THEORIES — GAMES — ALGORITHMS Model Checking Games

Erich Grädel graedel@rwth-aachen.de.

Aachen University

Model checking via games

The model checking problem for a logic L

Given:structure \mathfrak{A}
formula $\psi \in L$ Question: $\mathfrak{A} \models \psi$?

Model checking via games

The model checking problem for a logic L

Given:structure \mathfrak{A}
formula $\psi \in L$ Question: $\mathfrak{A} \models \psi$?

Reduce model checking problem $\mathfrak{A} \models \psi$ to strategy problem for model checking game $G(\mathfrak{A}, \psi)$, played by

- Falsifier (also called Player 1, or Alter), and
- Verifier (also called Player 0, or Ego), such that

 $\mathfrak{A} \models \psi \iff$ Verifier has winning strategy for $G(\mathfrak{A}, \psi)$

Model checking via games

The model checking problem for a logic L

Given:structure \mathfrak{A}
formula $\psi \in L$ Question: $\mathfrak{A} \models \psi$?

Reduce model checking problem $\mathfrak{A} \models \psi$ to strategy problem for model checking game $G(\mathfrak{A}, \psi)$, played by

- Falsifier (also called Player 1, or Alter), and
- Verifier (also called Player 0, or Ego), such that

 $\mathfrak{A} \models \psi \iff$ Verifier has winning strategy for $G(\mathfrak{A}, \psi)$

 \implies Model checking via construction of winning strategies

Logics and games

First-order logic (FO) or modal logic (ML): Model checking games have

- only finite plays
- positional winning condition

winning regions computable in linear time wrt. size of game graph

Logics and games

First-order logic (FO) or modal logic (ML): Model checking games have

- only finite plays
- positional winning condition

winning regions computable in linear time wrt. size of game graph

Fixed-point logics (LFP or L_{μ}): Model checking games are parity games

- admit infinite plays
- parity winning condition

Open problem: Are winning regions and winning strategies of parity games computable in polynomial time?

Finite games: basic definitions

Two-player games with complete information and positional winning condition, given by game graph (also called arena) $\mathcal{G} = (V, E), \qquad V = V_0 \cup V_1$

- Player 0 (Ego) moves from positions $v \in V_0$, Player 1 (Alter) moves from $v \in V_1$,
- moves are along edges a play is a finite or infinite sequence $\pi = v_0 v_1 v_2 \cdots$ with $(v_i, v_{i+1}) \in E$
- winning condition: move or lose!
 Player σ wins at position v if v ∈ V_{1-σ} and vE = Ø
 Note: this is a purely positional winning condition applying to finite plays only (infinite plays are draws)

Winning strategies and winning regions

Strategy for Player σ : $f : \{v \in V_{\sigma} : vE \neq \emptyset\} \rightarrow V$ with $(v, f(v)) \in E$.

f is **winning from position** v if Player σ wins all plays that start at v and are consistent with f.

Winning strategies and winning regions

Strategy for Player σ : $f : \{v \in V_{\sigma} : vE \neq \emptyset\} \to V$ with $(v, f(v)) \in E$.

f is **winning from position** v if Player σ wins all plays that start at v and are consistent with f.

Winning regions W₀, W₁:

 $W_{\sigma} = \{v \in V : \text{Player } \sigma \text{ has winning strategy from position } v\}$

Winning strategies and winning regions

Strategy for Player σ : $f : \{v \in V_{\sigma} : vE \neq \emptyset\} \rightarrow V$ with $(v, f(v)) \in E$.

f is **winning from position** v if Player σ wins all plays that start at v and are consistent with f.

Winning regions *W*₀, *W*₁:

 $W_{\sigma} = \{v \in V : \text{Player } \sigma \text{ has winning strategy from position } v\}$

Algorithmic problems: Given a game \mathcal{G}

- compute winning regions W_0 , W_1
- compute winning strategies

Associated decision problem:

GAME := { (\mathcal{G}, v) : Player 0 has winning strategy for \mathcal{G} from position v}

Theorem

GAME is PTIME-complete and solvable in time O(|V| + |E|).

Theorem

GAME is PTIME-complete and solvable in time O(|V| + |E|).

remains true for strictly alternating games on graphs $\mathcal{G} = (V, E)$.

Theorem

GAME is PTIME-complete and solvable in time O(|V| + |E|).

remains true for strictly alternating games on graphs $\mathcal{G} = (V, E)$.

A simple polynomial-time algorithm

Compute winning regions inductively: $W_{\sigma} = \bigcup_{n \in \mathbb{N}} W_{\sigma}^{n}$ where

Theorem

GAME is PTIME-complete and solvable in time O(|V| + |E|).

remains true for strictly alternating games on graphs $\mathcal{G} = (V, E)$.

A simple polynomial-time algorithm

Compute winning regions inductively: $W_{\sigma} = \bigcup_{n \in \mathbb{N}} W_{\sigma}^{n}$ where

•
$$W^0_{\sigma} = \{ v \in V_{1-\sigma} : vE = \varnothing \}$$

(winning terminal positions for Player σ)

Theorem

GAME is PTIME-complete and solvable in time O(|V| + |E|).

remains true for strictly alternating games on graphs $\mathcal{G} = (V, E)$.

A simple polynomial-time algorithm

Compute winning regions inductively: $W_{\sigma} = \bigcup_{n \in \mathbb{N}} W_{\sigma}^{n}$ where

- $W^0_{\sigma} = \{ v \in V_{1-\sigma} : vE = \emptyset \}$ (winning terminal positions for Player σ)
- $W_{\sigma}^{n+1} = \{ v \in V_{\sigma} : vE \cap W_{\sigma}^{n} \neq \emptyset \} \cup \{ v \in V_{1-\sigma} : vE \subseteq W_{\sigma}^{n} \}$ (positions with winning strategy in $\leq n + 1$ moves for Player *i*)

Theorem

GAME is PTIME-complete and solvable in time O(|V| + |E|).

remains true for strictly alternating games on graphs $\mathcal{G} = (V, E)$.

A simple polynomial-time algorithm

Compute winning regions inductively: $W_{\sigma} = \bigcup_{n \in \mathbb{N}} W_{\sigma}^{n}$ where

- $W_{\sigma}^{0} = \{ v \in V_{1-\sigma} : vE = \emptyset \}$ (winning terminal positions for Player σ)
- $W_{\sigma}^{n+1} = \{ v \in V_{\sigma} : vE \cap W_{\sigma}^{n} \neq \emptyset \} \cup \{ v \in V_{1-\sigma} : vE \subseteq W_{\sigma}^{n} \}$ (positions with winning strategy in $\leq n + 1$ moves for Player *i*)

until $W_{\sigma}^{n+1} = W_{\sigma}^{n}$ (this happens for $n \leq |V|$).

A linear time algorithm for GAME

Input: A game $\mathcal{G} = (V, V_0, V_1, E)$

forall $v \in V$ let (* 1: initialisation *)win $[v] := \bot$, $P[v] := \{u : (u, v) \in E\}$, n[v] := |vE|forall $\sigma \in \{0, 1\}$, $v \in V_{\sigma}$ (* 2: calculate win *)if n[v] = 0 then Propagate $(v, 1 - \sigma)$ return win end

procedure Propagate(v, σ) if win[v] $\neq \bot$ then return win[v] := σ (* 3: mark v as winning for Player σ *) forall $u \in P[v]$ do (* 4: propagate change to predecessors *) n[u] := n[u] - 1if $u \in V_{\sigma}$ or n[u] = 0 then Propagate(u, σ) enddo

Alternating algorithms

nondeterministic algorithms, with states divided into accepting, rejecting, existential, and universal states

Alternating algorithms

nondeterministic algorithms, with states divided into accepting, rejecting, existential, and universal states

Acceptance condition: game with Players \exists and \forall , played on computation graph C(M, x) of M on input x

Positions: configurations of *M*

Moves: $C \rightarrow C'$ for C' successor configuration of C

- Player ∃ moves at existential configurations wins at accepting configurations
- Player ∀ moves at universal configurations wins at rejecting configurations

Alternating algorithms

nondeterministic algorithms, with states divided into accepting, rejecting, existential, and universal states

Acceptance condition: game with Players \exists and \forall , played on computation graph C(M, x) of M on input x

Positions: configurations of *M* **Moves:** $C \rightarrow C'$ for *C'* successor configuration of *C*

 Player ∃ moves at existential configurations wins at accepting configurations
 Player ∀ moves at universal configurations

wins at rejecting configurations

M accepts $x : \iff$ Player \exists has winning strategy for game on C(M, x)

Alternating versus deterministic complexity classes

Alternating time \equiv deterministic space Alternating space \equiv exponential deterministic time

LOGSPACE \subseteq PTIME \subseteq PSPACE \subseteq EXPSPACE||||||||||||AlogSpace \subseteq Aptime \subseteq Apspace \subseteq

Alternating versus deterministic complexity classes

Alternating time \equiv deterministic space Alternating space \equiv exponential deterministic time

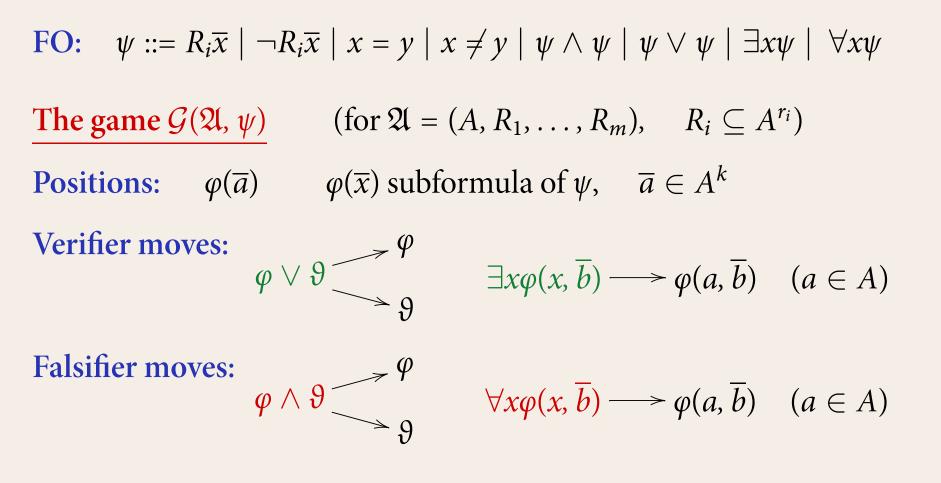
LOGSPACE \subseteq PTIME \subseteq PSPACE \subseteq ExperimeExperime||||||||||||||Alogspace \subseteq Aptime \subseteq Apspace \subseteq

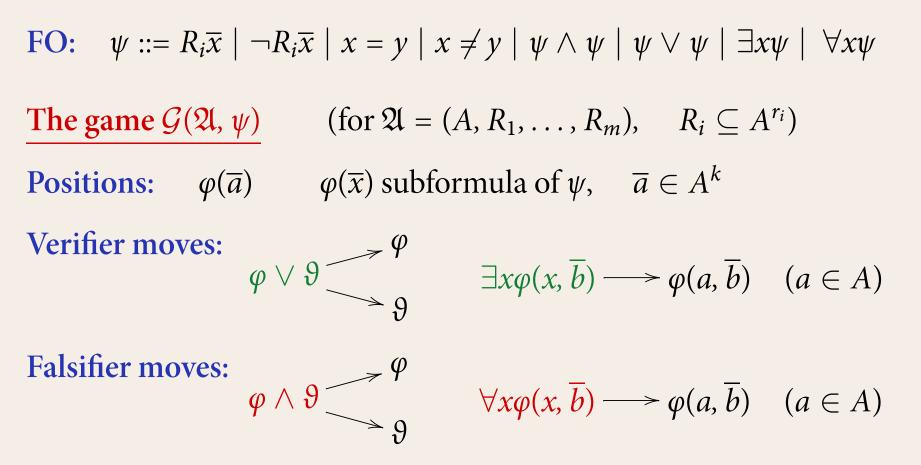
Alternating logspace algorithm for GAME: Play the game !

FO: $\psi ::= R_i \overline{x} \mid \neg R_i \overline{x} \mid x = y \mid x \neq y \mid \psi \land \psi \mid \psi \lor \psi \mid \exists x \psi \mid \forall x \psi$

FO: $\psi ::= R_i \overline{x} | \neg R_i \overline{x} | x = y | x \neq y | \psi \land \psi | \psi \lor \psi | \exists x \psi | \forall x \psi$ The game $\mathcal{G}(\mathfrak{A}, \psi)$ (for $\mathfrak{A} = (A, R_1, \dots, R_m)$, $R_i \subseteq A^{r_i}$)

FO: $\psi ::= R_i \overline{x} | \neg R_i \overline{x} | x = y | x \neq y | \psi \land \psi | \psi \lor \psi | \exists x \psi | \forall x \psi$ The game $\mathcal{G}(\mathfrak{A}, \psi)$ (for $\mathfrak{A} = (A, R_1, \dots, R_m)$, $R_i \subseteq A^{r_i}$) Positions: $\varphi(\overline{a})$ $\varphi(\overline{x})$ subformula of ψ , $\overline{a} \in A^k$





Winning condition: φ atomic / negated atomic

Verifier
Falsifierwins at
$$\varphi(\overline{a}) \iff \mathfrak{A} \not\models \varphi(\overline{a})$$

To decide whether $\mathfrak{A} \models \psi$, construct the game $\mathcal{G}(\mathfrak{A}, \psi)$ and check whether Verifier has winning strategy from initial position ψ .

Efficient implementation: on-the-fly construction of game while solving it

To decide whether $\mathfrak{A} \models \psi$, construct the game $\mathcal{G}(\mathfrak{A}, \psi)$ and check whether Verifier has winning strategy from initial position ψ .

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: $|\mathcal{G}(\mathfrak{A}, \psi)| \le |\psi| \cdot |A|^{\text{width}(\psi)}$ width(ψ): maximal number of free variables in subformulae

To decide whether $\mathfrak{A} \models \psi$, construct the game $\mathcal{G}(\mathfrak{A}, \psi)$ and check whether Verifier has winning strategy from initial position ψ .

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: $|\mathcal{G}(\mathfrak{A}, \psi)| \leq |\psi| \cdot |A|^{\mathrm{width}(\psi)}$ width(ψ): maximal number of free variables in subformulae

Complexity of FO model checking:

alternating time: $O(|\psi| \cdot \log |A|)$ alternating space: $O(\text{width}(\psi) \cdot \log |A| + \log |\psi|)$

To decide whether $\mathfrak{A} \models \psi$, construct the game $\mathcal{G}(\mathfrak{A}, \psi)$ and check whether Verifier has winning strategy from initial position ψ .

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: $|\mathcal{G}(\mathfrak{A}, \psi)| \le |\psi| \cdot |A|^{\text{width}(\psi)}$ width(ψ): maximal number of free variables in subformulae

Complexity of FO model checking:

alternating time: $O(|\psi| \cdot \log |A|)$ alternating space: $O(\text{width}(\psi) \cdot \log |A| + \log |\psi|)$

deterministic time: $O(|\psi| \cdot |A|^{\text{width}(\psi)})$ deterministic space: $O(|\psi| \cdot \log |A|)$

- Structure complexity (ψ fixed) : ALOGTIME \subseteq LOGSPACE
- Expression complexity and combined complexity: PSPACE-complete (even for very small \mathfrak{A} , such as $\mathfrak{A} = \{0, 1\}$)

- Structure complexity (ψ fixed) : ALOGTIME \subseteq LOGSPACE
- Expression complexity and combined complexity: PSPACE-complete (even for very small \mathfrak{A} , such as $\mathfrak{A} = \{0, 1\}$)

Crucial parameter for complexity: width of formula

 $FO^k := \{ \psi \in FO : width(\psi) \le k \} = k$ -variable fragment of FO

- Structure complexity (ψ fixed) : ALOGTIME \subseteq LOGSPACE
- Expression complexity and combined complexity: PSPACE-complete (even for very small \mathfrak{A} , such as $\mathfrak{A} = \{0, 1\}$)

Crucial parameter for complexity: width of formula

 $FO^k := \{ \psi \in FO : width(\psi) \le k \} = k$ -variable fragment of FO

ModCheck(FO^{*k*}) is PTIME-complete and solvable in time $O(|\psi| \cdot |A|^k)$

- Structure complexity (ψ fixed) : ALOGTIME \subseteq LOGSPACE
- Expression complexity and combined complexity: PSPACE-complete (even for very small \mathfrak{A} , such as $\mathfrak{A} = \{0, 1\}$)

Crucial parameter for complexity: width of formula

 $FO^k := \{ \psi \in FO : width(\psi) \le k \} = k$ -variable fragment of FO

ModCheck(FO^{*k*}) is PTIME-complete and solvable in time $O(|\psi| \cdot |A|^k)$

Fragments of FO with model checking complexity $O(|\psi| \cdot ||\mathfrak{A}||)$:

— ML : propositional modal logic

Later:

- $-FO^2$: formulae of width two
- **GF** : the guarded fragment of first-order logic

ML: propositional modal logic

Transition systems = Kripke structures = labeled graphs $\mathcal{K} = (V, (E_a)_{a \in A}, (P_i)_{i \in I})$

states

elements

actions

binary relations

atomic propositions

unary relations

Syntax of ML: $\psi ::= P_i | \neg P_i | \psi \land \psi | \psi \lor \psi | \langle a \rangle \psi | [a] \psi$ Example: $P_1 \lor \langle a \rangle (P_2 \land [b] P_1)$ Semantics: $[\![\psi]\!]^{\mathcal{K}} = \{v : \mathcal{K}, v \models \psi\} = \{v : \psi \text{ holds at state } v \text{ in } \mathcal{K}\}.$

$$\mathcal{K}, v \models \begin{cases} \langle a \rangle \psi \\ \vdots \\ [a] \psi \end{cases} : \iff \quad \mathcal{K}, w \models \psi \text{ for } \qquad \text{some} \\ all \end{cases} w \text{ with } (v, w) \in E_a$$

Game $\mathcal{G}(\mathcal{K}, \psi)$ for $\mathcal{K} = (V, (E_a)_{a \in A}, (P_i)_{i \in I})$ and $\psi \in ML$

Game
$$\mathcal{G}(\mathcal{K}, \psi)$$
 for $\mathcal{K} = (V, (E_a)_{a \in A}, (P_i)_{i \in I})$ and $\psi \in ML$
Positions: $(\varphi, v) \qquad \varphi$ subformula of $\psi, \quad v \in V$
Verifier moves: $(\varphi \lor \vartheta, v) \xrightarrow{} (\varphi, v) \qquad (\langle a \rangle \varphi, v) \longrightarrow (\varphi, w), \quad w \in vE_a$
Falsifier moves: $(\varphi \land \vartheta, v) \xrightarrow{} (\varphi, v) \qquad ([a]\varphi, v) \longrightarrow (w, \varphi), \quad w \in vE_a$
Terminal positions: $(P_i, v), \quad (\neg P_i, v)$

Game
$$\mathcal{G}(\mathcal{K}, \psi)$$
 for $\mathcal{K} = (V, (E_a)_{a \in A}, (P_i)_{i \in I})$ and $\psi \in ML$
Positions: $(\varphi, v) \qquad \varphi$ subformula of $\psi, \quad v \in V$
Verifier moves: $(\varphi \lor \vartheta, v) \xrightarrow{} (\varphi, v) \qquad (\langle a \rangle \varphi, v) \longrightarrow (\varphi, w), \quad w \in vE_a$
Falsifier moves: $(\varphi \land \vartheta, v) \xrightarrow{} (\varphi, v) \qquad ([a]\varphi, v) \longrightarrow (w, \varphi), \quad w \in vE_a$
Terminal positions: $(P_i, v), \quad (\neg P_i, v)$

Verifier wins $\mathcal{G}(\mathcal{K}, \psi)$ from position $(\varphi, v) \iff \mathcal{K}, v \models \varphi$

Game
$$\mathcal{G}(\mathcal{K}, \psi)$$
 for $\mathcal{K} = (V, (E_a)_{a \in A}, (P_i)_{i \in I})$ and $\psi \in ML$
Positions: $(\varphi, v) \qquad \varphi$ subformula of $\psi, \quad v \in V$
Verifier moves: $(\varphi \lor \vartheta, v) \xrightarrow{} (\varphi, v) \qquad (\langle a \rangle \varphi, v) \longrightarrow (\varphi, w), \quad w \in vE_a$
Falsifier moves: $(\varphi \land \vartheta, v) \xrightarrow{} (\varphi, v) \qquad ([a]\varphi, v) \longrightarrow (w, \varphi), \quad w \in vE_a$
Terminal positions: $(P_i, v), \quad (\neg P_i, v)$

Verifier wins $\mathcal{G}(\mathcal{K}, \psi)$ from position $(\varphi, v) \iff \mathcal{K}, v \models \varphi$

 $\left\|\mathcal{G}(\mathcal{K},\psi)\right\| = O(|\psi| \cdot \|\mathcal{K}\|)$

Advantages of game based approach to model checking

- intuitive top-down definition of semantics (very effective for teaching logic)
- versatile and general methodology, can be adapted to many logical formalisms
- isolates the real combinatorial difficulties of an evaluation problem, abstracts from syntactic details.
- if you understand games, you understand alternating algorithms
- closely related to automata based methods
- algorithms and complexity results for many logic problems follow from results on games

Model checking for propositional modal logic

Theorem. ModelCheck(ML) is PTIME-complete.

- solvable in time $O(|\psi| \cdot ||\mathcal{K}||)$ via model checking game
- GAME (for strictly alternating games) \leq_{\log} ModelCheck(ML)

$$\mathcal{G} = (V, E), v \longmapsto (\mathcal{G}, v), \psi_n \quad (n = |V|)$$

$$\psi_0 := \Box 0$$
 $\psi_{2m+1} = \Diamond \psi_{2m}$, $\psi_{2m+2} = \Box \psi_{2m+1}$

 $\mathcal{G}, v \models \psi_m \iff \text{Player 0 wins } \mathcal{G} \text{ from } v \text{ in } \leq m \text{ moves}$

Satisfiability of propositional Horn formulae

Propositional Horn formulae: conjunctions of clauses of form

 $X \leftarrow X_1 \wedge \cdots \wedge X_n$ and $0 \leftarrow X_1 \wedge \cdots \wedge X_n$

Theorem. SAT-HORN is PTIME-complete and solvable in linear time. (actually, GAME and SAT-HORN are essentially the same problem)

Satisfiability of propositional Horn formulae

Propositional Horn formulae: conjunctions of clauses of form

 $X \leftarrow X_1 \wedge \cdots \wedge X_n$ and $0 \leftarrow X_1 \wedge \cdots \wedge X_n$

Theorem. SAT-HORN is PTIME-complete and solvable in linear time. (actually, GAME and SAT-HORN are essentially the same problem)

1) GAME $\leq_{\text{log-lin}}$ Sat-Horn:

For $\mathcal{G} = (V_0 \cup V_1, E)$ construct Horn formula ψ with clauses

 $u \leftarrow v \qquad \text{for all } u \in V_0 \text{ and } (u, v) \in E$ $u \leftarrow v_1 \wedge \cdots \wedge v_m \qquad \text{for all } u \in V_1, \ uE = \{v_1, \dots, v_m\}$

The minimal model of ψ is precisely the winning region of Player 0.

$$(\mathcal{G}, v) \in \text{GAME} \iff \psi_{\mathcal{G}} \land (0 \leftarrow v) \text{ is unsatisfiable}$$

2) Sat-Horn $\leq_{\text{log-lin}}$ Game:

Define game \mathcal{G}_{ψ} for Horn formula $\psi(X_1, \ldots, X_n) = \bigwedge_{i \in I} C_i$ **Positions:** $\{0\} \cup \{X_1, ..., X_n\} \cup \{C_i : i \in I\}$ Moves of Player 0: $X \rightarrow C$ for X = head(C)Moves of Player 1: $C \rightarrow X$ for $X \in body(C)$ **Note:** Player 0 wins iff play reaches clause C with $body(C) = \emptyset$ Player 0 has winning strategy from position $X \iff \psi \models X$ Hence,

Player 0 wins from position 0 $\iff \psi$ unsatisfiable.

Logics and games

First-order logic (FO) or modal logic (ML): Model checking games have

- only finite plays
- positional winning condition

Winning regions computable in linear time wrt. size of game graph

Logics and games

First-order logic (FO) or modal logic (ML): Model checking games have

- only finite plays
- positional winning condition

Winning regions computable in linear time wrt. size of game graph

In many computer science applications, more expressive logics are needed: **temporal logics, dynamic logics, fixed-point logics,...**

Model checking games for these logics admit infinite plays and need more complicated winning conditions.

Logics and games

First-order logic (FO) or modal logic (ML): Model checking games have

- only finite plays
- positional winning condition

Winning regions computable in linear time wrt. size of game graph

In many computer science applications, more expressive logics are needed: **temporal logics, dynamic logics, fixed-point logics,...**

Model checking games for these logics admit infinite plays and need more complicated winning conditions.

 \implies we have to consider the theory of infinite games