Quantum Computing — Assignment 4

Due: Wednesday, 20.05., 14:15

Exercise 1

Provide a decomposition of the following transformation into a product of unitary matrices that operate non-trivially only on a two-dimensional subspace of H^4 .

$$\frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix}$$

Exercise 2

- (a) Show that no classical gate is universal for quantum computing.
- (b) Show that there is no one-qubit universal gate.
- (c) Show that for any d > 2 there exists a $d \times d$ unitary matrix U which cannot be decomposed as a product of fewer than d - 1 unitary matrices that operate non-trivially only on a two-dimensional subspace of H^d .

Note that a set Ω of quantum gates is *universal* if any unitary transformation can be approximated to arbitrary precision using only gates from Ω .

Exercise 3

Let $\varphi_0 = \alpha \pi$ for some $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, $0 < \alpha < 1$. Show that any gate

$$U_{\varphi} = \begin{pmatrix} e^{i\varphi} & 0\\ 0 & 1 \end{pmatrix}$$

can be implemented with arbitrary precision ε using $\mathcal{O}(\frac{1}{\varepsilon})$ copies of a single gate U_{φ_0} .

Hint: First show Dirichlet's approximation theorem: For any number $x \in \mathbb{R} \setminus \mathbb{Q}$ and every natural number n, there exist $p, q \in \mathbb{Z}$, $1 \leq q \leq n$, such that

$$0 < |qx - p| \le \frac{1}{n+1}.$$

http://logic.rwth-aachen.de/Teaching/QC-SS15/

 $\mathrm{SS}~2015$

10 Points

5 Points

10 Points