Quantum Computing — Assignment 1

Due: Wednesday, 22.04., 14:15

Exercise 1

Consider the polarisation experiment from the lecture, where, instead of 45° , the filter in the middle polarises light with an angle α , for arbitrary α .

Specify how much light passes through the three filters depending on the angle α .

Exercise 2

- (a) Give a construction of an equation system EQ $|\psi\rangle$ for each vector $|\psi\rangle \in H_4$, such that EQ $|\psi\rangle$ is solvable if, and only if $|\psi\rangle$ is not entangled.
- (b) For each of the following states, prove or disprove that it is entangled.

Hint: The equation system may not be helpful in all cases. You can, for instance, consider the properties of tensor products.

(i)
$$\frac{1}{2} |00\rangle + \frac{1}{2} |01\rangle + \frac{1}{\sqrt{2}} |11\rangle$$

(ii)
$$\left(-\frac{1}{6}+i\frac{\sqrt{2}}{3}\right)|00\rangle + \left(\frac{1-\sqrt{2}}{6}+i\frac{1+\sqrt{2}}{6}\right)|01\rangle + \left(\frac{1-\sqrt{2}}{6}+i\frac{1+\sqrt{2}}{6}\right)|10\rangle + (i\frac{1}{3})|11\rangle$$

(iii)
$$\frac{3}{8} |00\rangle + \frac{\sqrt{7}}{8} |01\rangle + \frac{3}{4} |10\rangle + \frac{\sqrt{3}}{4} |11\rangle$$

Exercise 3

Show that, for each qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, there are $\gamma, \vartheta, \varphi \in \mathbb{R}$ such that

$$\left|\psi\right\rangle = e^{i\gamma} \left(\cos\frac{\vartheta}{2}\left|0\right\rangle + e^{-i\varphi}\sin\frac{\vartheta}{2}\left|1\right\rangle\right).$$

Hint: Each complex number z can be written as $z = r \cdot e^{i\gamma}$ for some $r, \gamma \in \mathbb{R}$.

15 Points

5 Points

10 Points