{x}) \leftrightarrow \vartheta(\overline{x}))$.

- (a) Zeigen Sie, dass eine Theorie $T \subseteq FO(\tau)$ genau dann Quantorenelimination erlaubt, wenn für jede quantorenfreie Formel $\psi(\overline{x}, y) \in FO(\tau)$ eine quantorenfreie Formel $\vartheta(\overline{x}) \in FO(\tau)$ exisitiert, so dass $T \models \forall \overline{x}(\exists y \psi(\overline{x}, y) \leftrightarrow \vartheta(\overline{x}))$ gilt.
- (b) Sei $T \subseteq FO(\tau)$ eine Theorie, die Quantorenelimination erlaubt. Zeigen Sie, dass T modellvollständig ist.
- (c) Sei $T \subseteq FO(\tau)$ eine Theorie, die Quantorenelimination erlaubt, für eine Signatur τ , die keine Konstantensymbole enthält. Zeigen Sie, dass T vollständig ist.
- (\mathbf{d}^*) Zeigen Sie, dass die Theorie der dichten linearen Ordnungen ohne Endpunkte Quantorenelimination erlaubt.

Hinweis: Benutzen Sie die disjunktive Normalform zur Darstellung der quantorenfreien Formeln über <.