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What are automatic structures?

Structures that admit a finite presentation by automata.

The universe, and all relations of an automatic structure A= (A,R1, . . . ,Rm)

are recognisable by (synchronous multi-head) finite automata.

In principle we can use any kind of automata (over finite or infinite words or
trees, . . . ) as long as they are effectively closed under all first-order operations
and their emptiness problem is decidable.

Given an automatic presentation of A and a first-order formula ϕ(x), one
can effectively construct an automaton that represents the relation
ϕA := {a : A |= ϕ(a)}.

Every automatic structure has a decidable first-order theory.
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Word-automatic structures

A= (A,R1, . . . ,Rm) is (word-)automatic if there exist a regular language
Lδ ⊆ Σ∗ and a surjective function h : Lδ → A such that the relations

L= := {(u,v) : h(u) = h(v)} ⊆ Lδ ×Lδ

LRi := {(u1, . . . ,ur) : A |= Rih(u1) . . .h(ur)} ⊆ Lδ ×·· ·×Lδ

are regular (i.e. recognisable by synchronous automata)

Automatic presentation of A: list of automata

〈Mδ ,M=,MR1 , . . . ,MRm〉

recognising Lδ ,L=,LR1 , . . . ,LRm .
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Synchronous automata

Automaton M, recognising a relation R⊆ Σ
∗×·· ·×Σ

∗︸ ︷︷ ︸
r

works on the alphabet

Γ := (Σ∪{�})r−{�}r

(u1, . . . ,ur) ∈ R ⇐⇒

M accepts

u11u12 . . . u1 j��� . . .�
u21u22 . . . . . . u2k� . . .�...

...
...

ui1ui2 . . . ui`...
...

...
ur1ur2 . . . ur j��� . . .�︸ ︷︷ ︸

`=max{|ui|:i=1,...,r}

∈ Γ
∗
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Examples of automatic structures

• (N,+) is automatic

− Lδ = {0,1}∗1∪{0}
− h(w0 . . .wn−1) = ∑i<n wi2i (h injective)

− L+ recognised by automaton M+

scans
u0u1 . . . . . .um� . . . . . .�
v0v1 . . . . . .vn−1�
w0w1 . . . . . .wn

remembering carry bit ci for u0 . . .ui−1 + v0 . . .vi−1

checks whether wi = ui + vi + ci (mod 2)

• every finite structure is automatic

• the configuration graph of any Turing machine is automatic
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Universal automatic structures

• (N,+, |p) is automatic

x |p y :⇐⇒ x is a power of p dividing y

use p-ary representation of numbers

L|p =
{

u
v : u

v = 0 . . . 01� . . . . . .�
0 . . . 0vrvr+1 . . .vn

}
• Tree(m) = ({0, . . . ,m−1}∗,σ0, . . . ,σm−1,≤,el) is automatic

− σi : u 7→ ui

− u≤ v : ∃w uw = v

− el(u,v) : |u|= |v|
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ω-automatic structures

A= (A,R1, . . . ,Rs) is ω-automatic if there exist a ω-regular language
Lδ ⊆ Σω and a surjective function h : Lδ → A such that the relations

L= := {(u,v) : h(u) = h(v)} ⊆ Lδ ×Lδ

LRi := {(u1, . . . ,ur) : A |= Rih(u1) . . .h(ur)} ⊆ Lδ ×·· ·×Lδ

are ω-regular, i.e. recognisable by synchronous Büchi automata.

• every automatic structure is ω-automatic

• (R,+) and (R,+,≤, |m,1) are ω-automatic

x |m y :⇐⇒ ∃k,r ∈ Z : x = mk, y = r · x

• ω-Tree(m) = ({0, . . . ,m−1}≤ω ,σ0, . . . ,σm−1,≤,el) is ω-automatic
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First-order logic on (ω)-automatic structures

Standard models of automata are effectively closed under first-order
operations (union, intersection, complementation, projection) and have a
decidable emptiness problem. Hence, every automatic structure has a
decidable first-order theory.

Question: Can we extend such results beyond first-order logic?

Positive results for counting quantifiers: Let FOC be the extension of FO by
- “there exist infinitely many x such that . . . ”
- “there exist k mod m many x such that . . . ”
- “there exist uncountably many x such that . . . ”

Theorem. Given ϕ(x) ∈ FOC and an ω-automatic presentation of A, one
can effectively extend the presentation to one of (A,ϕA).

Corollary. The FOC-theory of every ω-automatic structure is decidable.
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Undecidability

Important Fact: The configuration graph of every Turing machine is
automatic.

Hence, any logic that is strong enough for expressing reachability can encode
the halting problem, and does therefore not admit effective evaluation on
certain automatic structures.

Examples:
- monadic second-order logic
- transitive closure logics
- fixed-point logics
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Automatic structures and interpretations

A≤FO B : A is first-order interpretable in B

Automatic structures and ω-automatic structures are closed under
FO-interpretations:

B is (ω)-automatic, A≤FO B =⇒ A is (ω)-automatic

In particular, the (ω)-automatic structures are closed under
- expansion by definable relations
- factorisation by definable congruences
- substructures with definable universe
Note: They are not closed under taking arbitrary substructures
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The model-theoretic characterization of automatic structures

Theorem. The following are equivalent:

(1) A is automatic

(2) A≤FO (N,+, |p) for some (and hence all) p≥ 2

(3) A≤FO Tree(p) for some (and hence all) p≥ 2.

There are analogous results for ω-automatic structures.
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ω-automatic structures and injective presentations

For word-automatic structures, we always have injective automatic
presentations. This is not so for ω-automatic structures.

End-equivalence of infinite words: x∼e y if x and y are equal from some
position onwards. Refined equivalences ∼m

e by making this position explicit.

∼e is ω-regular, but does not permit an ω-regular set of representatives.
Hence injectivity cannot always be achieved by selecting a regular set of
representatives from a given presentation.

Theorem (Hjorth, Khoussainov, Montalban, Nies
There exist ω-automatic structures that do not even permit injective Borel
presentations.
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Countable structures

Every ω-regular equivalence relation, that has only countably many classes
does permit an ω-regular set of unique representatives. Further, an injective
ω-automatic presentation of a countable structure can be packed into one over
finite words.

Theorem. (Kaiser, Rubin, Bárány) For countable structures are equivalent:
- A is ω-automatic
- A admits an injective ω-automatic presentation
- A is word-automatic.

It follows that the structures (N, ·), (Q,+), and the random graph, which are
known not to be word-automatic, are not ω-automatic either.
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A fundamental open problem

Open problem: Is the field of reals (R,+, ·) automatic in some sense?

Being uncountable, it cannot be presentable by automata over finite words or
finite trees. But it could, a priori, be ω-automatic, or ω-tree-automatic.

Both reducts (R,+) and (R, ·) admit automatic presentations, even over
infinite words. Can we combine these to a presentation of the field of reals?

It is still open, whether (R,+, ·) admits a presentation by automata over
infinite trees (or even more general objects).

But we can show that (R,+, ·) is not ω-automatic !

Theorem (Abu Zaid, EG, Kaiser, Pakusa) An integral domain is ω-automatic
if, and only if, it is finite. In particular, the field of reals is not ω-automatic.
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Vortragsthemen für dieses Seminar

1 Characterising automatic structures via interpretations

2 Set interpretations

3 Structures that are not automatic

4 The isomorphism problem

5 (Q,+) is not automatic

6 ω-automatic structures are not always injectively presentable

7 Countable ω-automatic structures are word-automatic

8 Model-theoretic properties of ω-automatic structures

9 Automatic groups and the k-fellow traveller property

10 Advice automatic structures
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