
Seminar paper, 5.Semester

Seminar Logic, Complexity, Games: Algorithmic Meta-Theorems
and Parameterized Complexity

Hierarchies in parameterized complexity theory

Daniel Zilken
406837

Supervisor: Lovro Mrkonjic

Contents
1 Introduction 2

2 Hierarchy of classes 2
2.1 para-NP and XP . 2
2.2 W[P] . 3
2.3 Correlations to classical classes . 4

3 W[t] and A[t] 5
3.1 Inside the W-hierarchy . 6
3.2 Inside the A-hierarchy . 6
3.3 Relations between W and A . 7

4 First level of W and A 8
4.1 Independent-Set and WSat . 8
4.2 A[1] = W[1] . 11

5 Conclusion 12

1 Introduction
This seminar article is based on [1]. In the previous part, the class of Fixed-Parameter Tractable
(FPT) problems has been introduced, as well as the concept of Fixed-Parameter Tractable Reduc-
tions. In this paper, we will get an overview of the hierarchies created by the various classes consisting
of parameterized problems and expanding the FPT class. Most importantly, we will introduce the
A-hierarchy and the W-hierarchy and see that the first levels of these hierarchies coincide.

2 Hierarchy of classes
2.1 para-NP and XP
The class FPT of parameterized problems shows similarities to the classical class P as the runtime is
polynomial in the input size and both are pure deterministic. We want to find an analogue class to
NP and therefore introduce the class para-NP resulting from allowing the algorithm in the definition
of FPT to be nondeterministic.

Definition 1. (Q, κ) ∈ para-NP, if N(x) decides x ∈ Q in at most f(κ(x)) · p(|x|) steps for some
nondeterministic algorithm N with given input x ∈ Σ∗, a computable function f : N → N and a
polynomial p ∈ N0[X].

We introduce the p-Independent-Set problem. Clearly, this is an example of a problem in para-NP
since we can nondeterministically guess an independent set and verify it in polynomial time.

p-Independent-Set

given: a graph G and a parameter k ∈ N

decide: G having an independent set of cardinality k (pairwise non-adjacent vertices)

In addition to that, p-Independent-Set is also an example of a problem that is decidable in poly-
nomial time, when fixing the parameter k. All parameterized problems with this property form the
class XP.

Definition 2. (Q, κ) ∈ XP, if A(x) decides x ∈ Q in at most pκ(x)(|x|) steps for some algorithm A
with given input x ∈ Σ∗ and computable function pκ(x)(|x|) that describes a polynomial pk(X) for
every k ≥ 0.

2

FPT
XP para-NP

Fig. 1: The relations among the classes FPT, para-NP, and XP

2.2 W[P]
Another attempt for an analogue class of NP is to restrict the class para-NP in a way, that only a
logarithmic amount of nondeterministic steps is allowed in the algorithm. We call a nondeterministic
Turing machine M κ-restricted, if M performs at most f(κ(x))·p(|x|) steps of which at most f ′(κ(x))·
log(|x|) are nondeterministic for every input, for some computable functions f, f ′ : N → N and a
polynomial p ∈ N0[X].

Definition 3. (Q, κ) ∈W[P], if M(x) decides x ∈ Q for some κ-restricted nondeterministic Turing
machine M with given input x ∈ Σ∗.

The main characteristic of each class is summarized in the following table:

Runtime Nondeterministic steps
FPT f(κ(x)) · p(|x|) 0
W[P] f(κ(x)) · p(|x|) f ′(κ(x)) · log(|x|)
para-NP f(κ(x)) · p(|x|) f(κ(x)) · p(|x|)
XP pκ(x)(|x|) 0

(a possibly different poly-
nomial for every κ(x))

From here, the following inclusions are easy to see and justify the afterwards presented landscape.

1. FPT ⊆W[P] and W[P] ⊆ para-NP.
The required runtime for all three classes is the same, and the allowed amount of nondeter-
ministic steps is just increasing from FPT over W[P] to para-NP.

2. W[P] ⊆ XP.
Note that h(κ(x)) · log(|x|) nondeterministic steps can be translated into nO(h(κ(x))) steps
of a deterministic algorithm since the log(|x|) in the exponent cancels out for any constant
nondeterministic branching factor.

FPT

W[P]XP para-NP

P

NP

Fig. 2: Parameterized and classical hierarchy

3

2.3 Correlations to classical classes
In this section, we will see three propositions that connect the parameterized hierarchy to the classical
complexity hierarchy. This will further express the analogies between the two hierarchies and relate
multiple inclusions of the parameterized hierarchy to the P 6= NP problem for classical classes.

Proposition 4. FPT = para-NP if and only if P = NP.

Proof:
(⇒): Assume FPT = para-NP.
Consider an arbitrary Problem Q ⊆ Σ∗ in NP. This means, a nondeterministic algorithm can decide
x ∈ Q in polynomial time p(|x|). Note, this already is the definition of para-NP besides the prefactor
f(κ(x)) which we can just add for the constant parameterization κ(x) = 1. Hence, (Q, κ) ∈ para-NP
and together with our assumption also (Q, κ) ∈ FPT. By that, a (deterministic) algorithm can
decide x ∈ Q in time f(κ(x)) · p(|x|) = f(1) · p(|x|) which implies Q ∈ P.

(⇐): Assume P = NP.
For a parameterized problem (Q, κ) ∈ para-NP with alphabet Σ let AQ be an algorithm deciding
x ∈ Q in f(κ(x)) · |x|c nondeterministic steps with computable f and c ∈ N. We will construct
a related problem in NP. Note, that Q alone loses all information about the parameter and does
not have to be in NP. Consider the following precomputation on the parameter to obtain a related
problem in NP.
Let Π be the alphabet {1,#} and define π : N→ Π∗ by π(k) = k#f(k) where k and f(k) are written
in unary. We obtain our NP-problem X ⊆ Σ∗ × Π∗ as the set of tuples accepted by the following
algorithm A.
For an input (x, y) ∈ Σ∗×Π∗, first A rejects all inputs of the wrong format, that is if the input does
not fulfil y = κ(x)#u for some u ∈ {1}∗. If the format is correct, A simulates |u| · |x|c steps of the
computation of AQ on input x. If AQ and respectively A did not accept or reject in this time, A
rejects. Notice, |u| ≤ |y| and by that A runs in nondeterministic polynomial time. The relation to
our original parameterized problem is seen by the equivalence

x ∈ Q iff A accepts (x, κ(x)#f(κ(x))) iff (x, π(κ(x))) ∈ X.

By our assumption P = NP , there is also a polynomial time algorithm A′ that decides X. Then, we
can decide x ∈ Q for our parameterized problem (Q, κ) by running A′ on (x, π(κ(x))) in deterministic
time g(κ(x)) · |x|c. This shows (Q, κ) ∈ FPT.

Proposition 5. If P 6= NP then para-NP 6⊆ XP.

The underlying idea of the proof is to conclude that an NP-complete problem is in P under the
assumption para-NP ⊆ XP. A well known problem in NP is the colorability problem, that is, given a
graph G and a k ∈ N decide whether G is k-colorable. This is the case if you can assign each node
to one of the k colors such that in the end no adjacent nodes have the same color. Considering k as
a parameter, we obtain the parameterized version of the problem para-colorable.

para-colorable

given: a graph G with parameter k ∈ N

decide: G being k-colorable.

Proof: Assume para-NP ⊆ XP.
Clearly, para-colorable ∈ para-NP and with that para-colorable ∈ XP. By definition of XP, we have
that for fixed parameter κ(x) = 3, a polynomial algorithm can decide x ∈ Q. This means, the
3-colorability problem is in P. However, 3-colorability is well-known to be NP-complete.

4

3-colorability is just one example of many problems that are already NP-hard with a constant
parameter. Another example is the satisfiability problem for propositional formulas in conjunctive
normal form Sat(d-CNF) where the parameter d indicates the maximum number of literals in a
clause of the formula.

FPT para-colorable

Sat(d-CNF)

W[P]XP para-NP

P

NP

Fig. 3: para-colorable and Sat(d-CNF)

Proposition 6. If FPT 6= W[P] then P 6= NP.

Proof: Assume P = NP.
By our proven proposition 2.1 we have FPT = para-NP which leads to a collapse of our chain of
inclusions FPT ⊆W[P] ⊆ para-NP and thus FPT = W[P].

3 W[t] and A[t]
For the well known First-Order Logic, we construct the following sets of formulas with quantifier
alternation. Σ0 and Π0 denote the class of quantifier-free formulas. Inductively,
Σt+1 = {∃x1 . . . ∃xkϕ | ϕ ∈ Πt} and Πt+1 = {∀x1 . . . ∀xkϕ | ϕ ∈ Σt}. Second-Order Logic adds quan-
tification over subsets and relation of the universe, conversely denoted with large letters X. We
construct similar sets of formulas. Σ1

0 and Π1
0 denote the class of all second-order formulas with-

out any quantification over relation variables. Inductively, Σ1
t+1 = {∃X1 . . . ∃Xkϕ | ϕ ∈ Π1

t } and
Π1
t+1 = {∀X1 . . . ∀Xkϕ | ϕ ∈ Σ1

t }.
This in combination with the following Fagin-defined problem as well as the parameterized model-
checking problem will lead us to the W - and A-hierarchy.

p-WDϕ

given: structure A with parameter k ∈ N

decide: A |= ϕ(S) for some relation S ⊆ As of cardinality |S| = k.

Furthermore, p-WD-Φ for a set Φ of first-order formulas denotes all parameterized problems
p-WDϕ, where ϕ ∈ Φ.

Example 7. ϕ = ∀x∀y(Sx ∧ Sy ∧ x 6= y → Exy)

Regarding this example, p-WDϕ is the k-Clique problem. That is, given a graph A = (V,E) decide
whether it contains k nodes which are pairwise connected by an edge.

p-MC(Φ)

given: structure A and formula ϕ(x) ∈ Φ with parameter |ϕ|

decide: A |= ϕ(a) for some a ⊆ A

5

Definition 8
W[t] := [p-WD-Πt]fpt = {P | P ≤FPT P

′ for some P ′ ∈ p-WD-Πt}, the W-hierarchy for t ≥ 1.
A[t] := [p-MC(Σt)]fpt = {P | P ≤FPT P

′ for some P ′ ∈ p-MC(Σt)}, the A-hierarchy for t ≥ 1.

3.1 Inside the W-hierarchy
By definition, we have W[t] ⊆ W[t + 1] for all t ≥ 1 since Πt ⊆ Πt+1. The following proposition
shows that the class W[P] can be placed on top of the W -hierarchy.

Proposition 9. W[t] ⊆W[P] for every t ≥ 1.

We prove this by showing that the whole set [p-WD-FO]fpt is contained in W[P]. Therefore, we
start with an FO-formula ϕ(X) where X is s-ary and construct an algorithm solving p-WDϕ with
the required bound of nondeterministic steps. The algorithm is given a structure A and a k ∈ N
and proceeds as follows. Deterministically, check A |= ϕ(S) for S = {a1, . . . , ak} for a nondeter-
ministic choice of a1, . . . , ak ∈ As. For the time complexity: Checking A |= ϕ(S) can be done in
polynomial time and for the nondeterministic choosing we need log(|A|) nondeterministic bits. Thus,
p-WDϕ ∈W[P] which leads to our assumption since ϕ was arbitrary.

FPT
W[1]
W[2]

...

W[FO]
W[P]

XP para-NP

Fig. 4: W[P] and W[FO] placed on top of the W -hierarchy

3.2 Inside the A-hierarchy
First, note that, similar to the W-hierarchy, A[t] ⊆ A[t + 1] since Σt ⊆ Σt+1.

Proposition 10. A[t] ⊆ XP for every t ≥ 1.

We prove this by showing that the whole set [p-MC(FO)]fpt is an element of XP which is a corollary
of the following theorem. The non parameterized Model Checking problem MC is the same as the
p-MC just with omitted parameter.

Theorem 11. MC(FO) can be solved in time O(|ϕ| · |A|w · (w + |ϕ|)) where w denotes the width of
ϕ, that is the maximum number of free variables of a subformula.

6

Proof: Consider the model checking game MC(A, ϕ). The positions of the game are pairs (ψ, β)
for subformulas ψ of ϕ and β, a mapping from the free variables of ψ in the universe A. Since the
size of the formula |ϕ| can not be exceeded by the number of subformulas in ϕ and there are up to
|A|w different possible mappings, the construction takes time O(|ϕ| · |A|w). Furthermore, computing
the winning regions of the game can be done by a variant of depth first search in linear time of the
nodes and edges O(|V | + |E|). The number of nodes is by construction also in O(|ϕ| · |A|w) while
the amount of edges is in O(|ϕ| · |A|w · (w + |ϕ|)). For this, note that the amount of edges is equal
to the amount of predecessors of all nodes. A node with subformula ψ(x1, . . . , xk) and mapping
β : {x1, . . . , xk} → A can only originate from two types of nodes:

1. Nodes with subformula Qxjψ(x1, . . . , xj−1, xj+1, . . . , xk) and the restriction of β to
{x1, . . . , xj−1, xj+1, . . . , xk} as mapping for Q ∈ {∃, ∀} and j ∈ {1, . . . , k} which leads to a
maximum of 2 · k = O(w) predecessors.

2. Nodes with subformula δ(x1, . . . , xk) ◦ ψ(x1, . . . , xk) and the unchanged mapping β for
◦ ∈ {∧,∨} which leads to a maximum of 2 · |ϕ| ∈ O(|ϕ|) predecessors since there can only be
so many nodes with the fixed mapping β.

3.3 Relations between W and A
Proposition 12. W[t] ⊆ A[t + 1] for every t ≥ 1.

Given a Πt-formula ϕ(X), we want to construct a Σt+1-formula ϕk such that A |= ϕ(S) for some
relation S ⊆ As with |S| = k if and only if A |= ϕk. Before proving the general case, let us go
through the construction steps for the k-clique example.
Recall, ϕ = ∀x∀y(Sx ∧ Sy ∧ x 6= y → Exy) and note that since this is a Π1 formula, the k-clique
problem is in W[1]. We equivalently transform ϕ to

ϕ′k = ∀x∀y(∨
i∈{1,...,k}

xi = x ∧
∨

i∈{1,...,k}
xi = y ∧ x 6= y → Exy).

Our final Σt+1-sentence, which shows that the k-clique problem is also in A[2] is

ϕk = ∃x1 . . . ∃xk(
∧

1≤i<j≤k
xi 6= xj ∧ ∀x∀y(∨

i∈{1,...,k}
xi = x ∧

∨
i∈{1,...,k}

xi = y ∧ x 6= y → Exy)).

Proof: Let ϕ(X) be given. To replace the free relation variable X, we introduce s-tuples x1, . . . , xk
as new variables with the intended meaning that these are precisely all the members of the (old)
relation X. Therefore, we construct an equivalent formula ϕ′ by replacing each occurrence of Xy in
ϕ by expressing, that at least one of the tuples x1, . . . , xk is equal to y:

ϕ′ = ϕ[Xy/ ∨
i∈{1,...,k}

xi = y].

It remains to quantify over these k tuples creating a sentence and expressing that they have to be
pairwise different. This leads to our final Σt+1-sentence, ϕk, for k ≥ 1:

ϕk = ∃x1 . . . ∃xk(
∧

1≤i<j≤k
xi 6= xj ∧ ϕ′).

Note, that the inequality xi 6= xj for tuples is defined as usual by saying that at least one index has to
differ and can be written out to ∨

l∈[s] xil 6= xjl (when the tuples are denoted by xi = (xi1, . . . , xis)).

7

para-NP

W[P]

. . .

W[3]

W[2]

XP

. .
.

A[3]

A[2]

W[1] A[1]

FPT

Fig. 5: Arrows indicate containment between classes

4 First level of W and A

4.1 Independent-Set and WSat
In this section, we prove that p-Independent-Set is A[1]-complete. Furthermore, we define the
p-WSat(A) problem for a set of propositional formula A and prove that p-WSat(d-CNF) is a member
of A[1].

Lemma 13. p-Independent-Set is A[1]-complete.

Proof: We have p-Independent-Set ∈ A[1] since it is easy to see that p-Independent-Set with
parameter k can be reduced to the parameterized model checking p-MC(Σ1) via the Σ1-sentence

ϕIS = ∃x1 . . . ∃xk(
∧

1≤i<j≤k
xi 6= xj ∧

∧
1≤i<j≤k

¬Exixj).

For the A[1]-hardness, we show the following chain of reductions. Σ+
1 denotes the class of Σ1-

formulas without negation symbols and Σ1[2] the class of Σ1-formulas whose vocabulary τ is at most
binary (no relations with arity ≥ 3).

p-MC(Σ1)
(1)
≤FPT p-MC(Σ+

1)
(2)
≤FPT p-MC(Σ1[2])

(3)
≤FPT p-Independent-Set

1. p-MC(Σ1) ≤FPT p-MC(Σ+
1).

Let (A, ϕ) be an instance of p-MC(Σ1). For the reduction, we need to construct a pair (A′, ϕ′)
such that A |= ϕ iff A′ |= ϕ′, where ϕ′ is a Σ+

1 -formula. First, we know that ϕ is equivalent
to a formula in negation normal form and therefore we only have to deal with subformulas
of the form ¬x = y and ¬Rx1 . . . xr. We construct A′ as an expansion of A. We add an
arbitrary linear order <A′ of the universe A as well as for every r-ary relation R, two r-ary
relations Rf , Rl and one 2r-ary relation Rs. In RA′

f (RA′
l) only a single tuple is contained, the

lexicographically first (last) element of RA with respect to <A′ . In RA′
f all consecutive tuples

(direct successors) are contained, again based on the lexicographical order. The lexicographical
order lifts our linear order <A′ from elements to tuples and can be defined by

<lex (y, z) := ∨
i∈{1,...,r}

(yi < zi ∧
∧

j∈{1,...,i−1}
yj = zj).

Now, we can see that our desired Σ+
1 -formula ϕ′ can be obtained from ϕ by replacing sub-

formulas of the form ¬x = y by (x < y ∨ y < x) and subformulas of the form ¬Rx1 . . . xr
by
∃y1 . . . yr∃z1 . . . ∃zr((Rfy ∧ x <lex y) ∨ (Rsyz ∧ y <lex x ∧ x <lex z) ∨ (Rlz ∧ z <lex x)).

8

2. p-MC(Σ+
1) ≤FPT p-MC(Σ+

1 [2]).
Let (A, ϕ) be an instance of p-MC(Σ+

1). For the reduction, we construct a pair (A′, ϕ′) such
that A |= ϕ iff A′ |= ϕ′, where ϕ′ is a Σ1[2]-formula. To deal with more than 2-ary relations,
ϕ′ is over a different vocabulary, τ ’. For this, we replace every relation R by a unary relation
PR and binary relations E1, . . . , Es, where s is the arity of τ . The construction of A′ is done
by the following three steps.

• The universe expands A by new elements bR,a for all relations R and a ∈ RA.
• The relation EA′

i consists of all pairs (ai, bR,a, whereR has arity r ≥ i and a = (a1, . . . , ar) ∈ RA.
• The relation PA′

R consists of all elements bR,a, where a ∈ RA.
Now, we can see that our desired Σ1[2]-formula ϕ′ can be obtained from ϕ by replacing every
atomic formula Rx1 . . . xr by

∃y(PRy ∧ E1x1y ∧ · · · ∧ Erxry).

3. p-MC(Σ+
1 [2]) ≤FPT p-Independent-Set.

Let (A, ϕ) be an instance of p-MC(Σ1[2]). If ϕ is of the form ∃x1 . . . ∃xk
∧
i∈I ti where the ti are

(negated) atomic formulas, we construct a graph G(A, ϕ) depending on the input such that
A |= ϕ iff G(A, ϕ) contains an independent set of k elements.

As vertices, we take V := A × {1, . . . , k}. For the edges, we start with all possible edges
E := V × V , but then omit an edge between two nodes (a, r) and (b, s) (for a, b ∈ A and
1 ≤ r < s ≤ k) if for all atomic formula ti = ti(xr, xs) where only xr and xs occur A |= ti(a, b)
holds. Ensuring k ≥ 2 by possibly adding a dummy node, we have for all a1, . . . , ak ∈ A that

A |= ∧
i∈I
ti(a1, . . . , ak) iff {(a1, 1), . . . , (ak, k)} is an independent set in G.

Since any independent set of G of cardinality k must contain an element (a, j) for every
j ∈ {1, . . . , k}, this yields the desired equivalence.
If ϕ is a different formed Σ1[2]-sentence, we first transform ϕ into an equivalent sentence ϕ’
whose quantifier-free part is in disjunctive normal form, say ϕ′ = ∃x1 . . . ∃xk

∨
j∈J

∧
i∈I tji.

But this is clearly equivalent to ∨
j∈J ∃x1 . . . ∃xk

∧
i∈I tji which for every j ∈ J gives rise to

a formula of our known form from the previous case. We combine all the graphs G(A, ϕj)
for ϕj = ∃x1 . . . ∃xk

∧
i∈I tji by adding edges between all pairs of nodes of different graphs to

ensure that an independent set does not mix nodes from multiple graphs. This leads to our
final Graph G. By the shown properties of the seperate graphs G(A, ϕj) it is easy to see that
G has an independent set of cardinality k iff A |= ϕ.

We give an example of the graph construction for the following input (A, ϕ). In our example, A |= ϕ
holds and G(A, ϕ) has an independent set of cardinality 2.

A := ({a, b}, RA := {a})
ϕ := ∃x1∃x2(x1 6= x2 ∧Rx1)

=⇒

(a, 1) (a, 2)

(b, 1) (b, 2)

The A[1]-completeness of p-Independent-Set as well as the now proven membership of p-WSat(d-CNF)
in A[1] will be essential for the proof that the first levels of the W -hierarchy and the A-hierarchy
coincide. The parameterized weighted satisfiability problem p-WSat(A) for a set of propositional
formula A is defined as follow.

9

p-WSat(A)

given: α ∈ A and a parameter k ∈ N

decide: α being k-satisfiable (there is a model with k variables set to true)

Lemma 14. p-WSat(d-CNF) ∈ A[1].

Proof: To prove the membership in A[1], we reduce p-WSat(d-CNF) ≤FPT p-MC(Σ1).
Let (α, k) be an instance of p-WSat(d-CNF) with var(α) = {X1, . . . , Xn}. For the reduction, we
construct a pair (A, ϕ) with a Σ1-sentence ϕ such that α is k-satisfiable iff A |= ϕ. Assume our
d-CNF formula is of the form α(X1, . . . , Xn) = ∧

i∈I δi, where each δi is the disjunction of ≤ d
literals. We construct the structure A with universe A = {1, . . . , n} and for every r ∈ {1, . . . , d} the
r-ary relations

• RA
r := {(i1, . . . , ir) | ¬Xi1 ∨ · · · ∨ ¬Xir is a clause of α};

• SA
r := {(i1, . . . , ir) | ¬Xi1 ∨ · · · ∨ ¬Xir ∨Xj1 ∨ · · · ∨Xjs is a clause of α for s > 0 }.

In order to construct ϕ, we construct subformulas that deal with clauses of different amounts of nega-
tive and positive literals. Therefore, we define ψ¬ such that A |= ψ¬(m1, . . . ,mk) iff {Xm1 , . . . , Xmk

}
satisfies every clause of α with only negative literals. Furthermore, we define for all r ∈ {0, . . . , d},
ψr,+ such that A |= ψr,+(m1, . . . ,mk) iff {Xm1 , . . . , Xmk

} satisfies every clause with r negative lit-
erals and at least one positive literal. The first desired formula ψ¬ can immediately be constructed

ψ¬(x1, . . . , xk) := ∧
r∈{1,...,d}

∧
1≤i1,...,ir≤k

¬Rrxi1 . . . xir .

For fixed (i1, . . . , ir) ∈ SA
r , we let F = F (i1, . . . , ir) be the following collection of subsets of A:

F (i1, . . . , ir) := {{j1, . . . , js}|¬Xi1 ∨ · · · ∨ ¬Xir ∨Xj1 ∨ · · · ∨Xjs is a clause of α for s > 0 }.

Then, for 1 ≤ m1, . . . ,mk ≤ n, the following statements are equivalent:

1. The assignment {Xm1 , . . . , Xmk
} (setting exactly Xm1 , . . . , Xmk

to true) satisfies all clauses in
α of the form ¬Xi1 ∨ · · · ∨ ¬Xir ∨Xj1 ∨ · · · ∨Xjs with s > 0.

2. Either the assignment {Xm1 , . . . , Xmk
} satisfies ¬Xi1 ∨· · ·∨¬Xir , or {m1, . . . ,mk} is a hitting

set of F , that is {m1, . . . ,mk} ⊆
⋂
f∈F f .

Let H1, . . . ,Hdk be an enumeration of the minimal hitting sets of F (an algorithm therefore can e.g.
be found in [1, chapter 1]). For u = 1, . . . , dk and l = 1, . . . , k we add to A the (r + 1)-ary relations

LA
r,u,l := {(i1, . . . , ir,m) | m is the lth element of the uth hitting set Hu of F (i1, . . . , ir)}.

Now, we can define our desired formulas ψr,+. For r = 0, we have

ψ0,+(x1, . . . , xk) := ∨
u∈{1,...,dk}

∧
l∈{1,...,k}

∧
j∈{1,...,k}

L0,u,lxj .

and for r > 0

ψr,+(x1, . . . , xk) := ∧
1≤i1,...,ir≤k

(Srxi1 . . . xir →
∨

u∈{1,...,dk}

∧
l∈{1,...,k}

∧
j∈{1,...,k}

Lr,u,lxi1 . . . xirxj .

Finally, we obtain our desired formula as

ϕ = ∃x1 . . . ∃xk(
∧

1≤i<j≤k
xi 6= xj ∧ ψ¬ ∧

∧
r∈{0,...,d}

ψr).

10

4.2 A[1] = W[1]
Proposition 15. A[1] ⊆W[1].

For this, we prove p-Independent-Set ∈W[1] which immediately implies the lemma, since then ev-
ery problem in A[1] can be reduced to a problem in W[1] due to the A[1]-hardness of p-Independent-Set.

Proof: Consider the following problem in W[1]: p-WDis for the following Π1-formula is(X) that
expresses the non-adjacent ness of all pairs of nodes in X

is(X) = ∀y∀z((Xy ∧Xz)→ ¬Eyz).
Clearly, solving p-WDis, i.e. deciding if there is a set X of cardinality k such that the graph structure
is a model of is(X), is equivalent to solving p-Independent-Set. This yields p-Independent-Set ≤FPT p-WDis

and by that p-Independent-Set ∈W[1].
Proposition 16. W[1] ⊆ A[1].
For this, we prove that for every Π1-formula ϕ(X) there is a d ≥ 1 such that p-WDϕ ≤FPT p-WSat(d-CNF)

which immediately implies the lemma since then every problem in W[1] can be reduced to a problem
in A[1] (due to p-WSat(d-CNF) being in A[1]).

Proof: We assume that the formula ϕ(X) is in conjunctive normal form, besides possible universal
quantifiers at the front

ϕ(X) = ∀x1 . . . ∀xr
∧
i∈I

∨
j∈Ji

λij

Recall, that the input of p-WDϕ is a structure together with a parameter (A, k). Now, we have to
construct a propositional formula α in d-CNF out of this, such that (A, k) ∈ p-WDϕ if and only if α
is k-satisfiable.
We will see that choosing d = max{2, |J |} suffices and for the construction of α we will start with
ϕ(X) and convert it into desired the d-CNF formula α in two essential steps. The first one will deal
with the universal quantifiers our Π1-formula does have and the second one with the free relation
variable X. In both steps, the key of the construction is based on that the structure A is fixed. We
denote the universe of the structure with A.

1. To deal with the universal quantifiers, the idea is to obtain an equivalent formula by replacing
all the ∀xi with

∧
ai∈A. Doing this for every quantifier and combining all the big conjunctions

yields
ϕ(X)′ = ∧

a1,...,ar∈A,i∈I

∨
j∈Ji

λij

Before going to step two, we will have a closer look at disjunctive clauses that have a literal λij
where the relation variable X is not contained. In case A 6|= λij(a1, . . . , ar) the literal can be
omitted since then the evaluation of A on that clause only depends on the remaining disjuncts
of the clause. In case A |= λij(a1, . . . , ar) the whole clause can be omitted, since then A is
always a model of the clause and by that the evaluation of A on the outer conjunction only
depends on the remaining clauses.

2. To deal with the free relation variable X, we replace literals containing it or its negation,
(¬)Xxl1 ...xls

by (¬)Yal1 ...als
. Here, Ya is a (new) propositional variable expressing a is in X for

a ∈ As, where s is the arity of X.
So far, we have achieved a d-CNF formula that we denote α′ for which by construction for all S ⊆ As

A |= ϕ(S) if and only if {Ya | a ∈ S} satisfies α′.
Finally, to ensure that the variable Ya occurs for all a ∈ As and thus always has to be mapped by
an interpretation either to 0 or 1 (similar to deciding a ∈ X), we combine it with some tautology
that contains all these variables. This leads to our final desired d-CNF formula

α = α′ ∧
∧

a∈As
(Ya ∨ ¬Ya).

11

para-NP

W[P]

. . .

W[3]

W[2]

XP

. .
.

A[3]

A[2]

W[1] = A[1]

FPT

Fig. 6: Final landscape: A[1] and W[1] coincide

5 Conclusion
The most important result is the expansion of FPT to the W-hierarchy and the A-hierarchy, which
relate parametrized complexity to logic. The resulting landscape is illustrated in figure 2 and shows
that the first levels of both hierarchies coincide. The paper by Flum and Grohe continues by adding
more classes to the hierarchy and showing that our inclusion result A[t] ⊆ W[t + 1] can even be
strengthened to A[t] ⊆W[t].

References
[1] J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer

Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[2] Prof. Dr. Erich Grädel and Dr. Wied Pakusa. Algorithmic Model Theory. Mathematische
Grundlagen der Informatik, RWTH Aachen, 2019

12

https://link.springer.com/book/10.1007/3-540-29953-X
https://link.springer.com/book/10.1007/3-540-29953-X
https://logic.rwth-aachen.de/files/AMT-WS19/chapter2.pdf
https://logic.rwth-aachen.de/files/AMT-WS19/chapter2.pdf

	Introduction
	Hierarchy of classes
	para-NP and XP
	W[P]
	Correlations to classical classes

	W[t] and A[t]
	Inside the W-hierarchy
	Inside the A-hierarchy
	Relations between W and A

	First level of W and A
	Independent-Set and WSat
	A[1]= W[1]

	Conclusion

