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Model checking via games

The model checking problem for a logic L

Given: structure 2l
formulay € L
Question: A E v ?
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Model checking via games

The model checking problem for a logic L

Given: structure 2l
formulay € L
Question: A E v ?

Reduce model checking problem 2l = v to strategy problem for model
checking game G(%l, v), played by

— Falsifier (also called Player 1, or Alter), and

— Verifier (also called Player 0, or Ego), such that

A = ¢ <= Verifier has winning strategy for G(2\, v
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Model checking via games

The model checking problem for a logic L

Given: structure 2l
formulay € L
Question: A E v ?

Reduce model checking problem 2l = v to strategy problem for model
checking game G(%l, v), played by

— Falsifier (also called Player 1, or Alter), and

— Verifier (also called Player 0, or Ego), such that

A = ¢ <= Verifier has winning strategy for G(2\, v

=—> Model checking via construction of winning strategies
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Logics and games

First-order logic (FO) or modal logic (ML): Model checking games have
® only finite plays
® positional winning condition

winning regions computable in linear time wrt. size of game graph
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Logics and games

First-order logic (FO) or modal logic (ML): Model checking games have
® only finite plays
® positional winning condition

winning regions computable in linear time wrt. size of game graph

Fixed-point logics (LFP or L,): Model checking games are parity games
® admit infinite plays
® parity winning condition

Open problem: Are winning regions and winning strategies of parity

games computable in polynomial time?

Erich Gridel THEORIES — GAMES — ALGORITHMS



Finite games: basic definitions

Two-player games with complete information and positional winning

condition, given by game graph (also called arena)
g = (V,E), V=V,UV,

® Player 0 (Ego) moves from positions v € V,

Player 1 (Alter) moves from v € V7,

® moves are along edges

a play is a finite or infinite sequence 7 = vov;v, - - - with (v;, viy1) € E
® winning condition: move or lose!

Player ¢ wins at position vifv € V;_;and vE = &

Note: this is a purely positional winning condition applying to finite

plays only (infinite plays are draws)
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Winning strategies and winning regions

Strategy for Playero: f:{ve V,:vE# @} — V with(v,f(v)) € E.

f is winning from position v if Player o wins all plays that start at v and are

consistent with f.
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Winning strategies and winning regions

Strategy for Playero: f:{ve V,:vE#4 @} — V with(v,f(v)) € E.

f is winning from position v if Player o wins all plays that start at v and are

consistent with f.

Winning regions Wy, W:

W, = {v € V : Player ¢ has winning strategy from position v}
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Winning strategies and winning regions

Strategy for Playero: f:{ve V,:vE# @} — V with(v,f(v)) € E.

f is winning from position v if Player o wins all plays that start at v and are

consistent with f.

Winning regions Wy, W:
W, = {v € V : Player ¢ has winning strategy from position v}

Algorithmic problems: Given a game G
® compute winning regions Wy, W,
® compute winning strategies

Associated decision problem:

GaME := {(G, v) : Player 0 has winning strategy for G from position v}
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Algorithms for finite games

Theorem

GAME is PTIME-complete and solvable in time O(| V| + |E|).

Erich Gridel THEORIES — GAMES — ALGORITHMS



Algorithms for finite games

Theorem

GAME is PTIME-complete and solvable in time O(| V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).
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Algorithms for finite games

Theorem

GAME is PTIME-complete and solvable in time O(| V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: W, = J _ W” where

neN
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Algorithms for finite games

Theorem

GAME is PTIME-complete and solvable in time O(| V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: W, = | ) _ W where

neN

e W={veV_,:vE=0}

(winning terminal positions for Player o)
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Algorithms for finite games

Theorem

GAME is PTIME-complete and solvable in time O(| V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: W, = J _ W” where

neN

e W={veV _,:vE=0}

(winning terminal positions for Player o)

e Wl =lyeV,:vENW'Z@}U{veV,_,:vEC W"}

(positions with winning strategy in < n + 1 moves for Player i)
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Algorithms for finite games

Theorem

GAME is PTIME-complete and solvable in time O(| V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: W, = J _ W” where

neN

e W={veV _,:vE=0}

(winning terminal positions for Player o)

e Wl =lyeV,:vENW'Z@}U{veV,_,:vEC W"}

(positions with winning strategy in < n + 1 moves for Player i)

until Wt = W”  (this happens for n < |V)).
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A linear time algorithm for GAME

Input: A game G = (V, Vy, V1, E)

forall v € V let (* 1: initialisation *)
win[v] .= 1, Pv]:={u:(uv) € E}, n[v]:=|vE|
forall 0 € {0, 1}, v € V, (* 2: calculate win )

if n[v] = 0 then Propagate(v, 1 — 0)

return win end

procedure Propagate(v, 0)
if win[v] # L then return
win[v] := 0 (* 3: mark v as winning for Player o *)
forall u € P[v]do (* 4: propagate change to predecessors *)
nlul = nlu] — 1
ifu € V, or nlu] = 0 then Propagate(u, o)
enddo
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Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states
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Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states

Acceptance condition: game with Players 9 and V, played on

computation graph C(M, x) of M on input x

Positions: configurations of M

Moves: C — C' for C’ successor configuration of C

- Player 3 moves at existential configurations
wins at accepting configurations
- Player ¥V moves at universal configurations

wins at rejecting configurations
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Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states

Acceptance condition: game with Players 9 and V, played on
computation graph C(M, x) of M on input x

Positions: configurations of M

Moves: C — C' for C' successor configuration of C

- Player 4 moves at existential configurations
wins at accepting configurations
- Player ¥V moves at universal configurations

wins at rejecting configurations

M acceptsx <= Player d has winning strategy for game on C(}M, x)
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Alternating versus deterministic complexity classes

Alternating time = deterministic space

Alternating space = exponential deterministic time

LoGgspaCE C PTIME C PspaAce C ExpriIME C EXPSPACE

ALOGSPACE C APTIME C APSPACE C AEXPTIME
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Alternating versus deterministic complexity classes

Alternating time = deterministic space

Alternating space = exponential deterministic time

LoGgspaCE C PTIME C PspaAce C ExpriIME C EXPSPACE

ALOGSPACE C APTIME C APSPACE C AEXPTIME

Alternating logspace algorithm for GAME: Play the game !
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Evaluation game for FO

FO: yu=RXx|Rx|x=y|xZy|yAy|yVy|Ixy| Vxy
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Evaluation game for FO

FO: yu=RXx|Rx|x=y|xZy|yAy|yVy|Ixy| Vxy

The game G(2, v) (forA=(ARy,...,Ry), R C A7)
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Evaluation game for FO

FO: yu=RXx|Rx|x=y|xZy|yAy|yVy|Ixy| Vxy

The game G(2, v) (forA=(ARy,...,Ry), R C A7)

Positions:  ¢(a) ¢(X) subformulaof v, a € Ak
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Evaluation game for FO

FO: yu=RXx|Rx|x=y|xZy|yAy|yVy|Ixy| Vxy

The game G(2, v) (forA=(ARy,...,Ry), R C A7)

Positions:  ¢(a) ¢(X) subformulaof v, a € Ak

Verifier moves: g—" ¢ B 3
¢V dxo(x, b) —=¢@(a,b) (a € A)
\ 9
Falsifier moves: ¢
/ - -
WA, Vxo(x, b) —= @(a, b) (a € A)
\ 9
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Evaluation game for FO

FO: yu=RXx|Rx|x=y|xZy|yAy|yVy|Ixy| Vxy

The game G(2, v) (forA=(ARy,...,Ry), R C A7)

Positions:  ¢(a) ¢(X) subformulaof v, a € Ak

Verifier moves: g—" ¢ B 3
¢V dxo(x, b) —=¢@(a,b) (a € A)
\ 9
Falsifier moves: ¢
/ - -
WA, Vxo(x, b) —= @(a, b) (a € A)
\ 9

Winning condition: ¢ atomic / negated atomic

Verifier
winsat ¢(a) <= A ¢(a)
Falsifier
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Complexity of FO model checking

To decide whether 2 = v, construct the game G (2, v) and check whether

Verifier has winning strategy from initial position y.

Efficient implementation: on-the-fly construction of game while solving it
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Complexity of FO model checking

To decide whether 2 = v, construct the game G (2, v) and check whether

Verifier has winning strategy from initial position y.

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(2L, v)| < || - |A|™40W)

width(y): maximal number of free variables in subformulae
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Complexity of FO model checking

To decide whether 2 = v, construct the game G (2, v) and check whether

Verifier has winning strategy from initial position y.
Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(2L, v)| < || - |A|™40W)

width(y): maximal number of free variables in subformulae

Complexity of FO model checking:

alternating time: O(|y| - log |A|)
alternating space: O(width(y) - log |A| + log |v|)
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Complexity of FO model checking

To decide whether 2 = v, construct the game G (2, v) and check whether

Verifier has winning strategy from initial position y.
Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(2L, v)| < || - |A|™40W)

width(y): maximal number of free variables in subformulae

Complexity of FO model checking:

alternating time: O(|y| - log |A|)
alternating space: O(width(y) - log |A| + log |v|)

deterministic time: O(|y]| - |A[%dth(¥))

deterministic space: O(|y| - log |A])
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Complexity of FO model checking

® Structure complexity (y fixed): ALOGTIME C LOGSPACE

® Expression complexity and combined complexity:

Pspace-complete  (even for very small 2, such as 2 = {0, 1})
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Complexity of FO model checking

® Structure complexity (y fixed): ALOGTIME C LOGSPACE

® Expression complexity and combined complexity:

Pspace-complete  (even for very small 2, such as 2 = {0, 1})

Crucial parameter for complexity: width of formula

FO* := {y € FO : width(y) < k} = k-variable fragment of FO
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Complexity of FO model checking

® Structure complexity (y fixed): ALOGTIME C LOGSPACE

® Expression complexity and combined complexity:

Pspace-complete  (even for very small 2, such as 2 = {0, 1})

Crucial parameter for complexity: width of formula

FO* := {y € FO : width(y) < k} = k-variable fragment of FO

ModCheck(FOF) is PTiME-complete and solvable in time O(|y/]| - |A[F)
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Complexity of FO model checking

® Structure complexity (y fixed): ALOGTIME C LOGSPACE

® Expression complexity and combined complexity:

Pspace-complete  (even for very small 2, such as 2 = {0, 1})

Crucial parameter for complexity: width of formula

FO* := {y € FO : width(y) < k} = k-variable fragment of FO

ModCheck(FO*) is PTiME-complete and solvable in time O(|y/| - |A[¥)

Fragments of FO with model checking complexity O(|y/| - ||2L]])):
— ML : propositional modal logic

Later:

— FO?: formulae of width two

— GF: the guarded fragment of first-order logic
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ML: propositional modal logic

Transition systems =  Kripke structures = labeled graphs

K = V , (Bdaca > (Pier )

states actions atomic propositions
elements binary relations unary relations

Syntax of ML: v == P; | =P; |y Ay | vV vy | (v ]| [aly
EX&IHPI@I P1 V <Ol>(P2 N\ [b]Pl)
Semantics: [y]* = {v:KC,v E v} = {v: yholds at state vin K}.

DV Kowkytor ™ wwith (w) € E,

la]y all
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Model checking game for ML

Game G(/C, v) for K = (V, (E,)aca, (Pi)icr) and y € ML

Erich Gridel THEORIES — GAMES — ALGORITHMS



Model checking game for ML

Game G(/C, v) for K = (V, (E,)aca, (Pi)icr) and y € ML

Positions: (¢, v) ¢ subformulaofy, veV

Verifier moves: (o, v)
(VI v) - (a)p,v) — (¢, w), w € VE,
T
(9, v)
Falsifier moves: (o)
(pAIv) ([alp,v) — (W, @), w € VE,
(9, v)

Terminal positions: (P;,v), (—P;v)

Erich Gridel THEORIES — GAMES — ALGORITHMS



Model checking game for ML

Game G(/C, v) for K = (V, (E,)aca, (Pi)icr) and y € ML

Positions: (¢, v) ¢ subformulaofy, veV

Verifier moves: (o, v)
(VI v) - (a)p,v) — (¢, w), w € VE,
T
(9, v)
Falsifier moves: (o)
(pAIv) ([alp,v) — (W, @), w € VE,
(9, v)

Terminal positions: (P;,v), (—P;v)

Verifier wins G(IC, v) from position (¢, v) <= K,vE¢
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Model checking game for ML

Game G(/C, v) for K = (V, (E,)aca, (Pi)icr) and y € ML

Positions: (¢, v) ¢ subformulaofy, veV

Verifier moves: (o, v)
(VI v) - (a)p,v) — (¢, w), w € VE,
T
(9, v)
Falsifier moves: (o)
(pAIv) ([alp,v) — (W, @), w € VE,
(9, v)

Terminal positions: (P;,v), (—P;v)
Verifier wins G(IC, v) from position (¢, v) <= K,vE¢

IGUC, will = Oy - IX])
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Advantages of game based approach to model checking

® intuitive top-down definition of semantics

(very effective for teaching logic)

® versatile and general methodology,

can be adapted to many logical formalisms

® isolates the real combinatorial difficulties of an evaluation problem,

abstracts from syntactic details.
® if you understand games, you understand alternating algorithms
® closely related to automata based methods

® algorithms and complexity results for many logic problems follow

from results on games
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Model checking for propositional modal logic

Theorem. ModelCheck(ML) is PTIME-complete.
- solvable in time O(|y| - ||K]|) via model checking game
- GAME (for strictly alternating games) <j,, ModelCheck(ML)

g = (V,E), V — (g> V)> Vn (I’Z — ’V’)

v =110 Vom+1 = <>1//2m> Vom+2 = LWame

g,vEUY, <= Player0winsg fromvin < m moves
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Satisfiability of propositional Horn formulae

Propositional Horn formulae: conjunctions of clauses of form
X<—X1/\/\Xn and OHXI/\/\Xn

Theorem. SaT-HoRN is PTIME-complete and solvable in linear time.

(actually, GAME and SaT-HORN are essentially the same problem)
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Satisfiability of propositional Horn formulae

Propositional Horn formulae: conjunctions of clauses of form
X—XiN---NX, and 0—XgA---NX,

Theorem. Sar-Horn is PTiME-complete and solvable in linear time.
(actually, GAME and SaT-HORN are essentially the same problem)

1) GAME <jogiin SAT-HORN:

For G = (Vy U V4, E) construct Horn formula y with clauses

U< v forallu € Vyand (u, v) € E
U— vy A Avy, forallu € Vi, ukE ={vy,..., vy}

The minimal model of v is precisely the winning region of Player 0.

(G,v) € GAME <= yg A (0 < v)is unsatisfiable

Erich Gridel
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2) SAT-HORN  <jooiin  GAME:

Define game G, for Horn formula y(Xy, ..., X,)) = A\,.; G
Positions: {0} U{X;,...,X,} U{C;:i€e I}

Moves of Player 0: X — C for X = head(C)

Moves of Player 1: C — X for X € body(C)

Note: Player 0 wins iff play reaches clause C with body(C) = &
Player 0 has winning strategy from position X <= v X

Hence,

Player 0 wins from position0 <= v unsatisfiable.
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Logics and games

First-order logic (FO) or modal logic (ML): Model checking games have
® only finite plays
® positional winning condition

Winning regions computable in linear time wrt. size of game graph
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Logics and games

First-order logic (FO) or modal logic (ML): Model checking games have
® only finite plays
® positional winning condition

Winning regions computable in linear time wrt. size of game graph

In many computer science applications, more expressive logics are needed:
temporal logics, dynamic logics, fixed-point logics,. . .

Model checking games for these logics admit infinite plays and need more

complicated winning conditions.
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Logics and games

First-order logic (FO) or modal logic (ML): Model checking games have
® only finite plays
® positional winning condition

Winning regions computable in linear time wrt. size of game graph

In many computer science applications, more expressive logics are needed:
temporal logics, dynamic logics, fixed-point logics,. . .

Model checking games for these logics admit infinite plays and need more

complicated winning conditions.

—> we have to consider the theory of infinite games
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