Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen

Prof. Dr. E. Grädel, K. Dannert

4. Übung Mathematische Logik II

Abgabe: bis Montag, 06. November in der Vorlesung oder um 18:00 Uhr am Lehrstuhl.

Aufgabe 1 4 Punkte

Sei (A, \leq) eine partielle Ordnung und $X \subseteq A$. Ein Element $a \in A$ heißt untere Schranke von X, wenn für alle $x \in X$ gilt $a \leq x$. Ist a eine untere Schranke und gilt $a \geq b$ für alle unteren Schranken b, dann heißt a Infimum von X. Ein Element $a \in X$ ist minimal (bezüglich X), wenn es kein Element $c \in X$ mit $c \leq a$ und $c \neq a$ gibt.

Wir betrachten (B, \subseteq) mit $B = \{x \subseteq \omega \mid x \text{ ist endlich oder } \omega \setminus x \text{ ist endlich}\}$, wobei ω die Menge der natürlichen Zahlen ist. (Eine Menge x ist endlich, wenn es eine Bijektion $f: x \to n$ von dieser Menge in eine natürliche Zahl $n \in \omega$ gibt.)

Gibt es eine Teilmenge von B ohne minimales Element? Konstruieren Sie eine Teilmenge von B mit einer unteren Schranke, aber ohne Infimum.

Aufgabe 2 2 Punkte

Für Klassen A, B und C seien $R \subseteq A \times B$ und $S \subseteq B \times C$ binäre Relationen. Die Komposition $S \circ R \subseteq A \times C$ von R und S ist definiert durch

$$S \circ R = \{(a,c) \mid \text{ es gibt ein } b \in B \text{ mit } (a,b) \in R \text{ und } (b,c) \in S\}.$$

Wir definieren die Relation $\mathrm{id}_A = \{(a,a) \mid a \in A\}$. Ferner sei $R^{-1} = \{(b,a) \mid (a,b) \in R\}$. Gilt für alle Relationen $R \subseteq A \times B$, dass $R^{-1} \circ R \subseteq \mathrm{id}_A$ ist?

Aufgabe 3 1+2+2+2 Punkte

Geordnete Paare (x,y) von Mengen x und y können durch $\{\{x\},\{x,y\}\}$ definiert werden. Eine Formalisierung von Tripeln (x,y,z) als Mengen ist $ad\ddot{a}quat$, wenn (x,y,z)=(x',y',z') genau dann, wenn x=x',y=y' und z=z'. Sind die folgenden Formalisierungen adäquat?

- (a) (x, y, z) = ((x, y), z),
- (b) $(x, y, z) = \{\{x, [0]\}, \{y, [1]\}, \{z, [2]\}\},\$
- (c) $(x, y, z) = \{x, \{y\}, \{\{z\}\}\},\$
- (d) $(x, y, z) = \{\{x\}, \{x, y\}, \{x, y, z\}\}.$

Aufgabe 4 2+2+2+4 Punkte

Sei X eine nicht-leere Menge von Ordinalzahlen.

- (a) Zeigen Sie, dass $\bigcup X$ und $\bigcap X$ Ordinalzahlen sind.
- (b) Zeigen Sie, dass $\bigcup X$ die kleinste Ordinalzahl β ist, so dass $\alpha \leq \beta$ für alle $\alpha \in X$.
- (c) Geben Sie eine entsprechende Beschreibung von $\bigcap X$ an und zeigen Sie deren Korrektheit.
- (d) Zeigen Sie, dass für jede Ordinalzahl α gilt: $\alpha = \bigcup \alpha \Leftrightarrow \alpha$ ist Limesordinal oder $\alpha = \emptyset$.