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Model checking via games

The model checking problem for a logic L

Given: structureA

formula ψ ∈ L

Question: A |= ψ ?

Erich Grädel THEORIES — GAMES — ALGORITHMS



Model checking via games

The model checking problem for a logic L

Given: structureA

formula ψ ∈ L

Question: A |= ψ ?

Reduce model checking problemA |= ψ to strategy problem for model

checking game G(A, ψ), played by

– Falsifier (also called Player 1, or Alter), and

– Verifier (also called Player 0, or Ego), such that

A |= ψ ⇐⇒ Verifier has winning strategy for G(A, ψ)
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Model checking via games

The model checking problem for a logic L

Given: structureA

formula ψ ∈ L

Question: A |= ψ ?

Reduce model checking problemA |= ψ to strategy problem for model

checking game G(A, ψ), played by

– Falsifier (also called Player 1, or Alter), and

– Verifier (also called Player 0, or Ego), such that

A |= ψ ⇐⇒ Verifier has winning strategy for G(A, ψ)

=⇒ Model checking via construction of winning strategies
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Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

winning regions computable in linear time wrt. size of game graph
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Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

winning regions computable in linear time wrt. size of game graph

Fixed-point logics (LFP or LµLµLµ): Model checking games are parity games

• admit infinite plays

• parity winning condition

Open problem: Are winning regions and winning strategies of parity

games computable in polynomial time?
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Finite games: basic definitions

Two-player games with complete information and positional winning

condition, given by game graph (also called arena)

G = (V, E), V = V0 ∪ V1

• Player 0 (Ego) moves from positions v ∈ V0,

Player 1 (Alter) moves from v ∈ V1,

• moves are along edges

a play is a finite or infinite sequence π = v0v1v2 · · · with (vi, vi+1) ∈ E

• winning condition: move or lose!

Player σ wins at position v if v ∈ V1−σ and vE = ∅

Note: this is a purely positional winning condition applying to finite

plays only (infinite plays are draws)

Erich Grädel THEORIES — GAMES — ALGORITHMS



Winning strategies and winning regions

Strategy for Player σ: f : {v ∈ Vσ : vE 6= ∅} → V with (v, f (v)) ∈ E.

f is winning from position v if Player σ wins all plays that start at v and are

consistent with f .
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Winning strategies and winning regions

Strategy for Player σ: f : {v ∈ Vσ : vE 6= ∅} → V with (v, f (v)) ∈ E.

f is winning from position v if Player σ wins all plays that start at v and are

consistent with f .

Winning regionsW0,W1:

Wσ = {v ∈ V : Player σ has winning strategy from position v}
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Winning strategies and winning regions

Strategy for Player σ: f : {v ∈ Vσ : vE 6= ∅} → V with (v, f (v)) ∈ E.

f is winning from position v if Player σ wins all plays that start at v and are

consistent with f .

Winning regionsW0,W1:

Wσ = {v ∈ V : Player σ has winning strategy from position v}

Algorithmic problems: Given a game G

• compute winning regionsW0,W1

• compute winning strategies

Associated decision problem:

G := {(G, v) : Player 0 has winning strategy for G from position v}
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Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).
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Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).
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Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where
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Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

• W0
σ = {v ∈ V1−σ : vE = ∅}

(winning terminal positions for Player σ)
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Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

• W0
σ = {v ∈ V1−σ : vE = ∅}

(winning terminal positions for Player σ)

• Wn+1
σ = {v ∈ Vσ : vE ∩Wn

σ 6= ∅} ∪ {v ∈ V1−σ : vE ⊆ Wn
σ}

(positions with winning strategy in≤ n + 1moves for Player i)
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Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

• W0
σ = {v ∈ V1−σ : vE = ∅}

(winning terminal positions for Player σ)

• Wn+1
σ = {v ∈ Vσ : vE ∩Wn

σ 6= ∅} ∪ {v ∈ V1−σ : vE ⊆ Wn
σ}

(positions with winning strategy in≤ n + 1moves for Player i)

untilWn+1
σ = Wn

σ (this happens for n ≤ |V|).
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A linear time algorithm forG

Input: A game G = (V, V0, V1, E)

forall v ∈ V let (∗ 1: initialisation ∗)

win[v] := ⊥, P[v] := {u : (u, v) ∈ E}, n[v] := |vE|

forall σ ∈ {0, 1}, v ∈ Vσ (∗ 2: calculate win ∗)

if n[v] = 0 then Propagate(v, 1− σ)

returnwin end

procedure Propagate(v, σ)

ifwin[v] 6= ⊥ then return

win[v] := σ (∗ 3: mark v as winning for Player σ ∗)

forall u ∈ P[v] do (∗ 4: propagate change to predecessors ∗)

n[u] := n[u]− 1

if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)

enddo
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Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states
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Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states

Acceptance condition: game with Players ∃ and ∀, played on

computation graph C(M, x) ofM on input x

Positions: configurations ofM

Moves: C → C′ for C′ successor configuration of C

- Player ∃moves at existential configurations

wins at accepting configurations

- Player ∀moves at universal configurations

wins at rejecting configurations
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Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states

Acceptance condition: game with Players ∃ and ∀, played on

computation graph C(M, x) ofM on input x

Positions: configurations ofM

Moves: C → C′ for C′ successor configuration of C

- Player ∃moves at existential configurations

wins at accepting configurations

- Player ∀moves at universal configurations

wins at rejecting configurations

M accepts x :⇐⇒ Player ∃ has winning strategy for game on C(M, x)
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Alternating versus deterministic complexity classes

Alternating time≡ deterministic space

Alternating space≡ exponential deterministic time

L ⊆ P ⊆ P ⊆ E ⊆ E

|| || || ||

A ⊆ A ⊆ A ⊆ A
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Alternating versus deterministic complexity classes

Alternating time≡ deterministic space

Alternating space≡ exponential deterministic time

L ⊆ P ⊆ P ⊆ E ⊆ E

|| || || ||

A ⊆ A ⊆ A ⊆ A

Alternating logspace algorithm forG: Play the game !
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Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ
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Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)
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Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Positions: φ(a) φ(x) subformula of ψ, a ∈ Ak
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Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Positions: φ(a) φ(x) subformula of ψ, a ∈ Ak

Verifier moves: φ
φ ∨ ϑ ∃xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Falsifier moves: φ
φ ∧ ϑ ∀xφ(x, b) φ(a, b) (a ∈ A)

ϑ
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Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Positions: φ(a) φ(x) subformula of ψ, a ∈ Ak

Verifier moves: φ
φ ∨ ϑ ∃xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Falsifier moves: φ
φ ∧ ϑ ∀xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Winning condition: φ atomic / negated atomic

Verifier

Falsifier
wins at φ(a) ⇐⇒ A

|=

6|=
φ(a)
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Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it
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Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(A, ψ)| ≤ |ψ| · |A|width(ψ)

width(ψ): maximal number of free variables in subformulae
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Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(A, ψ)| ≤ |ψ| · |A|width(ψ)

width(ψ): maximal number of free variables in subformulae

Complexity of FOmodel checking:

alternating time: O(|ψ| · log |A|)

alternating space: O(width(ψ) · log |A| + log |ψ|)
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Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(A, ψ)| ≤ |ψ| · |A|width(ψ)

width(ψ): maximal number of free variables in subformulae

Complexity of FOmodel checking:

alternating time: O(|ψ| · log |A|)

alternating space: O(width(ψ) · log |A| + log |ψ|)

deterministic time: O(|ψ| · |A|width(ψ))

deterministic space: O(|ψ| · log |A|)
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Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity:

P-complete (even for very smallA, such asA = {0, 1})
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Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity:

P-complete (even for very smallA, such asA = {0, 1})

Crucial parameter for complexity: width of formula

FOk := {ψ ∈ FO : width(ψ) ≤ k} = k-variable fragment of FO
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Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity:

P-complete (even for very smallA, such asA = {0, 1})

Crucial parameter for complexity: width of formula

FOk := {ψ ∈ FO : width(ψ) ≤ k} = k-variable fragment of FO

ModCheck(FOk) is P-complete and solvable in timeO(|ψ| · |A|k)
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Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity:

P-complete (even for very smallA, such asA = {0, 1})

Crucial parameter for complexity: width of formula

FOk := {ψ ∈ FO : width(ψ) ≤ k} = k-variable fragment of FO

ModCheck(FOk) is P-complete and solvable in timeO(|ψ| · |A|k)

Fragments of FO with model checking complexityO(|ψ| · ‖A‖)):

—ML : propositional modal logic

Later:

— FO2 : formulae of width two

—GF : the guarded fragment of first-order logic
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ML: propositional modal logic

Transition systems = Kripke structures = labeled graphs

K = ( V , (Ea)a∈A , (Pi)i∈I )

states
elements

actions
binary relations

atomic propositions
unary relations

Syntax of ML: ψ ::= Pi | ¬Pi | ψ ∧ ψ | ψ ∨ ψ | 〈a〉ψ | [a]ψ

Example: P1 ∨ 〈a〉(P2 ∧ [b]P1)

Semantics: [[ψ]]K = {v : K, v |= ψ} = {v : ψ holds at state v inK}.

K, v |=
〈a〉ψ

[a]ψ
:⇐⇒ K, w |= ψ for

some

all
w with (v, w) ∈ Ea
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Model checking game for ML

Game G(K, ψ) forK = (V, (Ea)a∈A, (Pi)i∈I) and ψ ∈ML
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Model checking game for ML

Game G(K, ψ) forK = (V, (Ea)a∈A, (Pi)i∈I) and ψ ∈ML

Positions: (φ, v) φ subformula of ψ, v ∈ V

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Falsifier moves: (φ, v)
(φ ∧ ϑ, v) ([a]φ, v) (w, φ), w ∈ vEa

(ϑ, v)

Terminal positions: (Pi, v), (¬Pi, v)
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Model checking game for ML

Game G(K, ψ) forK = (V, (Ea)a∈A, (Pi)i∈I) and ψ ∈ML

Positions: (φ, v) φ subformula of ψ, v ∈ V

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Falsifier moves: (φ, v)
(φ ∧ ϑ, v) ([a]φ, v) (w, φ), w ∈ vEa

(ϑ, v)

Terminal positions: (Pi, v), (¬Pi, v)

Verifier wins G(K, ψ) from position (φ, v) ⇐⇒ K, v |= φ
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Model checking game for ML

Game G(K, ψ) forK = (V, (Ea)a∈A, (Pi)i∈I) and ψ ∈ML

Positions: (φ, v) φ subformula of ψ, v ∈ V

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Falsifier moves: (φ, v)
(φ ∧ ϑ, v) ([a]φ, v) (w, φ), w ∈ vEa

(ϑ, v)

Terminal positions: (Pi, v), (¬Pi, v)

Verifier wins G(K, ψ) from position (φ, v) ⇐⇒ K, v |= φ

‖G(K, ψ)‖ = O(|ψ| · ‖K‖)
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Advantages of game based approach to model checking

• intuitive top-down definition of semantics

(very effective for teaching logic)

• versatile and general methodology,

can be adapted to many logical formalisms

• isolates the real combinatorial difficulties of an evaluation problem,

abstracts from syntactic details.

• if you understand games, you understand alternating algorithms

• closely related to automata based methods

• algorithms and complexity results for many logic problems follow

from results on games
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Model checking for propositional modal logic

Theorem. ModelCheck(ML) is P-complete.

- solvable in timeO(|ψ| · ‖K‖) via model checking game

- G (for strictly alternating games) ≤log ModelCheck(ML)

G = (V, E), v 7−→ (G, v), ψn (n = |V|)

ψ0 := ¤0 ψ2m+1 = ♦ψ2m, ψ2m+2 = ¤ψ2m+1

G, v |= ψm ⇐⇒ Player 0 wins G from v in≤ mmoves
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Satisfiability of propositional Horn formulae

Propositional Horn formulae: conjunctions of clauses of form

X ← X1 ∧ · · · ∧ Xn and 0 ← X1 ∧ · · · ∧ Xn

Theorem. S-H is P-complete and solvable in linear time.

(actually,G and S-H are essentially the same problem)
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Satisfiability of propositional Horn formulae

Propositional Horn formulae: conjunctions of clauses of form

X ← X1 ∧ · · · ∧ Xn and 0 ← X1 ∧ · · · ∧ Xn

Theorem. S-H is P-complete and solvable in linear time.

(actually,G and S-H are essentially the same problem)

1) G ≤log-lin S-H:

For G = (V0 ∪ V1, E) construct Horn formula ψ with clauses

u ← v for all u ∈ V0 and (u, v) ∈ E

u ← v1 ∧ · · · ∧ vm for all u ∈ V1, uE = {v1, . . . , vm}

The minimal model of ψ is precisely the winning region of Player 0.

(G, v) ∈ G ⇐⇒ ψG ∧ (0 ← v) is unsatisfiable
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2) S-H ≤log-lin G:

Define game Gψ for Horn formula ψ(X1, . . . , Xn) =
∧

i∈I Ci

Positions: {0} ∪ {X1, . . . , Xn} ∪ {Ci : i ∈ I}

Moves of Player 0: X → C for X = head(C)

Moves of Player 1: C → X for X ∈ body(C)

Note: Player 0 wins iff play reaches clause C with body(C) = ∅

Player 0 has winning strategy from position X ⇐⇒ ψ |= X

Hence,

Player 0 wins from position 0 ⇐⇒ ψ unsatisfiable.
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Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

Winning regions computable in linear time wrt. size of game graph
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Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

Winning regions computable in linear time wrt. size of game graph

In many computer science applications, more expressive logics are needed:

temporal logics, dynamic logics, fixed-point logics,. . .

Model checking games for these logics admit infinite plays and need more

complicated winning conditions.
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Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

Winning regions computable in linear time wrt. size of game graph

In many computer science applications, more expressive logics are needed:

temporal logics, dynamic logics, fixed-point logics,. . .

Model checking games for these logics admit infinite plays and need more

complicated winning conditions.

=⇒ we have to consider the theory of infinite games
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