
Seminar Logic, Complexity, Games: Algorithmic Meta-Theorems and
Parameterized Complexity

Hierarchies in Parameterized Complexity Theory

Jan-Christoph Kassing - 380374
Supervisor: Lovro Mrkonjic

January 2022

Contents
1 Introduction 1

2 The W-Hierarchy and Propositional Logic 1

3 The A-Hierarchy and Propositional Logic 8

4 Further Complexity Classes 9
4.1 W[SAT] and A[SAT] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 The A-Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 Introduction
This seminar is based on [1]. We will create a new characterization of the W-hierarchy and the A-
hierarchy based on weighted satisfiability problems of certain fragments of propositional logic. Using this
characterization, we can then prove further relations between the two hierarchies and even introduce new
complexity classes that are interesting on their own.

2 The W-Hierarchy and Propositional Logic
We will start with a reminder on some important definitions.
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Definition 1 For t ≥ 0 and d ≥ 1 we will inductively define the classes Γt,d and ∆t,d by

Γ0,d :={λ1 ∧ . . . ∧ λc | c ∈ [1, d], λi literal for all i ∈ [1, c]}
∆0,d :={λ1 ∨ . . . ∨ λc | c ∈ [1, d], λi literal for all i ∈ [1, c]}

Γt+1,d :={
∧

i∈[1,n]
δi | n ∈ N, δi ∈ ∆t,d for all i ∈ [1, n]}

∆t+1,d :={
∨

i∈[1,n]
δi | n ∈ N, δi ∈ Γt,d for all i ∈ [1, n]}

A formula φ is called positive, if it does not contain any negation symbols and is called negative, if
it is in negation normal form and there is a negation symbol in front of every variable. For a class A of
propositional formulas A+ denotes the class of all positive formulas in A and A− denotes the class of all
negative formulas in A. We will denote the class of all propositional formulas by PROP.

Here, d denotes the size of the underlying conjunction (disjunction respectively) and t denotes the
number of alternations between conjunctions and disjunctions. Note that we do not restrict the size of
the conjunction (disjunction) on any level greater than zero.
Example 2:

• Γ2,1 (∆2,1) is the class of all formulas in CNF (DNF)
• Γ1,d (∆1,d) is the class of all formulas in d-CNF (d-DNF)

• φ1 :=
(
(X ∧ Y ) ∨ (X ∧ Z)

)
∧

(
(A ∧B) ∨ (A ∧ C)

)
∈ Γ+

2,2

• φ2 :=
(
(¬X ∨ ¬Y ) ∧ (¬X ∨ ¬Z)

)
∨

(
(¬A ∨ ¬B) ∧ (¬A ∨ ¬C)

)
∈ ∆−

2,2

The classes are defined purely by syntactical properties. In the example above, we have ¬φ2 ̸∈ Γ+
2,2

since it contains negation symbols but it is equivalent to a formula in Γ+
2,2 as we have ¬φ2 ≡ φ1.

In this first section, we will show an important characterization of the classes W[t] using only propo-
sitional logic. Remember that the class W[t] is defined over the weighted Fagin-defineability of first order
formulas. We will show that this class can be expressed using a parameterized weighted satisfiability
problem of certain fragments of PROP. Let Θ be a fragment of PROP. The parameterized weighted
satisfiability problem of Θ is the following decision problem:

p-WSAT(Θ):
Input: α ∈ Θ, k ∈ N
Parameter: k
Question: Decide whether α is k-satisfiable

I.e., we are looking for an assignment of a formula α ∈ Θ such that exactly k variables are set to true and
the rest is set to false. The main theorem of this section reads as follows.

Theorem 3 For every t > 1, the following problems are W[t]-complete.

1. p-WSAT(Γ+
t,1) if t is even and p-WSAT(Γ−

t,1) if t is odd.

2. p-WSAT(∆t+1,d) for every d ≥ 1.
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Therefore, we have the following characterization of W[t] for all t ≥ 1:

W[t] = [{p-WSAT(Γt,d ∪ ∆t,d) | d ≥ 1}]fpt

Note how the parameter t is used here. On one side, it is used in the definition of the class W[t] for the
amount of quantifier alternations in first order formulas. On the other side, it is used for the amount of
boolean connectives alternations in propositional formulas. The proof for the simple case of t = 1 can be
found in [1], here we will prove the more interesting part of t ≥ 2. This will be done using the following
series of lemmas. Most of them will differentiate between the parity of t. For simplicity, we will always
only prove one of the statements. The other part is completely analogous if not stated otherwise.

Lemma 4 Let t ≥ 1. For every Πt-formula φ(X) there is a d ≥ 1 such that

p-WDφ ≤fpt p-WSAT(Γt,d)

Proof. We will extend the proof for the simple case of t = 1 from [1] in the obvious way. There, we had
a Π1-formula and showed that p-WDφ ≤fpt p-WSAT(d-CNF) = p-WSAT(Γ1,d) holds. Now we want to
increase this statement to arbitrary t ≥ 1. Let t ≥ 1 be an even number. Since t is even, we will assume
that the quantifier free part of φ is in DNF, so that φ has the form:

φ(X) = ∀y1∃y2 . . . ∀yt−1∃yt

∨
i∈I

∧
j∈J

λi,j

with literals λi,j . We set d = max{2, |J |} and create a reduction from p-WDφ to p-WSAT(Γt,d). For every
τ -structure A we will introduce a Γt,d-formula α such that for all k ∈ N we have:

(A, k) ∈ p-WDφ ⇐⇒ α is k-satisfiable

We will use propositional variables Ya to describe whether a is in the relation X. Additionally, we
have to map the preceding quantifiers to the corresponding boolean operators. An ∃-quantifier maps
to a disjunction and an ∀-quantifier maps to a conjunction over the whole corresponding universe. The
resulting formula α = α(A, φ) looks as follows:

α :=
∧

a1∈A|y1|

∨
a2∈A|y2|

. . .
∨

at∈A|yt|

i∈I

γi,a1,...,at

Here, γi,a1,...,at is a conjunction that describes the evaluation of A on the literals, while replacing the
X-literals with the corresponding new boolean variables Ya. To be precise, γi,a1,...,at is the conjunction
obtained from ∧

j∈J λi,j as follows:

• Replace Literals (¬)Xyℓ1 . . . yℓs by (¬)Yaℓ1 ...aℓs

• If λi,j does not contain the relation variable X, then we can evaluate whether we have A |=
λi,j(a1, . . . , at) and thus ignore λi,j if A |= λi,j(a1, . . . , at), and omit γi,a1,...,at completely if A ̸|=
λi,j(a1, . . . , at).

Using this reduction we will result with a formula α with |α| ∈ O(|A|k · |φ|). Now, for arbitrary S ⊂ Ak

one can easily verify that we have

A |= φ(S) ⇐⇒ {Ya | a ∈ S} satisfies α
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and this directly implies our desired equivalence. In order to ensure that all of the variables really occur
in α′ we append a tautology that contains all variables:

α′ := α ∧
∧

a∈Ak

(Ya ∨ ¬Ya)

Let us look at an example for this reduction.

Example 5:
Consider the Π2-formula ds(X) := ∀x∃y (Xy ∧ (Eyx ∨ x = y)) that describes whether X is a dominating
set. This formula is equivalent to ∀x∃y ((Xy ∧ Eyx) ∨ (Xy ∧ x = y)), where the quantifier free part is in
DNF. Additionally, we consider the following graph G:

a b c

Here, we have to use the propositional variables Ya, Yb and Yc, since our relation X has arity 1. The
variable Ya is true if and only if a ∈ X. Our final formula has the form ∧

v∈{a,b,c}
∨

u∈{a,b,c} ψ because
we translated the ∀-quantifier to a conjunction over all elements and the ∃-quantifier to a disjunction
over all elements of the corresponding universe, which is {a, b, c} in our case. The transformation for the
quantifier free part tries to evaluate a literal with a fixed assignment for the variables. For example, the
conjunction Xy ∧ Eyx together with the assignment I(x) := a and I(y) := b, gets transformed to Yb.
Here, Xy can be replaced with Yb since we have I(y) = b and Eyx can be removed since the structure
G together with the assignment I satisfies the literal, namely the node a and the node b are adjacent.
Satisfying the literal means that we can replace it with 1 and finally we get Yb ∧ 1 ≡ Yb. In the end, we
would receive α = (Ya ∨ Yb) ∧ (Ya ∨ Yb ∨ Yc) ∧ (Yb ∨ Yc) as our final formula.

There exists a straightforward proof to show that p-WSAT(Γt,d) ∈ W[t], but we opt for another way,
that reveals more information about the hierarchy in general. Therefore, we will first prove the following
lemma about propositional normalization and then show that p-WSAT(∆t+1,d) is contained in W[t]. The
lemma about Propositional Normalization shows that the reduction of parameter d, namely the size of
our underlying conjunction/disjunction, to 1 for the weighted satisfiability problem is fixed-parameter
tractable. Additionally, we can also reduce to only positive/negative formulas based on the parity of t.

Lemma 6 (Propositional Normalization) Let d ≥ 1.

1. If t > 1 is an even number, then p-WSAT(∆t+1,d) ≤fpt p-WSAT(∆+
t+1,1) and p-WSAT(Γt,d) ≤fpt

p-WSAT(Γ+
t,1)

2. If t > 1 is an odd number, then p-WSAT(∆t+1,d) ≤fpt p-WSAT(∆−
t+1,1) and p-WSAT(Γt,d) ≤fpt

p-WSAT(Γ−
t,1)

Proof. We will show that for all even t > 1 we have p-WSAT(Γt,d) ≤fpt p-WSAT(Γ+
t,1). In order to

prove this, it is enough to prove that for all d ≥ 1 we have p-WSAT(Γt,d) ≤fpt p-WSAT(Γ+
t,d) and

p-WSAT(Γ+
t,d) ≤fpt p-WSAT(Γt,1) then we can build the following chain of fpt-reductions:

p-WSAT(Γt,d) ≤fpt p-WSAT(Γ+
t,d) ≤fpt p-WSAT(Γt,1) ≤fpt p-WSAT(Γ+

t,1)
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We will start by proving that p-WSAT(Γt,d) ≤fpt p-WSAT(Γ+
t,d) holds. Let (α, k) be an instance of

p-WSAT(Γt,d) and let X1, . . . , Xn be the variables of α. We will fix some ordering on the variables and
introduce variables Xi,j and Yi,j,j′ with the intended meaning:

• Xi,j is true :⇔ the i-th variable set to true is Xj

• Yi,j,j′ is true :⇔ the i-th variable set to true is Xj and the (i+ 1)-th is Xj′ .

The newly created variables Xi,j precisely describe which of the variables in our inital formula are set
to true and the newly created variables Yi,j,j′ describe the distance between those that are set to true.
To express a negative literal ¬X positively, we can now say that X is strictly between two successive
variables that are set to true (or strictly before the first or after the last variable set to true).

To ensure that our variables have the intended meaning, we use the following construction. Let
Z1, . . . ,Zm be disjoint nonempty sets of propositional variables. We define a formula βZ that is satisfied
by an assignment of weight m if and only if exactly one variable of each set Zi is set to true.

βZ :=
∧

i∈[1,m]

∨
Z∈Zi

Z

One can see that βZ ∈ Γ+
2,1. We will group the new variables into the nonempty sets Xi := {Xi,j | j ∈ [1, n]}

for i ∈ [1, k] and Yi := {Yi,j,j′ | 1 ≤ j < j′ ≤ n} for i ∈ [1, k − 1] and introduce formulas β1, . . . , βk−1 such
that any assignment of weight (2k − 1) satisfying β = βX ,Y ∧ β1 ∧ . . . ∧ βk−1 and setting X1,ℓ1 , . . . , Xk,ℓk

to true must set Yi,ℓ1,ℓ2 , . . . , Yk−1,ℓk−1,ℓk
to true. This would mean that our variables have the intended

meaning. For this we set

βi :=
∧

j∈[1,n]

 ∨
1≤j1<j2≤n

j1 ̸=j

(Xi,j ∨ Yi,j1,j2) ∧
∨

1≤j1<j2≤n
j2 ̸=j

(Xi+1,j ∨ Yi,j1,j2)


Intuitively speaking, this formula states that either Xi,j is true or some Yi,j1,j2 with j ̸= j1 and it states
that either Xi+1,j is true or some Yi+1,j1,j2 with j ̸= j2.

Let us now prove that this construction is indeed correct. Consider a satisfying assignment of β of
weight (2k − 1). Since it satisfies βX ,Y it sets exactly one variable in each Xi and one variable in each Yi

to true. Let Xi,ℓi
be the unique variable in each Xi set to true. Now, fix i and let Yi,ℓ,m be the unique

variable of Yi set to true. If ℓ ̸= ℓi, then in βi the first conjunct would not be satisfied. Similarly, if
m ̸= ℓi+1 then the second conjunct would not be satisfied. Note that all of the βi are equivalent to a Γ+

2,1
formula and thus β is as well, as a conjunction of several Γt,d formulas is still in Γt,d.

A formula that expresses that Xj is either smaller (with respect to the ordering of the variables of α
by their indices) than the first variable set to true or between two successive variables set to true or after
the last variable set to true, is the following formula γj ∈ ∆+

1,1

γj :=
∨

j′∈[1,n]
j<j′

X1,j′ ∨

 ∨
i∈[1,k−1]

∨
j′,j′′∈[1,n]
j′<j<j′′

Yi,j′,j′′

 ∨
∨

j′∈[1,n]
j′<j

Xk,j′

Now let α′ be the formula obtained from α ∈ Γt,d by replacing all negative literals ¬Xj with γj and
all positive literals Xj by ∨

i∈[1,k]Xi,j . These are all ∆+
1,1 formulas, so we can apply the distributive law
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to get a resulting formula in Γ+
t,d. Thus we have α′ ∧ β ∈ Γ+

t,d because α′ ∈ Γ+
t,d and β ∈ Γ+

2,1 ⊆ Γ+
t,d. By

our previous analysis, we now have

α is k-satisfiable ⇐⇒ (α′ ∧ β) is (2k − 1)-satisfiable

Let us come to the second part of this proof, namely p-WSAT(Γ+
t,d) ≤fpt p-WSAT(Γt,1). Fix d ≥ 1.

Since t is even, we use conjunctions consisting of d variables in the underlying formulas. The idea of
this reduction consists of replacing these conjunctions by single variables for the corresponding set of
occurring variables. Let (α, k) be an instance of p-WSAT(Γ+

t,d) and let X be the set of variables in α. For
every nonempty subset Y ⊆ X of cardinality at most d we introduce a new variable SY (The number of
different variables is bounded by |X |d ≤ |α|d). The formula

βset :=
∧

∅≠Y⊂X
|Y|≤d

SY ↔
∧

X∈Y
X

 ≡
∧

∅≠Y⊂X
|Y|≤d

SY ∨
∨

X∈Y
¬X

 ∧

 ∧
X∈Y

(¬SY ∨X)


sets the values of the variables correctly and one can see that it is equivalent to a Γ2,1-formula. Let α0
be the formula obtained from α by replacing every underlying conjunction (X1 ∧ . . .∧Xr) by S{X1,...,Xr}.
Clearly, α′ := (α0 ∧ βset) is equivalent to a Γt,1-formula. Furthermore, let m be the number of nonempty
subsets of cardinality ≤ d of a set of k elements, that is m := ∑d

i=1
(k

i

)
. We obtain the desired reduction

by showing that
α is k-satisfiable ⇐⇒ α′ is (k +m)-satisfiable

Assume that we have an assignment of weight k satisfying α that sets X1, . . . , Xk to true. Its extension
that sets exactly the variables SY of α′, where Y is a nonempty subset of {X1, . . . , Xk} to true is a weight
k+m assignment satisfying α′. Conversely, the formula βset enforces that an assignment of weight k+m
satisfying α′ must set exactly k variables in X to true, hence its restriction to the variables in X is a
weight k assignment satisfying α.

Now, we have proven that all of these classes are W[t]-hard under fpt-reductions. Let us now prove
that they are contained in W[t] as well.

Lemma 7 For every t > 1, we have p-WSAT(∆t+1,d) ∈ W[t].

Proof. By the propositional normalization lemma it suffices to show that p-WSAT(∆+
t+1,1) ∈ W[t] for t

even and p-WSAT(∆−
t+1,1) ∈ W[t] for t odd. We will once again only consider the case for t even. In

order to show, that a problem is contained in W[t], we have to give a fpt-reduction to the weighted Fagin-
defineability problem of a Σt+1-sentence. Let α ∈ ∆+

t+1,1. The parse tree of a formula α is defined as the
derivation tree of the syntax of the formula. For example, consider the formula φ := (X ∧ Y ) ∨ Z. Then
we have the following parse tree:

∨

∧ Z

X Y
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In the parse tree of α, all variables have distance t + 1 from the root. Consider the directed graph
G = (G,EG) obtained from the parse tree by identifying all leaves corresponding to the same variable in
one node. We direct the edges top-down as you can see in the example parse tree above. Let ROOT and
LITERAL be unary relation symbols. Let ROOTG just contain the root, and let LITERALG be the
set of nodes corresponding to the literals. We introduce a Σt+1-sentence φ(X) with a set variable X such
that for any k ≥ 1 we have

α is k-satisfiable ⇐⇒ (G,ROOTG ,LITERALG) |= φ(S) for some S ⊆ G with |S| = k

In particular, we even have for all k ≥ 1 and any variables Y1, . . . Yk of α:

{Y1, . . . Yk} satisfies α ⇐⇒ (G,ROOTG ,LITERALG) |= φ({Y1, . . . Yk})

Our desired formula φ(X) simply mimics the recursive definition of the satisfaction relation of ∆+
t+1,1-

formulas. Conjunctions will be mapped to ∃-quantifiers and disjunctions to ∀-quantifiers. I.e., we can use
φ(X) as a Σt+1-sentence equivalent to

∀z(Xz → LITERALz) ∧

∃y0(ROOTy0 ∧ ∃y1(Ey0y1 ∧ ∀y2(Ey1y2 → . . . → ∃yt+1(Eytyt+1 ∧Xyt+1) . . .))

Now, we can finally prove our main theorem.

Proof of Theorem 3. We have Γ+
t,1 ⊆ ∆t+1,d and Γ−

t,1 ⊆ ∆t+1,d. Therefore, all of the problems mentioned
in the theorem are contained in W[t] by Lemma 7. If t is even, then every parameterized problem p-WDφ

with a Πt-formula φ is reducible to p-WSAT(Γ+
t,1) by Lemma 4 and the propositional normalization lemma

6. This shows that p-WSAT(Γ+
t,1) and thus also p-WSAT(∆t+1,d) is W[t]-hard.

We can also use a slightly modified version of the proof of lemma 7 in order to prove another im-
portant relation between the A- and W-hierarchy. Remember that the A-hierarchy is defined using the
parameterized model-checking problem for first order formulas. This relation is expressed by the following
lemma.

Lemma 8 For every t > 1 and d ≥ 1, we have p-WSAT(∆t+1,d) ≤fpt p-MC(Σt).

Proof. Again, we only have to show that p-WSAT(∆+
t+1,1) ≤fpt p-MC(Σt) by propositional normaliza-

tion. We will use the notation from the previous proof and construct for a given α ∈ ∆+
t+1,1 the structure

(G,EG ,ROOTG ,LITERALG) and the formula φ(X) that mimics the recursive definition of the satisfac-
tion relation of ∆+

t+1,1-formulas. Now we can replace the set variable X by individual variables x1, . . . , xk

and call this new formula ψ. It has the form:

ψ(x1, . . . , xk) :=
∧

i∈[1,k]
LITERALxi ∧

∃y0(ROOTy0 ∧ ∃y1(Ey0y1 ∧ ∀y2(Ey1y2 → . . . → ∀yt(Eyt−1yt →
∨

i∈[1,k]
Eytxi) . . .))

Then we have

α is k-satisfiable ⇔ (G,ROOTG ,LITERALG) |= ψ(x1, . . . , xk) for some distinct x1, . . . , xk ∈ G
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We can ψ easily extend so that we get a formula ψ′ of the desired form that ensures that there are k
distinct variables satisfying ψ. Then we finally have

α is k-satisfiable ⇔ (G,ROOTG ,LITERALG) |= ψ′

This reduction directly shows that the class W[t] is contained in A[t].

Corollary 9 For every t ≥ 1, we have W[t] ⊆ A[t].

3 The A-Hierarchy and Propositional Logic
We also want to create a classification for the A-hierarchy in terms of a weighted satisfiability problem
of certain fragments of PROP. When translating the model-checking problem for Σℓ into a weighted
satisfiability problem for a class of propositional formulas we have to somehow express the unbounded
blocks of quantifiers ∃x1 . . . ∃xk. We will represent such a block using an assignment of weight k. So that
the quantifier alternations can be represented by assignments and not by the formula itself. This will be
represented by an alternating satisfiability problem for classes of propositional logic. Again, let Θ be a
fragment of PROP. The parameterized alternating weighted satisfiability problem of Θ is the following
decision problem:

p-AWSATℓ(Θ):
Input: α ∈ Θ, a partition of the propositional variables of α into sets X1, . . . ,Xℓ and

k1, . . . , kℓ ∈ N
Parameter: k = k1 + . . .+ kℓ

Question: Decide whether there is a subset S1 of X1 with |S1| = k1 such that for every subset S2
of X2 with |S2| = k2 there exists . . . such that the truth value assignment S1 ∪ . . .∪Sℓ

satisfies α

Obviously, we have p-AWSAT1(Θ) = p-WSAT(Θ). The main result for the A-hierarchy goes as follows.

Theorem 10 For every ℓ ≥ 1, we have the following characterization of A[ℓ]:

A[ℓ] = [{p-AWSATℓ(Γ1,d ∪ ∆1,d) | d ≥ 1}]fpt

This theorem is an immediate consequence of the following fpt reductions.

• p-AWSATℓ(Γ1,d ∪ ∆1,d) ≤fpt p-MC(Σℓ) ≤fpt p-AWSATℓ(Γ−
1,2) if ℓ ≥ 1 is odd.

• p-AWSATℓ(Γ1,d ∪ ∆1,d) ≤fpt p-MC(Σℓ) ≤fpt p-AWSATℓ(∆+
1,2) if ℓ ≥ 1 is even.

A precise proof of these reductions can be found in [1]. Here, we will only sketch the proof idea.

Proof Sketch. We will first show that the alternating weighted satisfiability problem p-AWSATℓ(Γ1,d∪∆1,d)
is contained in A[ℓ]. For this let (α,X1, . . . ,Xℓ, k1, . . . , kℓ) be an instance of p-AWSATℓ(Γ1,d ∪ ∆1,d). Let
k := ∑ℓ

i=1 ki and let X1, . . . , Xm be the variables of α.
For our model-checking problem we create the structure A with universe [1,m] so that there is a

bijection between the propositional variables and the elements in our universe. We expand the structure
by unary relations Pi := {j | Xj ∈ Xi} that describe what variables are in which input sets. Using this
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structure, we can convert the alternating weighted satisfiability problem into a first order formula in a
straightforward fashion. The quantifiers of the assignments transfer to the quantifier of the first order
formula. Thus we can simply use a formula that looks like the following:

∃x1 . . .∃xk1

( ∧
i∈[1,k1]

P1xi ∧
∧

1≤i<j≤k1

xi ̸= xj ∧

∀xk1+1 . . . ∀xk1+k2

(( ∧
i∈[k1+1,k1+k2]

P2xi ∧
∧

k1+1≤i<j≤k1+k2

xi ̸= xj) → . . .
(
ψ(x1, . . . , xk)

)
. . .

))

The construction of ψ for the quantifier free part is omitted here and can be found in the book. Now we
have

(α,X1, . . . ,Xℓ, k1, . . . , kℓ) ∈ p-AWSATℓ(Γ1,d ∪ ∆1,d) ⇐⇒ A |= φ

For the second part of this proof, we consider the A[ℓ]-hardness of the alternating weighted satisfiability
problem, namely p-MC(Σℓ) ≤fpt p-AWSATℓ(Γ−

1,2). Given a structure A with universe A and a Σℓ-sentence
φ we create propositional variables Xi,a with the intended meaning that the i-th variable of φ gets the
value a ∈ A. We create the sets X1, . . . ,Xℓ such that they describe the quantifiers of the formula and
thus we can use the alternation of the sets in the alternating weighted satisfiability problem in order to
represent the alternation of quantifiers in the first order formula. First, we want to create a formula α
such that

A |= φ ⇐⇒ (α,X1, . . . ,Xℓ, k1, . . . , kℓ) ∈ p-AWSATℓ(PROP)

In order to create an α ∈ PROP with this property, we need to create another formula that states that in
each set Xi we have for all j ∈ [1, ki] exactly one a ∈ A such that Xj,a is set to true. Additionally, we have
to transform the quantifier free part such that the new formula is satisfied if and only if the corresponding
assignment to the variables satisfies it the quantifier free part. Both of this can be fairly easy done. The
tricky part is to get α from PROP to a formula in Γ−

1,2. We will omit this part here and only refer to the
book [1] for further details.

4 Further Complexity Classes
In the end, we want to fill out a little more space in our parameterized complexity landscape and add
some more classes to the hierarchies and in between them.

4.1 W[SAT] and A[SAT]
We have seen that the W-hierarchy can be represented by a weighted satisfiability problem of certain
fragments of the class PROP and that the A-hierarchy can be represented by an alternating weighted
satisfiability problem of certain fragments of the class PROP. What happens, if we do not only consider
certain fragments of PROP but the whole class itself? In other words, how can we place the complexity
of p-WSAT(PROP) and p-AWSAT(PROP), where we have no restrictions on the parameters t and ℓ inside
of our hierarchy? Here, dropping the ℓ parameter in p-AWSAT(PROP) means that we allow arbitrary
quantifier alternations for the assignment.
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Definition 11 (W[SAT]) W[SAT] is the class of all parameterized problems fpt-reducible to p-WSAT(PROP),
namely

W[SAT] := [p-WSAT(PROP)]fpt

Definition 12 (A[SAT]) A[SAT] is the class of all parameterized problems fpt-reducible to p-AWSAT(PROP),
namely

A[SAT] := [p-AWSAT(PROP)]fpt

Clearly we have
FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[SAT] ⊆ W[P]

and there is no reason to believe that any of these relations are not strict. If we assume that the W-
hierarchy is strict, then we also have ∪t≥1W[t] ⊂ W[SAT]. The converse is also true, i.e., if we assume
that there is a t ≥ 1 such that W[t] = W[SAT], then the W-Hierarchy collapses to its t-th level.

4.2 The A-Matrix

We can also fill the gap between both hierarchies. In the case of the W-hierarchy we use the alternation of
propositional connectives in order to increase the computational power and in the case of the A-hierarchy
we use the alternation of assignment quantifiers. This means that we can create a two dimensional matrix
of complexity classes rather than just two hierarchies on their own.

Definition 13 (A-Matrix) Let ℓ, t ≥ 1. Then we define

A[ℓ, t] := [{p-AWSATℓ(Γt,d ∪ ∆t,d) | d ≥ 1}]fpt

Again, t denotes the number of alternations of propositional connectives and ℓ denotes the number of
alternations of quantifiers in our alternating satisfiability problem. We already know that W[t] = A[1, t]
for all t ≥ 1 and that A[ℓ] = A[ℓ, 1] for all ℓ ≥ 1. Using similar methods as we used above, one can prove
that for every ℓ ≥ 1 and t ≥ 2, we have A[ℓ, t] ⊆ A[ℓ + 1, t − 1]. This means that quantifier alternation
seems to be at least as strong as the alternation of connectives.

Finally, we will give a visual overview over the known containment relations in both of our hierarchies
and in the A-matrix. Note that there are further complexity classes inside of this hierarchy that were not
mentioned in this seminar but nevertheless are very interesting on their own.
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FPT

A[1, 1] = W[1] = A[1]

A[1, 2] = W[2] A[2, 1] = A[2]

A[1, 3] = W[3] A[2, 2] A[3, 1] = A[3]

. . . . . . . . . . . .

W[SAT] A[SAT]

W[P]

para-NP

XP
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