Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, F. Reinhardt

11. Übung Mathematische Logik II

Abgabe: bis Donnerstag, 15. Januar um 16:15 Uhr am Lehrstuhl.

Aufgabe 1 3 Punkte

Zeigen Sie, dass jede τ -Struktur $\mathfrak A$ eine ω -saturierte elementare Erweiterung $\mathfrak B$ hat.

 $\mathit{Hinweis:}$ Konstruieren Sie $\mathfrak B$ mittels einer elementaren Kette. Benutzen Sie hierzu den in der Vorlesung bewiesenen Satz, dass jede Struktur $\mathfrak C$ eine elementare Erweiterung $\mathfrak C \preceq \mathfrak D$ hat, in der alle Typen von $\mathfrak C$ realisiert werden.

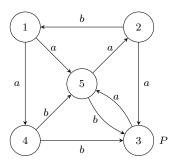
Aufgabe 2 2+2+2+2 Punkte

Beweisen oder widerlegen Sie jeweils, dass die folgenden Strukturen ω -saturiert sind.

- (a) jede endliche Struktur
- (b) $(\mathbb{Z}, <)$
- (c) $(\mathbb{Q}, <)$
- (d) $(\mathbb{Z} \times \mathbb{Z}, <)$ mit $(a, b) < (c, d) \Leftrightarrow a < c \lor (a = c \land b < d)$
- (e) $(\mathbb{Q} \times \mathbb{Z}, <)$ mit < wie bei (d).

Aufgabe 3 1+1+1+1 Punkte

Sei $\tau = \{E_a, E_b, P\}$ eine Signatur und $\mathcal{K} = (V, \tau^{\mathcal{K}})$ das folgende Transitionssystem:



Berechnen Sie für jede der folgenden ML-Formen ψ die Extension $[\![\psi]\!]^{\mathcal{K}} := \{v \in V \mid \mathcal{K}, v \models \psi\}$

- (i) $\psi_1 := [b]P$
- (ii) $\psi_2 := [b]\langle a \rangle 0$
- (iii) $\psi_3 := \langle a \rangle (P \vee [b]0)$
- (iv) $\psi_4 := [a]\langle b \rangle [b]\langle a \rangle 1$

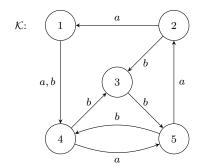
Aufgabe 4 1+1+1 Punkte

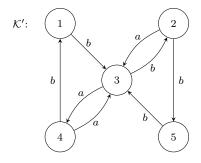
Geben Sie zu den folgenden FO-Formel
n $\varphi(x)$ jeweils eine äquivalente ML-Formel an, oder beweisen Sie, dass eine solche Formel nicht existiert:

- (i) $\varphi_1(x) := \forall y \exists z (Exy \lor Eyz);$
- (ii) $\varphi_2(x) := \forall y \exists z (\neg Exy \lor Eyz);$
- (iii) $\varphi_3(x) := \exists y \forall z (Eyx \land Eyz \land Pz).$

Aufgabe 5 2+6+2 Punkte

Wir betrachten die folgenden Transitionssysteme \mathcal{K} und \mathcal{K}' :





- (a) Für welche Paare von Zuständen v in \mathcal{K} und Zuständen v' in \mathcal{K}' gilt $\mathcal{K}, v \sim \mathcal{K}', v'$?
- (b) Geben Sie für alle Paare, wo dies nicht der Fall ist, die größte Zahl m an, so dass $\mathcal{K}, v \sim_m \mathcal{K}', v'$ gilt, und konstruieren Sie eine ML-Formel ψ der Modaltiefe m+1 mit $\mathcal{K}, v \models \psi$ und $\mathcal{K}', v' \not\models \psi$.
- (c) Geben Sie eine FO-Formel $\varphi(x)$ an, so dass $\mathcal{K} \models \varphi(2)$ und $\mathcal{K}' \not\models \varphi(2)$.