
THEORIES—GAMES—ALGORITHMS
Model Checking Games

Erich Grädel

graedel@rwth-aachen.de.

Aachen University

Model checking via games

The model checking problem for a logic L

Given: structureA

formula ψ ∈ L

Question: A |= ψ ?

Erich Grädel THEORIES — GAMES — ALGORITHMS

Model checking via games

The model checking problem for a logic L

Given: structureA

formula ψ ∈ L

Question: A |= ψ ?

Reduce model checking problemA |= ψ to strategy problem for model

checking game G(A, ψ), played by

– Falsifier (also called Player 1, or Alter), and

– Verifier (also called Player 0, or Ego), such that

A |= ψ ⇐⇒ Verifier has winning strategy for G(A, ψ)

Erich Grädel THEORIES — GAMES — ALGORITHMS

Model checking via games

The model checking problem for a logic L

Given: structureA

formula ψ ∈ L

Question: A |= ψ ?

Reduce model checking problemA |= ψ to strategy problem for model

checking game G(A, ψ), played by

– Falsifier (also called Player 1, or Alter), and

– Verifier (also called Player 0, or Ego), such that

A |= ψ ⇐⇒ Verifier has winning strategy for G(A, ψ)

=⇒ Model checking via construction of winning strategies

Erich Grädel THEORIES — GAMES — ALGORITHMS

Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

winning regions computable in linear time wrt. size of game graph

Erich Grädel THEORIES — GAMES — ALGORITHMS

Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

winning regions computable in linear time wrt. size of game graph

Fixed-point logics (LFP or LµLµLµ): Model checking games are parity games

• admit infinite plays

• parity winning condition

Open problem: Are winning regions and winning strategies of parity

games computable in polynomial time?

Erich Grädel THEORIES — GAMES — ALGORITHMS

Finite games: basic definitions

Two-player games with complete information and positional winning

condition, given by game graph (also called arena)

G = (V, E), V = V0 ∪ V1

• Player 0 (Ego) moves from positions v ∈ V0,

Player 1 (Alter) moves from v ∈ V1,

• moves are along edges

a play is a finite or infinite sequence π = v0v1v2 · · · with (vi, vi+1) ∈ E

• winning condition: move or lose!

Player σ wins at position v if v ∈ V1−σ and vE = ∅

Note: this is a purely positional winning condition applying to finite

plays only (infinite plays are draws)

Erich Grädel THEORIES — GAMES — ALGORITHMS

Winning strategies and winning regions

Strategy for Player σ: f : {v ∈ Vσ : vE 6= ∅} → V with (v, f (v)) ∈ E.

f is winning from position v if Player σ wins all plays that start at v and are

consistent with f .

Erich Grädel THEORIES — GAMES — ALGORITHMS

Winning strategies and winning regions

Strategy for Player σ: f : {v ∈ Vσ : vE 6= ∅} → V with (v, f (v)) ∈ E.

f is winning from position v if Player σ wins all plays that start at v and are

consistent with f .

Winning regionsW0,W1:

Wσ = {v ∈ V : Player σ has winning strategy from position v}

Erich Grädel THEORIES — GAMES — ALGORITHMS

Winning strategies and winning regions

Strategy for Player σ: f : {v ∈ Vσ : vE 6= ∅} → V with (v, f (v)) ∈ E.

f is winning from position v if Player σ wins all plays that start at v and are

consistent with f .

Winning regionsW0,W1:

Wσ = {v ∈ V : Player σ has winning strategy from position v}

Algorithmic problems: Given a game G

• compute winning regionsW0,W1

• compute winning strategies

Associated decision problem:

G := {(G, v) : Player 0 has winning strategy for G from position v}

Erich Grädel THEORIES — GAMES — ALGORITHMS

Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

Erich Grädel THEORIES — GAMES — ALGORITHMS

Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

Erich Grädel THEORIES — GAMES — ALGORITHMS

Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

Erich Grädel THEORIES — GAMES — ALGORITHMS

Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

• W0
σ = {v ∈ V1−σ : vE = ∅}

(winning terminal positions for Player σ)

Erich Grädel THEORIES — GAMES — ALGORITHMS

Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

• W0
σ = {v ∈ V1−σ : vE = ∅}

(winning terminal positions for Player σ)

• Wn+1
σ = {v ∈ Vσ : vE ∩Wn

σ 6= ∅} ∪ {v ∈ V1−σ : vE ⊆ Wn
σ}

(positions with winning strategy in≤ n + 1moves for Player i)

Erich Grädel THEORIES — GAMES — ALGORITHMS

Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

• W0
σ = {v ∈ V1−σ : vE = ∅}

(winning terminal positions for Player σ)

• Wn+1
σ = {v ∈ Vσ : vE ∩Wn

σ 6= ∅} ∪ {v ∈ V1−σ : vE ⊆ Wn
σ}

(positions with winning strategy in≤ n + 1moves for Player i)

untilWn+1
σ = Wn

σ (this happens for n ≤ |V|).

Erich Grädel THEORIES — GAMES — ALGORITHMS

A linear time algorithm forG

Input: A game G = (V, V0, V1, E)

forall v ∈ V let (∗ 1: initialisation ∗)

win[v] := ⊥, P[v] := {u : (u, v) ∈ E}, n[v] := |vE|

forall σ ∈ {0, 1}, v ∈ Vσ (∗ 2: calculate win ∗)

if n[v] = 0 then Propagate(v, 1− σ)

returnwin end

procedure Propagate(v, σ)

ifwin[v] 6= ⊥ then return

win[v] := σ (∗ 3: mark v as winning for Player σ ∗)

forall u ∈ P[v] do (∗ 4: propagate change to predecessors ∗)

n[u] := n[u]− 1

if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)

enddo

Erich Grädel THEORIES — GAMES — ALGORITHMS

Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states

Erich Grädel THEORIES — GAMES — ALGORITHMS

Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states

Acceptance condition: game with Players ∃ and ∀, played on

computation graph C(M, x) ofM on input x

Positions: configurations ofM

Moves: C → C′ for C′ successor configuration of C

- Player ∃moves at existential configurations

wins at accepting configurations

- Player ∀moves at universal configurations

wins at rejecting configurations

Erich Grädel THEORIES — GAMES — ALGORITHMS

Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states

Acceptance condition: game with Players ∃ and ∀, played on

computation graph C(M, x) ofM on input x

Positions: configurations ofM

Moves: C → C′ for C′ successor configuration of C

- Player ∃moves at existential configurations

wins at accepting configurations

- Player ∀moves at universal configurations

wins at rejecting configurations

M accepts x :⇐⇒ Player ∃ has winning strategy for game on C(M, x)

Erich Grädel THEORIES — GAMES — ALGORITHMS

Alternating versus deterministic complexity classes

Alternating time≡ deterministic space

Alternating space≡ exponential deterministic time

L ⊆ P ⊆ P ⊆ E ⊆ E

|| || || ||

A ⊆ A ⊆ A ⊆ A

Erich Grädel THEORIES — GAMES — ALGORITHMS

Alternating versus deterministic complexity classes

Alternating time≡ deterministic space

Alternating space≡ exponential deterministic time

L ⊆ P ⊆ P ⊆ E ⊆ E

|| || || ||

A ⊆ A ⊆ A ⊆ A

Alternating logspace algorithm forG: Play the game !

Erich Grädel THEORIES — GAMES — ALGORITHMS

Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

Erich Grädel THEORIES — GAMES — ALGORITHMS

Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Erich Grädel THEORIES — GAMES — ALGORITHMS

Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Positions: φ(a) φ(x) subformula of ψ, a ∈ Ak

Erich Grädel THEORIES — GAMES — ALGORITHMS

Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Positions: φ(a) φ(x) subformula of ψ, a ∈ Ak

Verifier moves: φ
φ ∨ ϑ ∃xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Falsifier moves: φ
φ ∧ ϑ ∀xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Erich Grädel THEORIES — GAMES — ALGORITHMS

Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Positions: φ(a) φ(x) subformula of ψ, a ∈ Ak

Verifier moves: φ
φ ∨ ϑ ∃xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Falsifier moves: φ
φ ∧ ϑ ∀xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Winning condition: φ atomic / negated atomic

Verifier

Falsifier
wins at φ(a) ⇐⇒ A

|=

6|=
φ(a)

Erich Grädel THEORIES — GAMES — ALGORITHMS

Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Erich Grädel THEORIES — GAMES — ALGORITHMS

Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(A, ψ)| ≤ |ψ| · |A|width(ψ)

width(ψ): maximal number of free variables in subformulae

Erich Grädel THEORIES — GAMES — ALGORITHMS

Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(A, ψ)| ≤ |ψ| · |A|width(ψ)

width(ψ): maximal number of free variables in subformulae

Complexity of FOmodel checking:

alternating time: O(|ψ| · log |A|)

alternating space: O(width(ψ) · log |A| + log |ψ|)

Erich Grädel THEORIES — GAMES — ALGORITHMS

Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(A, ψ)| ≤ |ψ| · |A|width(ψ)

width(ψ): maximal number of free variables in subformulae

Complexity of FOmodel checking:

alternating time: O(|ψ| · log |A|)

alternating space: O(width(ψ) · log |A| + log |ψ|)

deterministic time: O(|ψ| · |A|width(ψ))

deterministic space: O(|ψ| · log |A|)

Erich Grädel THEORIES — GAMES — ALGORITHMS

Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity:

P-complete (even for very smallA, such asA = {0, 1})

Erich Grädel THEORIES — GAMES — ALGORITHMS

Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity:

P-complete (even for very smallA, such asA = {0, 1})

Crucial parameter for complexity: width of formula

FOk := {ψ ∈ FO : width(ψ) ≤ k} = k-variable fragment of FO

Erich Grädel THEORIES — GAMES — ALGORITHMS

Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity:

P-complete (even for very smallA, such asA = {0, 1})

Crucial parameter for complexity: width of formula

FOk := {ψ ∈ FO : width(ψ) ≤ k} = k-variable fragment of FO

ModCheck(FOk) is P-complete and solvable in timeO(|ψ| · |A|k)

Erich Grädel THEORIES — GAMES — ALGORITHMS

Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity:

P-complete (even for very smallA, such asA = {0, 1})

Crucial parameter for complexity: width of formula

FOk := {ψ ∈ FO : width(ψ) ≤ k} = k-variable fragment of FO

ModCheck(FOk) is P-complete and solvable in timeO(|ψ| · |A|k)

Fragments of FO with model checking complexityO(|ψ| · ‖A‖)):

—ML : propositional modal logic

Later:

— FO2 : formulae of width two

—GF : the guarded fragment of first-order logic

Erich Grädel THEORIES — GAMES — ALGORITHMS

ML: propositional modal logic

Transition systems = Kripke structures = labeled graphs

K = (V , (Ea)a∈A , (Pi)i∈I)

states
elements

actions
binary relations

atomic propositions
unary relations

Syntax of ML: ψ ::= Pi | ¬Pi | ψ ∧ ψ | ψ ∨ ψ | 〈a〉ψ | [a]ψ

Example: P1 ∨ 〈a〉(P2 ∧ [b]P1)

Semantics: [[ψ]]K = {v : K, v |= ψ} = {v : ψ holds at state v inK}.

K, v |=
〈a〉ψ

[a]ψ
:⇐⇒ K, w |= ψ for

some

all
w with (v, w) ∈ Ea

Erich Grädel THEORIES — GAMES — ALGORITHMS

Model checking game for ML

Game G(K, ψ) forK = (V, (Ea)a∈A, (Pi)i∈I) and ψ ∈ML

Erich Grädel THEORIES — GAMES — ALGORITHMS

Model checking game for ML

Game G(K, ψ) forK = (V, (Ea)a∈A, (Pi)i∈I) and ψ ∈ML

Positions: (φ, v) φ subformula of ψ, v ∈ V

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Falsifier moves: (φ, v)
(φ ∧ ϑ, v) ([a]φ, v) (w, φ), w ∈ vEa

(ϑ, v)

Terminal positions: (Pi, v), (¬Pi, v)

Erich Grädel THEORIES — GAMES — ALGORITHMS

Model checking game for ML

Game G(K, ψ) forK = (V, (Ea)a∈A, (Pi)i∈I) and ψ ∈ML

Positions: (φ, v) φ subformula of ψ, v ∈ V

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Falsifier moves: (φ, v)
(φ ∧ ϑ, v) ([a]φ, v) (w, φ), w ∈ vEa

(ϑ, v)

Terminal positions: (Pi, v), (¬Pi, v)

Verifier wins G(K, ψ) from position (φ, v) ⇐⇒ K, v |= φ

Erich Grädel THEORIES — GAMES — ALGORITHMS

Model checking game for ML

Game G(K, ψ) forK = (V, (Ea)a∈A, (Pi)i∈I) and ψ ∈ML

Positions: (φ, v) φ subformula of ψ, v ∈ V

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Falsifier moves: (φ, v)
(φ ∧ ϑ, v) ([a]φ, v) (w, φ), w ∈ vEa

(ϑ, v)

Terminal positions: (Pi, v), (¬Pi, v)

Verifier wins G(K, ψ) from position (φ, v) ⇐⇒ K, v |= φ

‖G(K, ψ)‖ = O(|ψ| · ‖K‖)

Erich Grädel THEORIES — GAMES — ALGORITHMS

Advantages of game based approach to model checking

• intuitive top-down definition of semantics

(very effective for teaching logic)

• versatile and general methodology,

can be adapted to many logical formalisms

• isolates the real combinatorial difficulties of an evaluation problem,

abstracts from syntactic details.

• if you understand games, you understand alternating algorithms

• closely related to automata based methods

• algorithms and complexity results for many logic problems follow

from results on games

Erich Grädel THEORIES — GAMES — ALGORITHMS

Model checking for propositional modal logic

Theorem. ModelCheck(ML) is P-complete.

- solvable in timeO(|ψ| · ‖K‖) via model checking game

- G (for strictly alternating games) ≤log ModelCheck(ML)

G = (V, E), v 7−→ (G, v), ψn (n = |V|)

ψ0 := ¤0 ψ2m+1 = ♦ψ2m, ψ2m+2 = ¤ψ2m+1

G, v |= ψm ⇐⇒ Player 0 wins G from v in≤ mmoves

Erich Grädel THEORIES — GAMES — ALGORITHMS

Satisfiability of propositional Horn formulae

Propositional Horn formulae: conjunctions of clauses of form

X ← X1 ∧ · · · ∧ Xn and 0 ← X1 ∧ · · · ∧ Xn

Theorem. S-H is P-complete and solvable in linear time.

(actually,G and S-H are essentially the same problem)

Erich Grädel THEORIES — GAMES — ALGORITHMS

Satisfiability of propositional Horn formulae

Propositional Horn formulae: conjunctions of clauses of form

X ← X1 ∧ · · · ∧ Xn and 0 ← X1 ∧ · · · ∧ Xn

Theorem. S-H is P-complete and solvable in linear time.

(actually,G and S-H are essentially the same problem)

1) G ≤log-lin S-H:

For G = (V0 ∪ V1, E) construct Horn formula ψ with clauses

u ← v for all u ∈ V0 and (u, v) ∈ E

u ← v1 ∧ · · · ∧ vm for all u ∈ V1, uE = {v1, . . . , vm}

The minimal model of ψ is precisely the winning region of Player 0.

(G, v) ∈ G ⇐⇒ ψG ∧ (0 ← v) is unsatisfiable

Erich Grädel THEORIES — GAMES — ALGORITHMS

2) S-H ≤log-lin G:

Define game Gψ for Horn formula ψ(X1, . . . , Xn) =
∧

i∈I Ci

Positions: {0} ∪ {X1, . . . , Xn} ∪ {Ci : i ∈ I}

Moves of Player 0: X → C for X = head(C)

Moves of Player 1: C → X for X ∈ body(C)

Note: Player 0 wins iff play reaches clause C with body(C) = ∅

Player 0 has winning strategy from position X ⇐⇒ ψ |= X

Hence,

Player 0 wins from position 0 ⇐⇒ ψ unsatisfiable.

Erich Grädel THEORIES — GAMES — ALGORITHMS

Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

Winning regions computable in linear time wrt. size of game graph

Erich Grädel THEORIES — GAMES — ALGORITHMS

Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

Winning regions computable in linear time wrt. size of game graph

In many computer science applications, more expressive logics are needed:

temporal logics, dynamic logics, fixed-point logics,. . .

Model checking games for these logics admit infinite plays and need more

complicated winning conditions.

Erich Grädel THEORIES — GAMES — ALGORITHMS

Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

Winning regions computable in linear time wrt. size of game graph

In many computer science applications, more expressive logics are needed:

temporal logics, dynamic logics, fixed-point logics,. . .

Model checking games for these logics admit infinite plays and need more

complicated winning conditions.

=⇒ we have to consider the theory of infinite games

Erich Grädel THEORIES — GAMES — ALGORITHMS

	Model checking via games
	Logics and games
	Finite games: basic definitions
	Winning strategies and winning regions
	Algorithms for finite games
	A linear time algorithm for Game
	Alternating algorithms
	Alternating versus deterministic complexity classes
	Evaluation game for FO
	Complexity of FO model checking
	Complexity of FO model checking
	ML: propositional modal logic
	Model checking game for ML
	Advantages of game based approach to model checking
	Model checking for propositional modal logic
	Satisfiability of propositional Horn formulae
	
	Logics and games
	Infinite games
	Determinacy
	Finite-state games
	Muller games and parity games
	Algorithmic issues
	Significance of Muller and parity games
	Positional determinacy
	Positional Determinacy
	Positional strategies and solitaire games
	Complexity of parity games
	Complexity of parity games
	Least fixed point logics
	Modal -calculus L: formal definition
	Least fixed point logic LFP
	Finite games and LFP
	Inductive generation of fixed points
	Model checking games for LFP and L-.4
	Model checking game for L: Example
	Model checking game for L: Example
	Model checking game for L: Example
	Model checking game for L: Example
	Winning conditions
	Model checking games for LFP and L-.4
	Model checking game with nested cycles: Example
	Model checking game with nested cycles: Example
	Model checking game with nested cycles: Example
	Model checking game with nested cycles: Example
	Game-based model checking for fixed point logics
	Model checking complexity of fixed point logics
	Model checking complexity of fixed point logics
	Defining winning regions of parity games in L
	Solving parity games by decomposition
	Solving parity games by decomposition
	Solving parity games by decomosition
	Generic solver for parity games
	Easy cases of parity games
	Easy fragments of fixed point logics
	Expressive power and complexity of Solitaire-LFP
	Complexity of fixed point logics
	The strategy improvement algorithm
	Discrete valuation of plays
	Discrete valuation of plays
	Local improvemnts
	The algorithm
	The strategy improvement algorithm

