Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel, F. Reinhardt

10. Übung Mathematische Logik II

Abgabe: bis Donnerstag, 8. Januar um 16:15 Uhr am Lehrstuhl.

Aufgabe 1 3 Punkte

Folgern Sie aus dem in der Vorlesung bewiesenen Satz von Łos-Tarski die folgende schwächere Variante des Satzes von Łos-Tarski:

Sei $\varphi \in FO(\tau)$ ein Satz. Dann sind die folgenden Aussagen äquivalent:

- i) Wenn $\mathfrak{A} \models \varphi$ gilt und $\mathfrak{B} \subseteq \mathfrak{A}$ eine Substruktur von \mathfrak{A} ist, dann gilt auch $\mathfrak{B} \models \varphi$. (" φ bleibt unter Substrukturen erhalten")
- ii) Es gibt $\psi = \forall \overline{x} \vartheta(\overline{x}) \in FO(\tau)$, mit $\vartheta(\overline{x})$ quantorenfrei, so dass $\varphi \equiv \psi$ gilt. (" φ is äquivalent zu einem Π_1 -Satz")

Aufgabe 2 2+2+2 Punkte

Sei $\mathfrak{N} = (\mathbb{N}, +, \cdot)$, P die Menge aller Primzahlen und für jede Teilmenge $X \subseteq P$ sei $\Phi_X = \{\varphi_p(x) \mid p \in X\} \cup \{\neg \varphi_p(x) \mid p \in P \setminus X\}$. Dabei sei für jedes $p \in P$ die Formel $\varphi_p(x) \in FO(\{+, \cdot\})$ so, dass für alle $k \in \mathbb{N}$ genau dann $\mathfrak{N} \models \varphi_p(k)$ gilt, wenn p ein Teiler von k ist. Ferner sei $\varphi_{\text{prim}}(x) \in FO(\{+, \cdot\})$ so, dass für alle $k \in \mathbb{N}$ genau dann $\mathfrak{N} \models \varphi_{\text{prim}}(k)$ gilt, wenn $k \in P$ ist.

- (a) Für welche $X \subseteq P$ ist Φ_X ein Typ von \mathfrak{N} über \emptyset ?
- (b) Für welche $X \subseteq P$ ist Φ_X in \mathfrak{N} realisiert?
- (c) Zeigen Sie, dass es eine elementare Erweiterung $\mathfrak{N} \leq \mathfrak{M}$ gibt, die eine Nicht-Standard-Primzahl p^* enthält. (Das heißt $\mathfrak{M} \models \varphi_{\text{prim}}(p^*)$ und $p^* \notin \mathbb{N}$.)

Aufgabe 3 3+4+4 Punkte

Sei $\mathfrak A$ eine τ Struktur und sei $B \subseteq A$. Ein n-Typ p von $\mathfrak A$ über B ist ein Haupttyp, wenn eine Formel $\varphi(\bar x) \in p$ existiert, so dass $\mathfrak A_B \models \forall \bar x (\varphi(\bar x) \to \psi(\bar x))$ für alle $\psi(\bar x) \in p$.

- (a) Sei p ein vollständiger Typ von $\mathfrak A$ über B, welcher durch ein Tupel $b \subseteq B$ realisiert ist. Zeigen sie, dass p ein Haupttyp ist.
- (b) Zeigen sie, dass alle Haupttypen von $\mathfrak A$ über B in $\mathfrak A$ realisiert sind.
- (c) Seien $\mathfrak A$ und $\mathfrak B$ zwei τ -Strukturen mit $\mathfrak A\subseteq \mathfrak B$. Beweisen sie, dass $\mathfrak A\preccurlyeq \mathfrak B$ gilt genau dann, wenn alle Haupttypen von $\mathfrak B$ über A in $\mathfrak A$ realisiert sind.