Quantum Computing — Assignment 2

Due: Wednesday, 29.04., 14:15

Geben Sie bitte Namen, Matrikelnummer und die Übungsgruppe an.

Exercise 1

In this excercise we consider reversible gates for classical computations.

- (a) Give a complete description of all functions $f : \{0,1\}^3 \to \{0,1\}$ such that the function $(x, y, z) \mapsto (x, y, f(x, y, z))$ is reversible.
- (b) Construct a reversible version of a two-bit adder (i.e. $a(x, y) = (x \oplus y, xy)$) using controlled negation and Toffoli gates.

Hint: First find a suitable function g(x, y) such that $a'(x, y) = (g(x, y), x \oplus y, xy)$ is injective. Then implement a' with the help of additional (constant) input bits.

(c) The gate $F: \{0,1\}^3 \to \{0,1\}^3$ is given by $(x,y,z) \mapsto \begin{cases} (x,y,z) & \text{, if } x = 1 \\ (x,z,y) & \text{, else} \end{cases}$

Show that $\{F\}$ is universal for reversible computation.

Exercise 2

(a) Consider the branching gate B from the lecture.

(b) The No-Cloning Theorem states that there is no unitary U such that, for some fixed $|\varphi\rangle \in H^2$ and all $|\psi\rangle \in H^2$

$$U \ket{\psi} \ket{\varphi} = \ket{\psi} \ket{\psi}$$

Show that, in fact, for all U and $|\varphi\rangle$ the following is true: if for $|\psi\rangle \neq |\gamma\rangle$ with

$$U \ket{\psi} \ket{\varphi} = \ket{\psi} \ket{\psi}$$
 and
 $U \ket{\gamma} \ket{\varphi} = \ket{\gamma} \ket{\gamma}$

then $|\psi\rangle$ and $|\gamma\rangle$ must be orthogonal.

Hint: use that $\langle \vartheta \otimes \nu \mid \vartheta' \otimes \nu' \rangle = \langle \vartheta \mid \vartheta' \rangle \langle \nu \mid \nu' \rangle$.

http://logic.rwth-aachen.de/Teaching/QC-SS15/

SS 2015

10 Points

10 Points

Exercise 3

5 Points

Prove that any unitary matrix $U \in \mathbb{C}^{n \times n}$ has a square root, that means, there is a unitary matrix V such that $V \cdot V = U$.

Hint: Recall that by the spectral theorem from linear algebra U is diagonalizable via a basis-transformation to an orthonormal basis of \mathbb{C}^n , consisting of eigenvectors of U.