
Seminar Algorithmic Meta-Theorems and
Parameterized Complexity: Clique –Width

Jonathan Lennart Schneider

RWTH University, Aachen, Germany

Abstract. We present the meta-theorem for graph problems over graphs
of bounded clique-width which are expressible in monadic second-order
logic, originally given by Courcelle et al. (see [1]), in combination with
the clique-width approximation algorithm proposed by Oum [9]. The
purpose of this paper is to provide an introduction into the graph com-
plexity measure clique-width and parameterized complexity.

Keywords: Clique–Width · MSOL

1 Introduction

It the year 2000, Courcelle and Olariu introduced a complexity measure on vertex
labeled graphs, called clique-width, using expressions built with so called graph
operations. These expressions induce a unique labeled graph up to isomorphism.
That is, a graph with labels assigned to its vertices. By posing a bound on the
number of different operations of a specific operation type, namely those oper-
ations which define the singleton graph with a specified vertex label, Courcelle
and Olariu define the clique-width of a labeled graph G. The clique-width of G,
also denoted cwd(G), is the (well defined) minimum number of different labels
used to construct an expression which corresponds to G [3].

Roughly speaking, the naming clique-width comes from the fact that this
measure, analogous to the notion of tree-width, describes how clique-like a given
graph is. Graphs which are cliques have a clique-width of 2 while trees have
clique-width 3 [3]. Furthermore, other classes of graphs of bounded clique-width,
like so called P4-tidy graphs, have been studied and efficient algorithms for con-
structing corresponding expressions have been found [1]. Golumbic and Rotics
have provided graph classes with unbounded clique-width [5]. It has also been
shown that deciding whether or not a given graph has clique-width at most k,
for some input k ∈ N>0, is NP-complete [4].

Courcelle, Makowsky and Rotics provide a well known meta-theorem with
regards to the notion of clique-width in their paper Linear Time Solvable Op-
timization Problems on Graphs of Bounded Clique-Width [1]. They show that
problems which can be expressed in monadic second-order logic (MSOL) on
graphs with clique-width at most k ∈ N and second-order quantification only
over sets of vertices can be solved in O(f(|G|))-time, if there exists a known
O(f(|G|))-time algorithm for constructing a corresponding expression witness-
ing the clique-width bound of G.

2 J. L. Schneider

In fact, they show the above property more generally for so called LinEMSOL
optimization problems, in which the problem consists of finding optimal sets of
vertices with regards to some evaluation function and conformance with some
MSOL formula [1]. In this paper, we present this result by showing the implica-
tion derived in combination with Oum’s clique-width approximation algorithm,
which computes an approximate expression, for graphs of clique-width bounded
by some constant, in polynomial time [9].

For didactic reasons, some general definitions or notions introduced in the
reference paper will be presented below in a specific, narrowed down context.

2 Preliminaries

In order to define the clique-width of an undirected, vertex labeled graph, we
first have to introduce the notion of so-called p-graphs and algebraic expressions
defining them.

Definition 1. Let p ∈ N. A p-graph G = (V,E) is an undirected, finite graph
with labels from {1, . . . , p} assigned to its vertices.

Definition 2. An arbitrary p-graph G can be represented as a logical struc-
ture G(τ1,p) with the domain V and signature τ1,p = (E,U1, . . . , Up), where the
relation symbol E ⊆ V ×V corresponds to exactly the adjacent pairs of vertices in
G and for all i ∈ {1, . . . , p}, Ui ⊆ V is a relation symbol corresponding to exactly
those vertices that are labeled i in G. That is, G(τ1,p) = (V,E,U1, . . . , Up).

It is to note that not every τ1,p-structure corresponds to a p-graph. Throughout
the rest of the paper, we will omit the focus on these structures and not differ-
entiate between p-graphs and their corresponding logical representations. This
definition allows us to evaluate formulas from MSOL on p-graphs. These are for-
mulas from first-order logic with the addition of quantification over subsets of the
domain, typically represented with capital letters (e.g. ∃X(. . .)). Furthermore,
for some first-order and second-order variables x and X, membership testing is
expressed by the atomic formula X(x), which is valid iff x ∈ X holds.

Let C be an arbitrary class of p-graphs and let φ and θ(X1, . . . , Xn) be
MSOL(τ1,p) formulas over the same signature such that φ has no and θ has
n ∈ N free set variables.

Definition 3. A MSOL(τ1,p) decision problem over C is defined by φ and
C. The problem is to decide, given a problem instance G ∈ C, whether or not
G(τ1,p) ⊨ φ holds, i.e. the given graph’s logical structure is a model for φ.

Let ai,j ∈ Z for i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} be arbitrary coefficients for
some m,n ∈ N and for an arbitrary G ∈ C, let f1, . . . , fm : VG → N be functions
assigning integers to the vertices of G. Any assignment of free variables of θ
z : {X1, . . . , Xn} → P(VG) can be represented as an n-tuple (D1, . . . , Dn) with
D1, . . . , Dn ⊆ VG corresponding to the n assignments of free variables to subsets
of VG. Symmetrically, every such tuple corresponds to an assignment zD.

Seminar: Clique–Width 3

With this, we can define sat(G,θ) as the set of n-tuples corresponding to
assignments which satisfy θ in combination with G(τ1,p):

sat(G, θ) = {(D1, . . . , Dn) ∈ P(VG)
n | (G(τ1,p), zD) ⊨ θ(X1, . . . , Xn)}.

Furthermore, we define h(D1, . . .,Dn) and Max h(X), mapping assignment
tuples to their so-called evaluation value and computing a maximal evaluation
value respectively:

h(D1, . . . , Dn) =

n∑
i=1

m∑
j=1

ai,j(
∑
v∈Di

fj(v)),

Max h(X) = max{h(D1, . . . , Dn) | (D1, . . . , Dn) ∈ X}.

In the following, we will define optimization problems with constraints pro-
vided as MSOL formulas by combining two notions presented by Courcelle et al.
and thus deviate from the original notation (see [1]).

Definition 4. A LinEMSOL(τ1,p) optimization problem over C is defined
by θ(X1, . . . , Xn), ai,j ∈ Z for i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and C, where
n,m ∈ N. An input instance for this problem consists of a p-graph G ∈ C and
m so called evaluation functions f1, . . . , fm : VG → N.

The problem for such an instance is to find an optimal assignment z∗ of the
free set variables of θ, i.e. z∗ = (D∗

1 , . . . , D
∗
n) ∈ P(VG)

n such that the following
holds:

h(D∗
1 , . . . , D

∗
n) =Max h(sat(G, θ)).

That is, in plain English: find a satisfying assignment z∗ of X1, . . . , Xn such
that it has the maximum evaluation value h(D∗

1 , . . . , D
∗
n) among all candidate

assignments satisfying θ. It follows that each MSOL(τ1,p) problem can be ex-
pressed as a LinEMSOL(τ1,p) optimization problem [1].

2.1 Clique-Width

Through the notion of graph complexity measures, one can derive algorithmic
results for solving LinEMSOL(τ1,p) problems over classes of graphs with bounded
such complexity. Courcelle et al. used a measure called clique-width to formulate
the meta-theorem presented in this paper (see [1]). In order to define the clique-
width of a p-graph, we will need algebraic expressions consisting of so-called
graph operations. Every such expression defines a set of isomorphic p-graphs
and every p-graph can be constructed by at least one expression.

Definition 5. Let G = (V,E,U1, . . . , Up) and H = (V ′, E′, U ′
1, . . . , U

′
p) be p-

graphs with disjoint sets of vertices, represented as logical structures. There are
four types of graph operations which are defined as follows:

– Union: G⊕H = (V ∪ V ′, E ∪ E′, U1 ∪ U ′
1, . . . , Up ∪ U ′

p)

– Edge connection: ηi,j(G) = (V,E ∪ {(u, v) | u ∈ Ui, v ∈ Uj}, U1, . . . , Up)

4 J. L. Schneider

– Vertex relabeling: ρi→j(G) = (V,E,U∗
1 , . . . , U

∗
p)

such that U∗
i = ∅, U∗

j = Ui ∪ Uj and U∗
k = Uk for k ∈ {1, . . . , p} \ {i, j}

– Singleton creation: i(v) = ({v}, ∅, U∗
1 , . . . , U

∗
p)

such that U∗
i = {v} and U∗

k = ∅ for k ∈ {1, . . . , p} \ {i}

Since these operations take p-graphs and return them, they can be chained to-
gether to form expressions, where expressions of the form i(v) are atomic expres-
sions. Such a term is called a k-expression if all labels present in the expression
are in {1, . . . , k} for some k ∈ N.

Definition 6. Let G be a p-graph. The clique-width of G, cwd(G), is defined
as the smallest k ∈ N such that there is a k-expression defining G. That is,

cwd(G) = min{k ∈ N | G ∈ C(k)},

where C(k) denotes the class of p-graphs defined by arbitrary k-expressions.

Clique-width is a complexity measure of graphs similar to that of tree-width, in
the sense that algorithmic properties of certain graph problems can be derived
when imposing a fixed upper-bound on the clique-width of the instance-graphs.
It is known that a class of graphs with bounded tree-width also has bounded
clique-width, while the converse does not hold [2].

A k-expression defining a p-graph G can be seen as a decomposition of G
which yields desirable results with regards to model checking, i.e. we will be
able to derive assignments that satisfy a formula in combination with G from
the subexpressions that G is composed of. This composition method uses a
generalization of the Feferman -Vaught theorem (see [8]) and so-called translation
schemes for generating formulas and inferring results on the structure of a k-
expression.

2.2 Translation Schemes and the Feferman –Vaught Theorem

Let τ and σ be arbitrary signatures. Courcelle et al. introduce the notion of a τ -
σ-translation scheme Φ = (φ,ψ1, . . . , ψm), which is a tuple of MSOL(τ) formulas
respecting certain properties of the signature σ. For the purpose of this paper,
we will avoid the general, generic definition and assume that τ = σ = τ1,p holds.

This implies that, Φ is of the form Φ = (φ,ψE , ψ1, . . . , ψp) where φ,ψ1, . . . , ψp

have one and ψE has two free first-order variables. Such a translation scheme
induces two mappings, Φ∗ : Structure(τ1,p) → Structure(τ1,p) (transduction)
and Φ# : MSOL(τ1,p) → MSOL(τ1,p) (backwards translation).

Given a τ1,p-structure A, Φ∗(A) defines a structure, where the universe of A
is restricted to those elements x satisfying A ⊨ φ(x). Similarly, the interpretation
of E (or Ui) in Φ

∗(A) is defined as those element pairs x, y (elements x) in the
universe of Φ∗(A) such that A ⊨ ψE(x, y) (A ⊨ ψi(x)) holds.

For some MSOL(τ1,p) formula θ, a backwards translation Φ#(θ) is defined
inductively such that first-order and second-order quantification is restricted to
the elements present in the transduction’s universe, expressed via φ. Also, every

Seminar: Clique–Width 5

subformula of the form E(x, y) (or Ui(x)) is replaced by the formulas encoding
the interpretation of these symbols in the transduction, i.e. ψE(x, y) (ψi(x)).
This concept will be demonstrated in example 1.

Lemma 1 (Courcelle et al. [1]). For every edge connection or vertex re-
naming graph operation α = ηi,j (α = ρi→j), one can compute a (τ1,p)-(τ1,p)-
translation scheme Φα, such that for any MSOL(τ1,p) formula θ(X1, . . . , Xn)
and p-graph G, the following holds:

sat(α(G), θ) = sat(G, Φ#
α (θ)).

The formula Φ#
α (φ) has quantifier depth less than or equal to that of θ.

Corollary 1. For α = ηi,j or α = ρi→j, any MSOL(τ1,p) formula θ and any
p-graph G,

Max h(sat(α(G), θ)) =Max h(sat(G, Φ#
α (θ)))

holds for arbitrary h. Specifically, any optimal assignment from sat(G, Φ#
α (θ))

is also an optimal assignment from sat(α(G), θ).

As an example, we provide a translation scheme for an edge connection graph
operation and the corresponding backwards translation of an example formula.

Example 1. Let θ(X1) = ∃x(∀y(X1(y) → E(x, y))) be a MSOL(τ1,p) formula
expressing that an element exists such that all elements from X1 have an edge
to this node in the corresponding graph. Let G be an arbitrary p-graph and ηi,j
be an edge connection graph operation for i, j ≤ p.

We define ψE(x, y) := E(x, y) ∨ (Ui(x) ∧ Uj(y)), while ψk(x) := Uk(x) for
all k ∈ {1, . . . , p} and φ(x) := (x = x). This induces the translation scheme
Φηi,j

= (φ,ψE , ψ1, . . . , ψp), where sat(α(G), θ) = sat(G, Φ#
α (θ)) holds.

Specifically, θ’s backwards translation Φ#(θ) is defined as:

∃x(φ(x) ∧ ¬(∃y(φ(y) ∧ ¬((X1(y) ∧ φ(y)) → (ψE(x, y) ∧ φ(x) ∧ φ(y))))))
∧∀y(X1(y) → φ(y)),

which can be simplified to:

∃x(φ(x) ∧ ∀y(¬φ(y) ∨ (X1(y) → ψE(x, y)))) ∧ ∀y(X1(y) → φ(y)).

The subformula ∀y(X1(y) → φ(y)) expresses that all elements occurring in θ’s
free set variables need to present in the transduction’s universe.

Lemma 1 allows us to modify formulas such that the evaluation result with
regards to a structure, that is composed of a smaller structure using unary graph
operations, can be inferred from the evaluation result of the modified formula
on the smaller structure. As indicated by Courcelle et al., a similar result for
the ⊕-operation can be derived from the generalization of the Feferman -Vaught
theorem. This theorem infers the first-order theory of a structure composed of
other structures from the first-order theories of these other structures [1, 8, 7].

6 J. L. Schneider

Lemma 2 (Courcelle et al. [1]). Let θ(X1, . . . , Xn) be a MSOL(τ1,p) formula.
One can construct two families of MSOL(τ1,p) formulas, φ′

i(X1, . . . , Xn) and
ψ′
i(X1, . . . , Xn) for i ∈ {1, . . . ,m} and some m ∈ N, such that for all p-graphs

G and H having disjoint sets of vertices, the following holds:

sat(G⊕H, θ) =

m⋃
i=1

sat(G,φ′
i)⊠ sat(H,ψ′

i),

where X⊠Y = {(D1∪E1, . . . , Dn∪En) | (D1, . . . , Dn) ∈ X, (E1, . . . , En) ∈ Y }.
Furthermore, φ′

i and ψ
′
i all have quantifier depth less than or equal to that of θ.

Corollary 2. For G,H and θ(X1, . . . , Xn) as above,

Max h(sat(G⊕H, θ)) = max{Max h(sat(G,φ′
i))

+Max h(sat(H,ψ′
i)) | i ∈ {1, . . . ,m}}

holds for arbitrary h. This can be derived from Lemma 2 and minor statements
given by Courcelle et al. [1]. Furthermore, one can infer an optimal assignment
(D1∪̇E1, . . . , Dn∪̇En) ∈ sat(G ⊕ H, θ), where (D1, . . . , Dn) ∈ sat(G,φ′

i) and
(E1, . . . , En) ∈ sat(H,ψ′

i) are optimal assignments for the pair of formulas φ′
i, ψ

′
i

having the largest added Max h value.

3 Solving MSOL Problems over Graphs of Bounded
Clique-Width

The above Lemma 1 and Lemma 2 allow one to compute Max h(sat(G, θ)) and
a corresponding optimal assignment inductively on the structure of the so-called
parse tree of G, which corresponds to an expression g that defines G. Such a tree
is denoted by tree(g). The nodes in tree(g) correspond to the graph operations
present in g, where i(v)-operations hold no children and make up the tree’s leafs,
while η- and ρ-operations have one and ⊕-operations have two children. Every
root node n of a subtree t of tree(g) induces a labeled graph, graph(n) via
the sub-expression corresponding to t. We will now describe the main algorithm
presented in the reference paper in combination with a result on approximate
clique-width decompositions as presented by Oum [9].

Let k ∈ N and let C be a class of p-graphs having bounded clique-width
k. That is, all graphs in C have clique-width at most k. Furthermore, let P
be a LinEMSOL(τ1,p) optimization problem over C defined by some formula
θ(X1, . . . , Xn) and coefficients ai,j ∈ Z for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

Theorem 1 (Courcelle et al. [1] and Oum [9]). For fixed k, the optimization
problem P over graphs of clique-width bounded by k can be solved in polynomial
time.

Proof. Let k be fixed. Let G ∈ C be an arbitrary graph instance with evaluation
functions f1, . . . , fm. As shown by Oum, one can approximate the clique-width

Seminar: Clique–Width 7

of a given graph, i.e. output a (8k − 1)-expression defining G in O(|VG|3)-time.
This is achieved via an intermediary step, where a so-called rank-decomposition
is computed, which is then used to create the (8k − 1)-expression [9]. Let g
be such a (8k − 1)-expression computed with this algorithm. As described by
Courcelle et al., the parse tree of g will be traversed two times:

1. In the first, top-down traversal, one recursively assigns a set of formulas to
each node of the tree by utilizing Lemma 1 and 2:
Let θ be assigned to the root node of tree(g). If the current node corresponds
to a unary graph operation, one assigns the backwards translation of each
currently assigned formula to the child node of the current node. This prin-
ciple is shown in Fig. 2. Otherwise, if the current node corresponds to the
⊕-operation, one assigns the formulas φ′

1, . . . , φ
′
m and ψ′

1, . . . , ψ
′
m to the left

and right child for all currently assigned formulas, as shown in Fig. 1. At the
leaf nodes, which correspond to singleton operations, no computation needs
to be done.

2. The second subroutine traverses tree(g) from the bottom up. For each for-
mula φ present at a node x, the value Max h(sat(graph(x), φ)) and an as-
signment tuple from sat(graph(x), φ) having the maximal evaluation value
are computed from those solutions computed at x’s children:
If the current node x is a leaf, one can compute Max h(sat(graph(x), φ))
and an optimal assignment via brute force, since graph(x) defines only a
singleton graph. If the current node corresponds to a unary graph operation,
one can simply copy the maximal value Max h(sat(graph(x), φ)) and an
optimal assignment from the computation done at φ’s backwards translation
in the child node of x (see Corollary 1). Otherwise, x corresponds to a ⊕-
operation and one can compute Max h and an optimal assignment from
the previously computed values in the left and right child of x, as shown in
Corollary 2.

After traversing tree(g) for the second time, an optimal assignment z∗ and the
corresponding evaluation value with regards to the optimization problem P have
been computed at the root node of the parse tree.

We provide an intuition for the running time of the algorithm described
above. Note that k is fixed. It is clear that the size of tree(g) is in O(|VG|3).
Courcelle et al. argue that the maximal size of the set of formulas assigned to
each node of tree(g) is bounded by a constant depending on θ and p ≤ 8k − 1.
They make this argument, since up to tautological equivalence, there are only
finitely many MSOL(τ1,p) formulas with quantifier depth less than or equal to
that of θ having n free set variables that express properties of p-graphs [1].
Furthermore, they state that the computations in the second traversal can be
performed in constant time. Here, the quintessential task is to find a solution to
Max h(sat(graph(x), φ)), where graph(x) corresponds to a singleton graph and
φ is one of the previously generated formulas.

If one was able to provide a constant bound on the total number of formulas
occurring, these statements follow immediately. But since the above statement

8 J. L. Schneider

only provides a bound for formulas up to tautological equivalence, it is not clear
how one assures that the number of syntactically different formulas occurring is
also bounded. The author of this paper assumes that through some intermediate,
syntactic normalization of formulas, as mentioned by Grohe (see [6]), one is able
to avoid the creation of arbitrarily many equivalent formulas, given a class of
p-graphs having bounded clique-width.

Altogether, we get that for fixed k, one can compute a clique-width approx-
imation in O(|VG|3)-time while the computations from above, under the previ-
ously stated assumption, can be conducted in time constant in the size of tree(g).
Thus, for a fixed clique-width bound k, the whole procedure has a runtime in
O(|VG|3) as well. That is, the running time can be written as O(f(k) · |VG|3)
where f(k) is a function exponential only in k.

⊕

t1 t2

φ1, . . . , φj

φ′
1,1, . . . , φ

′
1,m1

. . .
φ′

j,1, . . . , φ
′
j,mj

ψ′
1,1, . . . , ψ

′
1,m1

. . .
ψ′

j,1, . . . , ψ
′
j,mj

Fig. 1. Downward inductive step on
⊕-operations, where φ′

i,p and ψi,p are
computed from φi using Lemma 2.

α

t1

φ1, . . . , φj

Φ#
α (φ1), . . . , Φ

#
α (φj)

Fig. 2. Downward inductive step on η-
and ρ-operations, where Φ#

α (φi) is com-
puted as shown in Lemma 1.

4 Conclusion

We have presented the meta-theorem for graph problems expressible in MSOL
with second-order quantification over sets of vertices, where the class of graphs
considered is of bounded clique-width. The original approach was proposed by
Courcelle et al. [1]. We deviate from the exact formulation of their theorem by
providing a combined result with Oum’s clique-width approximation algorithm
[9]. While the original algorithm relies on another algorithm computing a k-
expression for a graph instance, Oum’s result implies that this is no longer
a requirement. Section 3 highlights a perceived shortcoming with regards to
Courcelle et al.’s argumentation on the algorithm’s runtime, which the author
of this paper encountered while researching the topic. We believe that a more
straightforward argumentation on the algorithms’s running time and connection
with the Feferman -Vaught theorem might be fruitful areas for further research.

Seminar: Clique–Width 9

References

1. Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable opti-
mization problems on graphs of bounded clique-width. Theory of Computing Sys-
tems, 33(2):125–150, 2000.

2. Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. On the fixed parameter
complexity of graph enumeration problems definable in monadic second-order logic.
Discrete applied mathematics, 108(1-2):23–52, 2001.

3. Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs.
Discrete Applied Mathematics, 101(1-3):77–114, 2000.

4. Michael R Fellows, Frances A Rosamond, Udi Rotics, and Stefan Szeider. Clique-
width minimization is np-hard. In Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing, pages 354–362, 2006.

5. Martin Charles Golumbic and Udi Rotics. On the clique-width of some perfect graph
classes. International Journal of Foundations of Computer Science, 11(03):423–443,
2000.

6. Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems.
Model Theoretic Methods in Finite Combinatorics, 558:181–206, 2011.

7. Yuri Gurevich. Monadic second-order theories. Model-theoretic logics, pages 479–
506, 1985.

8. Johann A Makowsky. Algorithmic uses of the feferman–vaught theorem. Annals of
Pure and Applied Logic, 126(1-3):159–213, 2004.

9. Sang-il Oum. Approximating rank-width and clique-width quickly. In Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science, pages 49–58.
Springer, 2005.

