Semiring Provenance for Guarded Logics

Katrin M. Dannert and Erich Gridel

1 Introduction

In this paper we bring together two different areas of mathematical logic, both of
which are relevant for computer science: guarded logics and provenance analysis
on the basis of commutative semirings. Guarded logics are fragments of standard
logical systems such as first-order logic, fixed-point logic, or second-order logic, in
which quantification is restricted in such a way that formulae can only talk about
tuples whose elements are, in some sense, close together. In the standard guarded
fragment of first-order logic (GF), which we shall discuss in more detail in the next
section, these elements must co-exist in some atomic fact. In a graph this would
mean that formulae can only refer to single nodes and to edges (or inverse edges),
but neither to triples, quadruples etc. of elements, nor to pairs of nodes that are not
adjacent. But of course, guarded logics are not restricted to graphs, and co-existence
in an atomic fact becomes more interesting and more general in structures with rela-
tions of larger arity. Further there are also guarded logics where the notion of “close
together” has a more general meaning, for instance that the tuple induces a clique
in the Gaifman graph of the structure. A further rather powerful extension is based
on the idea to guard negation rather than quantification. A strong reason for study-
ing guarded logics is that they have very interesting and convenient algorithmic and
model-theoretic properties. In this paper, we shall just consider guarded fragments
of first-order logic, but in principle, our approach extends also to guarded fixed-point
logics.

Katrin M. Dannert
Mathematische Grundlagen der Informatik, RWTH Aachen University, Germany, e-mail:
dannert@logic.rwrth-aachen.de. Supported by the DFG RTG 2236 UnRAVeL.

Erich Gridel
Mathematische Grundlagen der Informatik, RWTH Aachen University, Germany, e-mail:
graedel @logic.rwrth-aachen.de.

2 Katrin M. Dannert and Erich Grédel

Provenance analysis on the other side is an approach that has originally been
developed in database theory. It aims at understanding how the result of a com-
putational process with a complex input, consisting of multiple items, depends on
the various parts of this input. Specifically, provenance analysis based on interpre-
tations in commutative semirings has been developed for positive database query
languages, to understand which combinations of the atomic facts in a database can
be used for deriving the result of a given query. In this approach, atomic facts are
interpreted not just by true or false, but by values in an appropriate semiring. These
values are then propagated from the atomic facts to arbitrary queries in the language,
which permits to answer questions such as the minimal cost of a query evaluation,
the confidence one can have that the result is true, or the clearance level that is
required for obtaining the output. Semiring provenance has recently extended by
Gridel and Tannen [12, 13] to logics with negation, notably first-order logic, deal-
ing with negation by transformation into negation normal form and by semirings of
polynomials with a duality on the indeterminates. Here we develop this approach
further for the guarded fragment (GF), introduced by Andréka, van Benthem and
Németi, as well as for the guarded negation fragment (GNF). Guarded quantifica-
tion permits to control the complexity of the semiring computations since once has
to take sums or products only over those tuples of elements that appear in the guards.

Provenance analysis of logics is intimately connected to provenance analysis of
games. In the same way as formula evaluation or model checking can be formulated
in game theoretic terms, also the propagation of provenance values from atomic
facts to arbitrary formulae can be viewed as a process on the associated games.
Moreover, provenance analysis of games is of independent interest, and provenance
values of positions in a game provide detailed information about the number and
properties of the strategies of the players, far beyond the question whether a player
has a winning strategy from a given position. We discuss provenance of games here
just in terms of a particularly simple case of games, namely finite acyclic games,
which are sufficient for first-order logic and its fragments. Our approach relates the
provenance analysis of modal and guarded logics to the provenance analysis of the
associated games.

2 Modal logic and the guarded fragment

The guarded fragment (GF) of first-order logic has been introduced by Andréka,
van Benthem and Németi in [1]. It is defined by restricting existential and universal
quantification in such a way that formulae can only refer to guarded tuples, i.e.,
tuples of elements that occur together in some atomic fact. Syntactically, this means
we consider first-order formulae over some relational vocabulary T where quantifiers
can be used only in the form Jy(a A @) or Vy(or — ¢) where « is an atomic formula
that must contain all free variables of ¢ (and possibly more). The atom « is called
the guard of the quantification. If ¢ contains only a single free variable x, then the
guard may be the equality x = x.

Semiring Provenance for Guarded Logics 3

An important motivation for introducing the guarded fragment was to explain and
generalize the good algorithmic and model-theoretic properties of modal logics (see
[6] for background on modal logic). Recall that the basic modal logic ML can be
viewed as a fragment of first-order logic, via the standard translation that takes every
modal formula y € ML to a first-order formula y*(x) with one free variable, such
that for every Kripke structure .#” with a distinguished node w we have that " ,w |=
v if, and only if, #" |= y*(w). This translation takes an atomic proposition P to the
atom Px, it commutes with the Boolean connectives, and it translates the modal op-
erators by quantifiers as follows: For y = @, we have y*(x) := Jy(Exy A @*(y))
and y = Og is translated into y*(x) := Vy(Exy — ¢*(y)), with the binary relation
symbol E describing the accessibility between different nodes of the Kripke struc-
ture. The modal fragment of first-order logic is the image of propositional modal
logic under this translation. Notice that formulae in the modal fragment can be writ-
ten using just two variables x and y. The formula @*(y), used in the translation of
the modal operators, is obtained from @*(x) by exchanging all occurrences of x by
y and all occurrences of y by x. Further, the translation of modal logic into first-
order logic uses only guarded quantification, so we see immediately that the modal
fragment is contained in GF. The guarded fragment generalizes the modal fragment
by dropping the restrictions to use only two variables and only monadic and binary
predicates, and retains only the restriction that quantifiers must be guarded.

It has turned out that almost all important algorithmic and model-theoretic prop-
erties of modal logic extend to the guarded fragment. In particular, the following
properties of GF have been demonstrated in [1, 9]:

1. The satisfiability problem for GF is decidable.

2. GF has the finite model property, i.e., every satisfiable formula in the guarded
fragment has a finite model.

3. GF has a generalized variant of the tree model property: every satisfiable formula
of the guarded fragment has a model of small tree width.

4. The notion of equivalence under guarded formulae can be characterized by a
straightforward generalization of bisimulation, called guarded bisimulation. See
[11] for a detailed discussion of guarded bisimulations in various contexts.

One aspect where, at first sight, modal logic and the guarded fragment seem to
differ is the complexity of the satisfiability problem. It is well-known that satisfi-
ablity for ML is a PSPACE-complete problem [15], whereas we have shown in [9]
that the satisfiability problem for GF is complete for 2EXPTIME, the class of prob-
lems solvable by a deterministic algorithm in time 227 , for some polynomial p(n).
But the reason for the double exponential time complexity of GF is essentially just
the fact that predicates may have unbounded arity (wheras ML only expresses prop-
erties of labelled graphs). Given that even a single predicate of arity n over a domain
of just two element leads to 22" possible types already on the atomic level, the dou-
ble exponential lower complexity bound is hardly a surprise. Further, in most of the
potential applications of guarded logics the arity of the relation symbols is bounded.
But for GF-sentences of bounded arity, the satisfiability problem can be decided in
EXPTIME [9], which is a complexity level that is reached already for rather weak

4 Katrin M. Dannert and Erich Grédel

extensions of ML (e.g. by a universal modality) [16]. Thus, the complexity analysis
does not really reveal a fundamental difference between modal and guarded logic,
beyond the difference caused by the much wider scope of guarded formulae.

There is a further very important point that Moshe Vardi has called the robust al-
gorithmic properties of modal logic [17]. The basic modal logic ML is a rather weak
logic and the really interesting modal logics, as far as applications in computer sci-
ence are concerned, extend ML by features such path quantification, temporal op-
erators, least and greatest fixed points etc. Many of these extended modal logics
are algorithmically still rather well manageable and actually of considerable prac-
tical importance. The most interesting of these extensions is the modal p-calculus
Ly, which extends ML by least and greatest fixed points and subsumes most of the
modal logics used for automatic verification including CTL, LTL, CTL*, and PDL.
The satisfiability problem for L, is known to be decidable and complete for EXP-
TIME [8].

It has turned out that the guarded fragment shares this robustness of modal logic.
If we extend GF by similar features as modal logic, in particular by least and greatest
fixed points, we still get decidable logics, and in fact we do not even pay a prize in
terms of the complexity classes in which we can place the satisfiability problem.
Indeed, as we have shown in [14], the satisfiability problem for the guarded fixed
point logic uGF is decidable and 2EXPTIME-complete. For guarded fixed point
sentences of bounded width the satisfiability problem is EXPTIME-complete. By
the width of a formula y, we mean the maximal number of free variables in the
subformulae of y. For sentences that are guarded in the sense of GF, the width is
bounded by the maximal arity of the relation symbols, but there are other variants
of guarded logics where the width may be larger. Note that for guarded fixed point
sentences of bounded width the complexity level is the same as for u-calculus and
for GF without fixed points.

Based on all these results it is indeed fair to say that it is the guarded nature of
quantification that is the main reason for the good model-theoretic and algorithmic
properties of modal logics. For more details, see [10], which can be seen as an
answer to [17].

3 Semiring provenance for first-order logic and acyclic games

We present a brief survey on the use of commutative semirings for provenance anal-
ysis, both for first-order logic and for acyclic finite games.

3.1 Commutative semirings

Definition 1. A semiring is an algebraic structure (K,+,-,0, 1), with 0 # 1, such that
(K,+,0) is a commutative monoid, (K,-,1) is a monoid, - distributes over +, and

Semiring Provenance for Guarded Logics 5

0-a=a-0=0. The semiring is commutative if - is commutative, and it is idempotent
if 4 is idempotent. All semirings considered in this paper are commutative.

Elements of a commutative semiring will be used as truth values for logical state-
ments and as values for positions in games. The intuition is that + describes the al-
ternative use of information, as in disjunctions or existential quantifications, or for
different possible choices of a player in a game, whereas - stands for the joint use
of information, as in conjunctions or universal quantifications, or for choices in a
game that are controlled by the opponent of the given player. Further, O is the value
of false statements or losing positions, whereas any element a # 0 of a semiring K
stands for a “nuanced” interpretation of true or as a value of a non-losing position.

Examples. Every distributive lattice is an idempotent commutative semiring. Here
are some commutative semirings of interest to us:

1. The Boolean semiring B = (B, V, A, L, T) is the standard habitat of logical truth.
2. N=(N,+,-,0,1) is of importance for multiset semantics in logic and databases.
We also use it here for counting winning strategies in model-checking games.

3. T = (R, min,+,e0,0) is called the tropical semiring and is idempotent but not a
distributive lattice. It is used for cost-analysis in many areas of computer science.

It is important also for analysing the costs of strategies in games.

4. V= ([0,1],max,-,0,1) is called the Viterbi semiring and is isomorphic to T via
x+— e ¥ and y — —Iny. We think of the elements of V as confidence scores, for
instance for the truth of a given statement, or the confidence of an agent that she
can win a game from a given position.

5. For any set X, the semiring N[X]| = (N[X],+,-,0, 1) consists of the multivariate
polynomials in indeterminates from X and with coefficients from N. This is the
commutative semiring that is freely generated by the set X. It is used for a general
form of provenance.

3.2 Provenance for first-order logic

Given a finite relational vocabulary 7 and a finite non-empty universe A, we de-
note by Atoms,(7) the set of all atoms Ra with R € T and @ € AX. Further let
NegAtoms, (7) be the set of all negated atoms —Ra of the facts in Atoms4(7), and
consider the set of all 7-literals on A,

Lits(7) := Atomsy (7) UNegAtoms, (t)U{aopb:a,b € A},
where op stands for = or #.

Definition 3.1 Given any commutative semiring K, a K-interpretation (for T and A)
is a function 7 : Lit4(7) — K that maps all equality and inequality literals to their
truth values O or 1.

6 Katrin M. Dannert and Erich Grédel

As defined in [12] a semiring interpretation extends to a full valuation 7 :
FO(1) — K mapping any fully instantiated formula y(a) (or equivalently, any first-
order sentence of vocabulary 7UA), to a value n[[@]], by setting

nly Vel = rly]+xle)] lly noll = nly]-x[e]
n[Fp(x)] = ZAE[[QD(@]] [vxe(x)] = H{ﬂ[[fP(a)]]'
Negation is handled via negation normal forms: we set w[-¢@] := w[nnf(—¢)]

where nnf(¢) is the negation normal form of ¢.

Definition 3.2 A semiring interpretation 7 : Lit4(7) — K is model-defining if for
every atom @ € Atomsy(7) one of m(¢) and m(—¢) is 0, and the other is # 0.
It uniquely defines the 7-structure A that has universe A, and in which precisely
those literals @ are true for which (@) # 0.

This definition is motivated by the interpretation described above, that a prove-
nance value of O describes a false statement, whereas a non-zero value indicates
some nuance of truth. Notice that, if K is not the Boolean semiring, then several
different K interpretations may define the same structure. Further, K-interpretations
are interesting, and have a number of applications, also in cases where they do not
specify a single model, see [12] and the references given there.

Such valuations of first-order logic in a semiring K do in fact have an equivalent
definition in terms of K-valuations of the usual model-checking games for first-
order formulae. We next discuss the provenance approach to games, focussing for
simplicity just on the case of acyclic games.

3.3 Provenance analysis for acyclic games

In this section we briefly describe the provenance approach to games as developed in
[13], restricting attention to two-player turn-based games on acyclic directed graphs.
Such a game is defined by the game graph on which it is played, and by the objec-
tives of the players.

Definition 3.3 A game graph is a structure &4 = (V,Vo,V,,T,E), where V = VU
Vi UT is the set of positions, partitioned into the sets Vy, Vi of the two players
and the set T of terminal positions, and where E C V x V is the set of moves. In the
games considered here, the underlying graph G = (V, E) is always acyclic and finite.
We denote the set of immediate successors of a position v by vE := {w: (v,w) € E}
and require that vE = 0 if, and only if, v € T. A play from an initial position vy is a
path vovivy ... v, through & where the successor v;;1 € v;E is chosen by Player 0
if v; € Vy and by Player 1 if v; € V;. A play ends when it reaches a terminal node
vmeT.

Semiring Provenance for Guarded Logics 7

A strategy for a player in a game is a function that selects moves at points that are
controlled by that player. A strategy need not be defined at all positions of a player,
but it must be closed in the sense that it defines a move from each position that is
reachable by a play that is admitted by the strategy. There are several possibilities to
define the notion of a strategy formally. For our purposes it is convenient to identify
a strategy with the histories of plays that it admits.

Definition 3.4 For every game graph & = (V,V,,V;,T,E), and every initial position
vo € V, the tree unraveling of & from vy is the game tree .7 (¥,vy) of all finite
paths from vy. More precisely, 7 (4,vo) = (V¥ V# V¥ T# E*), where V* is the
set of finite paths = = vgvy ... v, from vy through ¢, with V§ ={nve Vv#.ve Vot
T*={mt e V*:t €T}, and E* = {(nv,7') : (v,v') € E}. For most game-theoretic
considerations, the games played on ¢ and its unravelings are equivalent, via the
canonical projection p : J(¥,vo) — ¢ that maps every path 7v to its end point v.

The elements of .7 (¥, vy) are the finite initial segments or histories of all pos-
sible plays of ¢ that start at vo. A strategy of a player can now be viewed as an
appropriate subtree of 7 (¥, vp).

Definition 3.5 A strategy of Player ¢ from vy in a game ¢ is a subtree of .7 (¥, vp),
of the form S = (W, F) with W C V¥# and F C (W x W) NE*, satisfying the following
conditions:

(1) W is closed under predecessors: if v € W then also &7 € W.
(2) If rv € WNVE, then |(zv)F| = 1.
(3) If rv e WNV{__ then (nv)F = (mv)E*.

A strategy can also be viewed as a function S : WNV# — V such that S(nv) € vE
defines the node to which Player o moves from 7v.

Here W is the part of J(¥,vo) on which the strategy is defined, and F is the set
of moves that are admitted by the strategy. We define Strats (vo) to denote the set of
all strategies of Player o from vy. A strategy S € Strats (vo) induces the set Plays(S)
of those plays from vy whose moves are consistent with S. We call S well-founded
if it does not admit any infinite plays; this is always the case on finite acyclic game
graphs, but need not be the case otherwise. The set of possible outcomes of a strategy
S is the set of terminal nodes that are reachable by a play that is consistent with S.

Game valuations. Let (K,+,-,0,1) be a commutative semiring, and let ¢4 =
(V,Vo,V1,T,E) be a finite acyclic game graph. A K-valuation of ¢ for Player ¢
provides a value f5(v) € K for every position v € V.

Such a valuation is induced by its values on the terminal positions, i.e. by a
function f5 : T — K, and by a valuation of the moves, i.e. by a function hs : E —
(K \ {0}). The function fs : T — K defines the value of every terminal position
from the point of view of Player o. Intuitively, fs(¢) = 0 means that position #
is losing for Player o. For instance, we can specify reachability objectives 75 by
setting fo(¢) = 1 for t € T and f(¢) = O otherwise. But there are many other
choices.

8 Katrin M. Dannert and Erich Grédel

The functions he : E — (K '\ {0}) provide a value (or cost) for Player ¢ of
the moves. In many cases valuations of moves are not relevant; we then just put
hs(vw) =1 for all edges (v,w) € E. When the functions for the two players are
identical, i.e. hy = h, we often omit the subscripts.

The extension of the basic valuations fo : T — K and hg : E — K\ {0} to val-
uations fs : V — K for all positions relies on the idea that a move from v to w
contributes to f5(v) the value hs(vw) - fo(w). These contributions are summed up
in the case that v is a position for Player ¢ (i.e. when she choses herself the succes-
sors), and multiplied in the case that v is a position of the opponent (i.e. when she
has to cope with any of the possible successors). Thus

f (v) . ZwEvE he (VW) -fo (W) ifveVs
’ o HWEVE hG(VW> 'fG(W) ifveV_s.

An equivalent characterization of the provenance values fs(v) can be obtained
by defining provenance values for plays and strategies.

Definition 3.6 For a play x = vgv; ...v,, from vy to a terminal node v,,, we define
its valuation for Player ¢ as fo(x) := ho(vovi) o (Vin—1Vm) - fo(vm). Let now
S=(W,F)C .7(¥4,v) be astrategy for Player o from vy and ps: (W,F) — (V,E)
be the restriction of of the canonical homomorphism p : .7 (¥,vy) — ¢ to S. For
any position v € V and any move e € E, the values

#5v) == [ps ' ()] and #s(e) := |p5 (€]

indicate how often the position v and the move e appear in the strategy S. We then
define the provenance value S € Strats(vo) as

F(S):= Hh()'(e)#S(e) . ch(v)#5<v).

ecE veT

Theorem 3.7 For any commutative semiring K and any finite acyclic game ¢, let
fo 1V — K be the provenance valuation for Player o, induced by the valuation
fo : T — K of the terminal nodes and hs : E — K\ {0} of the moves. Then, for
every position v
fo(v) = Z F(S).
SeStratg (v)

If ho(e) = 1 for all moves e € E, or if the underlying semiring is multiplicatively
idempotent (i.e. a*> = a for all a), then we further have that

=¥ [T fot).

SeStratg (v) xePlays(S)

Example: Cost of strategies. Given a game ¢, we associate for Player 0 cost
functions fo: T — Ry and h: E — R for the terminal positions and the moves. We

Semiring Provenance for Guarded Logics 9

define the cost of a strategy S € Straty(v) as the sum of the costs of all moves and
outcomes that it admits, weighted by the number of their occurrences.

Proposition 3.8 The cost of an optimal strategy from v in ¢ is given by the valua-
tion fo(v) in the tropical semiring T = (RT,min, +,0,0).

Similarly, we can use game valuations in appropriate semirings for computing
confidence scores for positions (decribing the confindence of a player to win from
that position) or minimal clearance levels that a player needs to win from a po-
sition, assuming that the possible moves have access restrictions (“‘confidential”,

9 <

“secret”,““top secret”). For details, see [13].

Counting winning strategies. Consider a game graph & = (V,V,V;,T,E) with a
set T of terminal positions and with trivial valuations for the moves, i.e. hs(vw) =1
for all edges (v,w). A general provenance analysis for acyclic games is based in the
semiring N[T] of polynomials over the indeterminates ¢ € T, the semiring that is
freely generated by the set of terminal positions.

We define f : V — N[T] as the valuations induced by setting f5(t) =t forz € T.
Clearly, we can write f5(v) as a sum of monomials m-#]'...#/*. This provides a
detailed description of the number and properties of the strategies that Player ¢ has
from position v.

Theorem 3.9 Every monomial m-t{' ...t;* in fs(v) (withm € N and j; > 0) indi-
cates that Player ¢ has precisely m strategies S from v with the property that the
set of possible outcomes for S is precisely {t1,...,t.}, and precisely j; plays that are
consistent with S have the outcome t;.

If we fix any reachability objective W C T for Player o, we can write the poly-
nomial f5(v) as a sum fg(v) = ¥ (v) + gW (v) where £ (v) is the sum of those
monomials that only contain indeterminates in W (i.e. for which j(¢) = 0 whenever
t € T\ W), and g% (v) contains the rest.

Theorem 3.10 For every subset W C T and every v € V, Player ¢ has a strategy to
reach W from v if, and only if, f¥ (v) # 0. Moreover; if

) =Y m [T

JET iEW

then Y jcyc; is the number of distinct deterministic strategies from v that Player ¢
has for this objective.
3.4 Provenance analysis via model-checking games

Let 2 be a finite relational 7-structure and ¥ be a first-order formula in negation
normal form. The model checking game ¢ (2, v) is defined in the usual way. The

10 Katrin M. Dannert and Erich Grédel

positions are expressions ¢(a), obtained from a subformula ¢(x) of y, by instan-
tiating the free variables X by a tuple @ of elements of 2. At a disjunction (¥ V ¢),
Player O (Verifier) moves to either y or ¢, and at a conjunction, Player 1 (Falsifier)
makes an analogous move. At a position 3x¢(a, x), Verifier selects an element b and
moves to ¢(a,b), whereas at positions Vx¢(a,x) the move to to the next position
©(a,b) is done by Falsifier. The terminal positions of ¢ (2, y) are the literals in
Lits (7). Literals @ € Lity(7) that are true in the given structure 2 are the winning
terminal positions for Verifier in ¢ (2, y) (and the losing ones for Falsifier); for the
literals that are false in 2/ it is the other way round.

The central observation concerning these games is that, for any structure 2l and
any position ¢ of a model checking game ¥ (2, y), Verifier has a winning strategy
from @ if, and only if, 2 = @. Moreover, by duality, or by the determinacy of well-
founded games, Falsifier has a winning strategy from ¢ if, and only if, 2 = ¢ which,
of course, is the case if, and only if, 2 = —¢.

Provenance analysis provides a broader view on both logic and games. Notice
that up to the labelling of the terminal positions as winning or losing for Verifier
(Player 0) and Falsifier (Player 1), the model checking game ¢ (2, ¥) only depends
on the formula y and on the universe A of the structure. Thus, we have a game graph
9 (A, y), and separately a valuation 7 : Lit4 (7) — {0,1}.

From Boolean valuations of literals (and of terminal positions of games) we can
now move to K-valuations for an arbitrary commutative semiring K, and study the
connection between logic and games in this broader context.

Let 7 : Lit4(7) — K be any K-interpretation of the 7-literals on A in a semiring
K. We can view 7 as a K-valuation f : T — K of the set of terminal positions of any
model-checking game ¢ (2, y) (for a 7 structure with universe A and a first-order
formula y) from the point of view of Player 0. The dual valuation f; : T — K for
Player 1 is obtained by putting fi (@) = w[¢ "] where ¢~ = —¢ is the complemen-
tary literal to ¢. Then both fj and fj extend to valuations fp: V — K and f; : V = K
of all positions of ¢ (2(, y). In particular, we obtain valuations fy(y) and f; () for
the initial position y.

Proposition 3.11 Suppose that & is model-defining, and hence completely specifies
a structure Uy. For every first-order formula W and every position @(a) in 4 (A, y)

we have that n[[@(a)]] = fo(@(a)) and w[[-@(@)]| = f1(@(a)). In particular Ay |= y
if, and only if, fo(y) # 0.

4 Provenance analysis for modal logic and the guarded fragment

Recall that modal logic, for a fixed vocabulary {P; : i € I'} of atomic propositions, is
given by the grammar

pu=L|T|RloVelorne|-¢]|Ce|Te.

Semiring Provenance for Guarded Logics 11

A transition system (or Kripke structure) for this vocabulary is a labelled directed
graph ¢ = (V,E,(P,)ic;) with E CV xV and P, C V, and we write JZ,v = ¢ if
¢ holds at state v in the transition system .. The set of modal literals for V and 7,
denoted MLity consists of the atoms P;v and their negations —F,v (forv e V,i € I),
and the edge atoms Evw for v,w € V. Note that literals ~Evw for the absence of
edges are not included.

Definition 4.1 Let K be a semiring. A modal K-interpretation for V is a function
7w :MLity — K.

Similar to the case of first-order logic, a modal K-interpretation extends to a K-
valuation 7 : ML x V — K by

m[Lv] = x[T.v] =

[P, v] —7F(P v) T[-P,v] = (ﬁPiV)

mlyve,v]] =y,]]+7T[[(P Vﬂ ”H‘IfNPa]] =alyv]-7 [[<P7]]
n[Ce,v] ;En (Evw) - t[[@,w] n[Oe, IE—IEn (Evw) - t[[@,w]

[~¢,v] := z[nnf(-g),v].

This valuation is usually not the same as the first-order valuation for the transla-
tion of modal logic formulae into first-order logic. Notice, that the standard transla-
tion of modal logic into first-order logic maps a formula y = O¢ € ML to the first-
order formula y*(x) := Vy(Exy — ¢*(y)). Rewriting y*(x) as Vy(—ExyV ¢*(y))
we see that a K-interpretation of y*(v) € FO requires a basic K-interpretation of
Lity (7) for T ={P;: i € [}U{E}, which needs to provide values also for the negative
literals =Evw. Even if we extend the given modal K-interpretation 7 : MLity — K in
the simplest possible way, by setting 7(—Evw) = 1 if #(Evw) =0 and 7(—Evw) =0
otherwise, the resulting valuation will have the property that

ally* ()] = z[¥y(~Evyv ¢* ()] = [(x(=Evw) + z[@" (W)])

weV

= [=le)1 [T (1 +zle*(w)])

wevE w@vE

which is, in general something quite different than the value z[[y,v] of the cor-
responding modal K-interpretation. A sufficient condition that the two valuations
coincide would be that the basic modal valuation maps edge atoms only to 0 and 1,
and that in the given semiring 1 € K is an absorbing element, i.e. 1 +-a = 1 for all a.

A justification for our proposed valuation, despite the difference to first-order
logic, is that it is more in line with the intuitive meaning of the modal logic for-
mula O¢. When we think of the meaning of O¢, we think of it as “¢ holds at all
successors of the current node”, which corresponds to the provenance valuation as
defined above. We do not usally interpret O¢ as the statement “for all nodes w in
the Kripke-structure, either there is no edge to w from the current node or ¢ holds

12 Katrin M. Dannert and Erich Grédel

at w”. This interpretation corresponds to the first-order translation of O¢ but it goes
against the local nature of modal logic and is therefore far less intuitive.

Additionally, our proposed provenance valuation for modal logic is completely
in line with K-valuations for the standard model-checking games for modal logic.
Indeed, the model-checking game ¥ (¢, y) for a transition system %~ with frame
(V,E) and a modal formula y has positions (¢, v) where ¢ is a subformula of y
and v is a state of #". From positions (@; V ¢2,v), Player 0 can move to (¢;,v) or
(¢2,v) and dually Player 1 moves from (@; A ¢2,v) to either (¢;,v) or (¢2,v). At
positions (O@,v) Player 0 can move to any position (¢, w) such that (v,w) € E, and
there are analogous moves for Player 1 at positions (0@, v).

If we define the basic valuations for Player 0 of the terminal positions by
fo(P,v) = m(Pv), fo(=F,v) = n(=Pv), fo(L,v) =0 and fo(T,v) =1, and give
any move from a position (G, v) or (O@,v) to (¢,w) the value T(Evw), then we
obtain, for any formula ¥ € ML and every v € V a valuation fy(,v) € K such that

fo(y,v) = wly,v].

We now move to a provenance analysis for the guarded fragment GF. We start
with a more explicit definition of GF.

Definition 4.2 Given a relational vocabulary 7, the set of guarded formulae in
GF(7) is defined inductively by the following rules:

(1) Every atomic 7-formula belongs to GF(7);

(2) GF(7) is closed under A, V, and —;

(3) GF(7) is closed under guarded quantification: For every formula ¢ € GF(71),
every T-atom o such that all free variables of @ occur in «, and every tu-
ple y of variables occurring in @, GF(7) contains formulae (Jy.a)¢ and

(Vy.a)e.

Here (3) is the rule of guarded quantification and the atom « is called the guard
of the quantification. The semantics of guarded quantification is defined as follows.
Let var(a) be set of all variables occurring in the atom a, let 2 be a T-structure and
let s be a valuation, mapping the free variables of (Qy.)@ into A. Then we denote
by T; o the set of all valuations ¢ : var(o) — A such that 2 |=; a and 7 coincides with
s on the common variables. Then we put

A= (F.a)p < A= ¢ forsomet €Ty q
A (V5.0)p <= A= ¢ forallt €T,y

Notice that in a formula y := (Qy. o) @, the only requirement is that & contains
all free variables of ¢. But it may contain more variables, and contrary to unguarded
quantification in FO, among the free variables of y (i.e. the variables occurring in
o but not in y) there may be some that do not occur in @.

To see what happens precisely in an evaluation of a guarded formula, say in
a model-checking game or when we define K-interpretations in a semiring K, it is
therefore instructive to rewrite the rule of guarded quantification in a way that makes
all free variables explicit. In the following, X, ¥, ¥, and Z are disjoint (and possibly

Semiring Provenance for Guarded Logics 13

empty) sequences of variables, and the free variables of the formulae are precisely
as displayed.

(3) For every formula ¢(xy) € GF(7) and every atomic t-formula a(xx'yz), we
can build in GF(7) the formulae

y(®) == (7. a(x7'57)) 9 (xy) and y(x¥') := (V32 o (3x'52)) 9 (59)-

Thus, the natural model-checking games for GF-formulae are modifications of
the first-order model checking games where, for a formula y(xx') := (Qyz. @) @ (xy),
we have a move from y(aa') to ¢(a@b) for every tuple ¢ such that a(aa'bc) holds.
Notice that this means that there may actually be more than one move from y(aa’)
to ¢(ab).

Let 7 : Lit4(t) — K be a K-interpretation for A and 7. It provides, for ev-
ery terminal position ¢ of a GF-model-checking game on A, the basic valuation
Jfo(@) = (@). The valuations of the moves are defined as follows. Every move as-
sociated with a disjunction or conjunction, going from (@; V @) or (¢; A @) to ¢,
or ¢ has value 1. Every move associated with a guarded quantification, that is from
v(aa') = (0yz.®)¢(a,y) to ¢(ab), which is witnessed by the atom «(aa'bc) has
value 7(a(aa'be)).

This induces a valuation fy(¢) € K for every position ¢ in the game. This coin-
cides with the extension of 7 : Lits (7) — K to @ : GF(7) — K by the straightforward
induction, setting

n[dza(@ . y2)e@y)]:=), #(a(@be))- xleab)]
be: A=o(aa'be)
alvyza(@yz)e@y)]:= [] #(a(@be))- zle(ab)]

be: A=a(aa'be)

Again negation is handled via negation normal form, where nnf(—(3Jy.a)@) =
(Vy.a)nnf(—@).

As in the case of modal logic, the standard translation of guarded universal quan-
tification into usual first-order syntax taking (Vy. o) to Vy(—a V @) produces in
general formulae that have not the same K-valuations.

5 Algorithmic Analysis

It is well known that the model checking problems for both modal logic and the
guarded fragment can be solved in polynomial time, whereas the corresponding for
full first-order logic is PSPACE-complete. One way to prove this, and to understand
the differences between modal and guarded logic on one side, and full FO on the
other side, is to compute the size of the model-checking games. An arbitrary first-
order sentence W on a finite structure 2 has a model checking game ¥ (2, y) of

14 Katrin M. Dannert and Erich Grédel

size O(|y|-|A|Vidh(¥)) where |A| is the number of elements of 2 and width(y) is
the maximal number of free variables in subformulae of y. However, for a formula
y € GF the size of 4 (2, y) is only O(y - ||2||) where ||2(|| is the length of a natural
representation of 2l (listing all atomic facts). A similar bound applies for the size of
model checking games for modal logic.

This poses the natural question whether there is a similar difference in the com-
plexities of computing provenance values [[y], given a formula y from ML, GF,
or FO, and a K-interpretation 7 : Lit4(7) — K, for some fixed semiring K.

Of course, this question may strongly depend on the semiring K that we con-
sider, and how we measure the complexity of addition and multiplication in K. In
the Boolean semiring we simply count the number of operations needed to compute
the truth value of a given formula. We can take an analogous approach in an arbitrary
semiring and just count the number of arithmetic operations needed to compute a
provenance value. This would mean that we abstract from the computational dif-
ficulties that arise from representing semiring elements as words over some fixed
alphabet and computing sums and products on such representations. This unit cost
model is certainly appropriate for finite semirings, but gives relevant insights also in
other cases, specifically for an abstract approach over, say, uncountable semirings.
In the unit cost model, the total cost || of a semiring interpretation 7 : Lits (7) — K
is just the number of literals in Lit4 (7).

It is easy to see that provenance values for positions in an acyclic game ¢ can
be computed with O(||¢||) semiring operations (since every edge of the game graph
needs to be processed only once).

Proposition 5.1 Let K be an arbitrary semiring. Given a formula Wy € ML or y €
GF and a corresponding K-interpretation 7 : Lits(t) — K, the provenance value
n[[y] can be computed with O(|y| - ||) semiring operations.

It is very unlikely that this is also holds for arbitrary first-order formulae since,
by taking the Boolean semiring, and the PSPACE-completeness of first-order model
checking, this would imply that P = PSPACE.

Of course, the unit cost model is unrealistic for many algorithmic applications, in
particular if we are interested in practical complexity considerations for computing
provenance values in N, or in the semiring of polynomials N[X]. We therefore aim
at a more general approach, assuming that we have a semiring K together with cost
functions | | : K — N for the elements and | |4 : K xK - Nand ||. : K xK - N
for the two semiring operations. We always assume that |a + b| < |(a,b)|+, and
|a-b| < |(a,b)|. for all a,b € K. In fact, over any semiring, one possibility of cost
functions for + and - is to simply take the element costs of the sum and the product,

respectively.
In the case of K = N, one approach is to set |a| = a, and then |(a,b)|+ =a+b
and |(a,b)|. = ab, which are the cost functions for the unary representation of

natural numbers. Another, in most cases more natural possibility is the logarith-
mic cost model, with |a| = [loga], and the cost of addition and multiplication as
|(a,b)|+ :=max{|a|,|b|} + 1 and |(a,b)|. := |a| + |b|. Here |(a,D)|+ and |(a,b)|. are

Semiring Provenance for Guarded Logics 15

upper bounds for |a+b| and |a- b|. For the semiring N[X] of polynomials over X we
can define the cost of a monomial as |a[],cx x| := [loga] + Y cx [loge,]| and the
cost of a polynomial as the sum of the costs of its monomials or, alternatively, set the
cost of each monomial to one and only consider the number of distinct monomials
in a polynomial. In general there are several natural cost functions for a semiring,
and the unit cost models (setting all costs to 1) is one of them.

We call a cost function | | : K — N additively bounded if |a+ b|,|a-b| =
O(la| + |b]), and multiplicatively bounded if |a+ b|,|a-b| = O(|a| - |b|). Clearly,
the logarithmic cost model on N is additively bounded whereas the costs of unary
representations are multiplicatively bounded.

Given a semiring K with associated cost functions, one important complexity
parameter for a semiring interpretation 7 : Lit4(7) — K is the maximal cost of its
values, i.e.

max 7 := max{|7(o)|: o € Lita(7)}.

Consider any first-order formula y € FO(7) and let d(y) be the nesting depth of
the logical operators in y or, equivalently, the maximal length of plays in model
checking games for y. We can calculate upper bounds for the costs of provenance
values [[y] by looking, again, at the associated model checking game. At the ter-
minal nodes, the costs are bounded by max 7. Each non-terminal node has at most
|A| immediate successors so we perform a sum or product of at most |A| values that
may appear at lower levels.

Proposition 5.2 Let K be an arbitrary semiring with an associated additively
bounded cost function, and let T : Lita(t) — K be a semiring interpretation with
m =max7x and n = |A|. For any first-order formula y of depth d = d(y), we then
have that

|z [yl <m-n.
In the case that the cost function of K is multiplicatively bounded, we instead have
that ,

2wl <m™.

We claim that the maximal size bounds of Proposition 5.2 can actually be real-
ized, and in fact even by formulae of modal logic and hence also by guarded formu-
lae in GF. For proper comparison, a modal or guarded quantification should count
as an operation of depth two, since provenance values for (C@,v) or (0@, v) take
into account values of edges (v, w) given by a modal K-interpretation; similarly at a
guarded quantification the values of the guard atoms are used in the computation of
the provenance values.

Let w be a modal K-interpretation on a completely connected frame with n nodes
giving to all P-atoms and all edges the same value a, i.e. ©(Pi) = w(Eij) = a for all

i, j < n. It follows that

(@ P =a"
Taking, for instance, K = N with an additively bounded cost measure, putting m =
la| = max 7 and d = 2k we indeed get |z[(T*P,i)]| = m-n“, and for a multiplica-

16 Katrin M. Dannert and Erich Grédel

tively bounded cost measure (such as unary representation), we get |z[(DP,i)]]| =
m"" . This exponential cost is not unique to N of course. Consider the polynomial
semiring K = N[x,y] and very simple modal K-interpretation on a universe with
just two nodes u,v, such that all four possible edges have value 1, and further
n(Pu) = n(Pv) = x and m(Pu) = m(Pv) = y. Then, on both nodes, the formula
OF(PV Q) has provenance value (x + y)zk which has cost 2% + 1 even if we set
monomial costs to 1.

This shows us that there is no essential difference between modal, guarded, and
arbitrary first-order formulae y with respect to the maximal possible (cost of) prove-
nance values 7[[y]], for arbitrary K-interpretations over the same universes and with
the same bounds for literals.

Nevertheless there can be huge differences for particular K-interpretations 7 of
the maximal provenance values 7[[y] of modal, guarded, and first-order formulae.
Intuitively this arises in cases where the K-interpretations provide very few con-
nections between different elements, which makes the power of modal and guarded
quantification very weak, but does not affect arbitrary first-order quantification.

Proposition 5.3 There are model-defining K-interpretations © such that the model
defined by m is a Kripke structure, with the property that the provenance values
n([y] of certain guarded first-order formulae are arbitrarily larger that the maximal
provenance values of modal formulae @ of the same depth. Similarly, there are K-
interpretations with arbitrarily large differences between the provenance values of
certain first-order formulae and maximal provenance values of guarded formulae of
the same depth.

Proof. Let K = N and consider modal K-interpretations 7 on a (large) universe V
that gives value 0 to all potential edges Euv and to all positive atoms Pv, and a value
m > 2 to all negated atoms —Pv. The maximal provenance values for modal formulae
of depth d is m? (independent of V); this is achieved by formulae of form —P A
=P A---A=P. However guarded formulae of form y := (Vx;.x; =x1) - (Vxgxg =
X4)—Px, have provenance values w[[y] = m

Large differences between provenance values of guarded formulae and unre-
stricted first-order formulae are, for instance, witnessed by K-interpretations 7 :
Lit4({P,E}) — N that give value O to all positive literals, small values, say 1
or 2, to literals —Pa but a very large value m to literals =Eab. Maximal prove-
nance values for guarded sentences are achieved by formulae v := (Vx.x; =
x1) - (Vxgxq = x4)—Px, and these values are bound by o (where n = |A|). In-
deed, every guarded formula under the scope of a quantifier that has more than one
free variable has provenance value 0. Further, if @(xj,...,x;) is a quantifier-free
formulae of depth d, then provenance values of its instantiations @(aj,...,q;) are

d . . .
bound by m?", independent of n. Even any Boolean combination of these two types
of guarded formulae cannot achieve the provenance values of first-order formula of

. 2k
form Vx; ... Vg A\; j<x —Exix;, which are m“m .0

We conclude that, as in the case of model checking, there is also in the com-
putation of provenance values an exponential gap between the number of semiring

Semiring Provenance for Guarded Logics 17

operations required for a model or guarded formula on one side, and for an arbitrary
first-order formula on the other side. However, in cases where the size of (repre-
sentations of) semiring elements is the main source of complexity, this difference
tends to become less important, or even to disappear. The order of magnitude of
provenance values realizable by modal or guarded formulae is similar to those for
arbitrary first-order formulae, and the size of these representations dominates in
many cases the number of semiring operations.

6 A more abstract view of guarded logics

Instead of the syntactic definition given above for the guarded fragment, one may
use a different presentation that is based on classical first-order syntax (without
relativization of quantifiers), but uses a guarded modification of the semantics which
restricts all valuations of the free variables to guarded tuples. This leads to a more
semantic view of guardedness which is also more flexible and easily adapts to other
variants of guarded logics.

Definition 2. Let 2 be a 7-structure with finite relational vocabulary 7 and uni-
verse A. A guard system G for 2 is a collection G C Z(A) of subsets of A,
which is downwards closed in the sense that g’ C g € G implies g’ € G. A tuple
a=(ay,...,a;) € A¥ is G-guarded if the set of its components, [a] := {ay,...,a},
belongs to G. The G-semantics for first-order logic on 2{ is defined by inductive
rules for A =g ¢(a@), for G-guarded @, which are the usual ones for first-order logic,
except that for quantifiers we have

A =g Io(@y) <= A= e(a,b) for some b such that [a,b] € G
AE=g Vye@,y) < A o(@,b) forall bsuchthat [a,b] € G

We now consider the specific guard system G C Z?(A) that consist of those sets
g C A that are guarded in 2, in the sense that there is an atomic fact 21 |= Ra such
that g C [a]. Thus, the guarded tuples are obtained from tuples that occur in some
atomic fact by copying, permuting or deleting components. It is not difficult to see
that the guarded fragment is equivalent to the G-semantics of first-order logic, for
this particular guard system G.

Theorem 6.1 There exists a translation ¢ — @8 from FO to GF, such that, for every
Sformula ¢(X) € FO(7), every t-structure 2, and every tuple a with [a] € G we have
that

Akc (@) < ARE @)

Further, for every @(X) € GF, the G-semantics coincides with the usual first-order
semantics.

Notice that the natural model checking game for G-semantics of y on 2,
% (2,) is obtained as the restriction of usual model checking game ¥ (2,) to

18 Katrin M. Dannert and Erich Grédel

the positions @(a) for which [a] € G. In particular moves from Qy¢(a) to ¢(a,b)
where [a,b] € G are no longer available.

This abstract view of guarded logics also leads to a somewhat different view of
provenance, based on K-interpretations that give values not only to the literals, but
separately also to the guard system.

Definition 6.2 Let K be a commutative semiring K, T a relational vocabulary, and
G C Z(A) be a guard system for the set A. A K-interpretation for 1, A, and G
consists of a function 7 : Lits (7) — K (that maps all equality and inequality literals
to their truth values O or 1) and a function & : G — K \ {0}. The G-provenance
semantics of first-order logic then extends 7 to a function 7 : FO(7) — K giving
to each sentence ¢(a) with [a] € G the value 7 [[@(a)]), where quantified formulae
now are treated according to the rules

ng[Fye@y)l:=), h((ab]) msle@)]
b:a,bleG

me[Vye@y)]:= [] n@b)- ncle@)]
b:[a,bleG

Notice that a K-interpretation for 7, A, and G also gives basic valuations for the
terminal positions and the moves of the model checking games ¥ (A, y), for every
first-order sentence , which by the rules given in Sect. 3 extends to valuations fj
and f; for all positions of that game.

Proposition 6.3 For every position ¢ of the model checking game 9 (A, y) and
every K-interpretation for T, A, and G we have that fy(@) = ng[@] and fi(@) =
7 [—¢].

Despite Theorem 6.1, the provenance values defined by this “semantic approach”
to the guarded fragment may be different from the provenance values for the syntac-
tic presentation of GF. Indeed, we here give provenance values to the guarded tuples
themselves, not to their presentations by an atomic statement. Since a guarded tuple
may admit several different syntactic guards, the syntactic approach does not pro-
vide a unique provenance value for it. Morerover, even in the case where a guarded
tuple has a unique guard, the semantic approach admits to separate the provenance
value of its use as guard for a quantifier from its use as an atomic statement as such.

However, Theorem 6.1 implies that a formula has a non-zero provenance value
in the semantic approach if, and only if, it has a non-zero value in the traditional
syntactic approach.

7 Guarded negation first-order logic

Guarded negation first-order logic, denoted GNF, is a fragment of first-order logic
introduced by Bardny, ten Cate and Segoufin [3], which applies the concept of

Semiring Provenance for Guarded Logics 19

guards not to quantifiers but to negation. As we will see it in some sense gener-
alizes the guarded logics considered so far. Guarded negation first-order logic can
be defined by the grammar

Qu=RX |[x=y|=o|oVeo|ore]|alxy)A-0(),

where R is a relation symbol and a(xy) is an atomic formula that contains all free
variables of ¢(¥).

This yields a logic that contains the existential positive fragment of first-order
logic, but also allows for some restricted negation. Further it also generalizes the
traditional guarded fragment GF in the sense that every formula ¢(X) can be trans-
lated into a formula ¢* (X) of GNF such that for every guarded tuple @ of a structure
2A we have that 2 = ¢(a) if, and only if, 2 |= ¢*(a@). In particular, every sentence
of GF is equivalent to a sentence of GNF. Additionally, many of the desirable prop-
erties of GF survive also for GNF; in particular this holds for the decidability of
satisfiability and finite satisfiability, even for the fixed-point extension of GNF. A
more detailed model-theoretic analysis of GNF has been presented in [5] and [4].

We discuss the embedding of GF into GNF established in [3]. There is one minor
point that one has to take care of in such translations. In GF, a formula ¢ (%) can also
be used to express a property of tuples that are not necessarily guarded, because
the restriction to guarded tuples appears only inside the scope of a quantifier, but
not necessarily on the top level of the formula, and as far as unguarded tuples are
concerned, translations from GF into other logics may be problematic. We there-
fore restrict formulae to talk only about guarded tuples, for instance by attaching
an explicit guard atom: we say that a formula is answer guarded, if it is either a
sentence, or of the form a(Xy) A @(¥), where a(Xy) an atomic formula containing
all free variables of ¢(y).

Proposition 7.1 Every answer guarded formula in GF can be translated into an
equivalent GNF-formula via polynomial time transformation.

Proof. Let ¢ be an answer guarded formula in GF. First, transform every subfor-
mula of the form (Vx. o)y into —3x(a A =) and every subformula of the form
(3x.)y into 3x(o A y). Then consider the subformulae of ¢ that are of the form
-9, starting with the literals. If =1 does not have any free variables, we can replace
it by 3x(x = x A =1¥). Now suppose that & has the free variables y. Then ¥ is in
the scope of an innermost guard atom o and we can replace =9 by o A =9 since
o must contain all free variables of ©¥. Implementing these replacements for every
negated subformula of ¢ (including possibly ¢ itself) yields a formula ¢’ which is
equivalent to ¢ and in GNF by construction. 0O

Barany, ten Cate and Segoufin [3] have shown that GNF has the finite model
property and have determined the complexity of the satisfiability problem, based on
a reduction to GF using Rosati covers [2].

Theorem 7.2 1. The satisfiability problem for GNF is 2EXPTIME-complete.

20 Katrin M. Dannert and Erich Grédel

o(1)
2. Every satisfiable GNF-sentence has a finite model of size 229

In the same paper, they have also shown that the evaluation problem for GNF
on finite structures has a higher complexity level than GF (which is in polynomial
time) but lower than full first-order logic (which is PSPACE-complete).

Theorem 7.3 The model checking problem for GNF is PNP[O(IOgZ("))]-complete.

We shall discuss this result below.

7.1 Provenance analysis for GNF

We want to provide appropriate definitions for a provenance analysis for guarded
negation first-order logic. To do this along the lines described above for other logics,
we need a negation normal form for GNF. This poses a problem however, since a
negation cannot be simply “pushed through” an existential quantifier; this would
lead to universal quantification, which is not allowed in the syntax. To solve this
problem, one could modify the syntax to allow for the use of universal quantifiers,
but only in the cases where the formula can be translated back into a formula from
the original syntax. However this approach leads to an artificial syntax which would
still be asymmetric in the treatment of existential and universal quantifiers.

For this reason, we introduce a new variant GNF* of guarded negation first-order
logic, which is equivalent to GNF for sentences and answer guarded formulae, but
permits a few more formulae in order to allow symmetric use of the two quantifiers.
Therefore we will be able to retain all the desirable properties of GNF for sentences
and for formulae on guarded tuples, but we will have a more general syntax that
has the required dualities to be amenable to a game-based approach and to semiring
provenance.

Definition 3. We define GNF* as the union of two fragments GNF™ and GNF~
which are defined by the mutual induction

¢ u=RE) |x=y[Ix@" [TV [9TAQT (@) A ¢ ()|

@ n=—RE) [x#y[Vxe~ 9" A@" 9" Ve [a(m) = ()| ~¢",
where R is a relation symbol and o (¥y) is an atomic formula containing all free vari-
ables of the formula it is used with. The formulae ¢ € GNF' are called positive,
the formulae @~ € GNF are negative.

Remark. It might also be interesting to consider the fragment of this logic, where
we disallow formulae of the form @™ A w* in GNF* and ¢~ V y~ in GNF . This
would lead to a nice simplification of the model checking game: between guards,
only one player would move, until control switches to the other player at the next
guard. But even in the model checking game of the full logic GNF* as defined above
we have the useful property that only one player is in control of the assignments to

Semiring Provenance for Guarded Logics 21

the variables, and again this control only switches at guards. We shall return to
model checking games later in the section, after introducing provenance for GNF*.
Before doing that, we note some interesting properties of GNF*.

Proposition 7.4 1. Every formula in GNF~ is equivalent to the negation of a for-
mula from GNFT and vice versa. In particular, GNF* is closed under transfor-
mation to negation normal form.

2. Syntactically, GNF™ "GNF~ = 0. In particular every formula can be uniquely
identified as positive or negative.

3. GNF* is equivalent to GNF.

4. Every answer guarded formula in GNF* is equivalent to a formula in GNF.

Proof. If ¢ is in GNF*, rewrite every subformula of ¢ that is in GNF~ as the
negation of a formula in GNF™, starting with the outermost subformulae in GNF~.
Because formulae of GNF~ only occur in answer guarded formulae, applying these
transformations from the outside in yields a formula in GNF.

If on the other hand ¢(@) is in GNF~, rewrite (@) as the negation of a formula
¢*(a) in GNF*. Because @ is guarded by ¥, ~¢* and therefore ¢ are equivalent
to y(a) A —~¢*(a) and @*(a) € GNF is equivalent to a formula from GNF by the
argument above. Therefore, ¢ is equivalent to a formula from GNEF. O

While GNF consists of clearly positive formulae which allow negative subfor-
mulae, but only applied to a guarded tuple, GNF* also permits negative fomulae.
However, unlike in first-order logic, every formula is clearly either positive, if it is
in GNF™, or negative, if it is in GNF~. A positive formula, like a GNF-formula, is
a positive or existential statement about the whole structure, possibly with negative
or universal statements about guarded tuples. In contrast to that, a negative formula
is a negative or universal statement about the structure, where positive or existential
statements only apply if a guarding condition is fullfilled (remember that in negative
formulae, the guarded subformulae have the form o — ¢).

We are now ready to provide a notion of provenance for GNF*.

Definition 7.5 A K-interpretation 7 : Lit4(7) — K (for a commutative semiring K,
a universe A and a relational vocabulary 7) extends to a valuation 7 : GNF*(7) — K
by the following rules, where @, y are arbitrary formulae in GNF*, whereas ¢ €
GNF' and ¢~ € GNF:

Alyvol:=alvl+xle] v ol:=xlv] o]
" (9] = T rlo* (@] alisg (9] = [T rlo (o]
rlang | =rla] zlo] o p']:= {:r’uan ol et

As before, negation is handled via negation normal form: 7[[—¢] := [nnf(-¢)].

As for GF, a K-valuation for GNF* may assign a different value to a a formula
than the corresponding first-order K-valuation would assign to the standard rewrit-
ing in traditional first-order syntax.

22 Katrin M. Dannert and Erich Grédel

7.2 Model checking games for GNF* and their provenance analysis

We define model checking games for GNF* in a similar way to those of first-order
logic. To avoid player switches, which would interfere with defining a notion of
provenance, we only consider formulae in negation normal form. The only differ-
ence to the model checking games for first-order logic concerns the rules for answer
guarded formulae of form o A ¢~ in GNF* or — ¢ in GNF™, i.e. the positions
where a play switches between GNF' and GNF~.

At a position @ A @~ the guard « is evaluated. If it is false then Player 1 has won.
If it is true then the play proceeds to ¢ . Dually, at a position ot — @™, Player 0 has
won if the guard « is false and if it is true the play proceeds to @™.

Proposition 7.6 Let 2 be a T-structure, @ a guarded tuple in 2, and (%) a GNF*-
Sformula. Then 2 E y(a) if, and only if, Player 0 wins the model checking game from

y(a).

Proof. The argument, by induction on the formula, proceeds as for the general first-
order model-checking game. It only remains to consider positions of the form a A
¢~ in GNF" and @« — ¢@" in GNF~ for which we have modified the rules.

If A = a A @~ then the guard « evaluates to true and the play proceeds to position
¢~ from which Player 0 wins by induction. If 2 i~ ot A ¢~ then either the guard o
evaluates to false, and Player 1 wins by definition, or ¢ evaluates to true and the
play continues at ¢~ Since 2 j£ ¢~ Player 1 wins by induction.

If 2L = ot — @ then either the guard « evaluates to false, in which case Player 0
wins by definition or, if the play proceeds to @, then 2l |= ¢ so Player 0 wins by
induction hypothesis. If 2 f£ o¢ — @™ then the guard o evaluates to true, so the play
proceeds to ¢ with 2 = ¢ and Player 1 wins by induction hypothesis. O

We next consider natural provenance evaluations for the model checking games
for GNF* and show that they are compatible with the provenance definitions given
above.

In a model checking game ¢ (21, y) for a finite 7-structure 2 and y € GNF* there
are two kinds of terminal positions: either they are literals ¢ € Lit4(7) or they corre-
spond to an answer-guarded formula where the guard is not satisfied. Given a com-
mutative semiring K and a model-defining K-interpretation 7 : Lits(7) — K with
A, = A we obtain valuations fy, f; for the terminal positions ¢ (2L, y) as follows.
For ¢ € Lit(7) we put fo(@) = n[[@] and f; (@) = z[[~¢]. For an answer guarded
formula o A @~ with z[[a]] =0 we put fo(axA@~)=0and fi(aA ¢~)=1.Dually,
for an answer guarded formula (o0 — @) with z[[a]] = 0 we put fo(or — 1) =1
and fi(ot — @) = 0. Further we defined a valuation / : E — K of the edges of
4 (A, y) as follows. For every move from anode v= (¢ A ¢@~) tow = ¢, or from
v=(a— ¢")tow=¢@", we put h(vw) := [[e]]. For all other moves (v,w) € E
we put h(vw) := 1.

The model checking games for GNF* do not have cycles. Therefore we can in-
ductively extend fy and f; from the terminal position to the entire game graph as
defined in Sect. 3.3, by the rules

Semiring Provenance for Guarded Logics 23

f (V) ._ LweE /’Z(VW) “fo (W) ifveVy
° - HWEVEh(VW) 'fG(W) ifveV _g.

Proposition 7.7 Let ¢ be any position in the model checking game 4 (A, v). Then
fo(@) = n[@] and fi() = z[-¢].

Proof. The proof is an obvious induction on ¢ and the only difference to the argu-
ments for arbitrary first-order model checking games concerns the cases where @ is
of form « A@~ or ot — @™

For ¢ = a¢ A @~ we have that

fole) =xla]- fole™) =nfa] zle~]| = ne].
Further .
fil@) = {1 if tfa]] =0

nfle]- fi(p~) otherwise.
On the other side

B)1 ifxfa] =0
Since, by induction hypothesis, fi1(¢~) = n[[-¢], we also have f;(¢) = w[[-¢].
The arguments for ¢ = a — @+ are analogous. a

7.3 Algorithmic analysis

To analyze model-checking and provenance for guarded negation first-order logic
algorithmically it is useful to consider its stratification via guarded negation: we de-
fine fragments GNF,:r and GNF,, for k > 1, where GNFI+ is the existential positive
fragment of FO, built from atomic formulae Rx and x = y by means of disjunction,
conjunction, and existential quantification. Similarly GNF; is the universal nega-
tive fragment, built from negated atoms by conjunction, disjunction, and universal
quantification. For k > 2, the formulae in GNF,j are defined by the grammar

Q=0 [Ix@ | oV |lore|aneg

where @7 € GF,i1 , @~ € GNF,_, and o is a guard for ¢~. Analogously, GNF, is
defined by
pu=¢ |[Vxp|oVe|lorela— o

It is well-known that the model-checking problem for existential positive for-
mulae, and in fact even for conjunctive queries, is NP-complete. In game theoretic
terms, we analyze this problem as follows. For a finite structure 2 of size m, a tuple
a that is guarded in 2/, and an existential positive formula (@) of size n the model

24 Katrin M. Dannert and Erich Grédel

checking game ¢ (2!, y) has, in general, exponential size O(n-m") and can there-
fore not be explicitely constructed in an efficient way. However, the game has only
a polynomial number of terminal positions, and, in contrast to games for general
first-order formulae, it has the property that the exponential branching of the game
is only caused by Player 0. This means that once Player O has committed herself to a
strategy f, the reduced game graph &, admitting only the plays that are consistent
with f, has only polynomial size.

As a consequence model-checking games for existential positive formulae can
be solved in NP, avoiding an explicit construction.

Proposition 7.8 There is a nondeterministic polynomial-time algorithm that given
a finite structure A, a guarded tuple a, and a formula y(x) € GNF;r guesses, on the
1y, a strategy f for Player 0, constructs the reduced game graph 9 of 4 (U, y(a)),
and determines whether Player 0 has a winning strategy.

This analysis can be extended to arbitrary formulae of GNF*.

Theorem 7.9 Given a finite structure 2, a guarded tuple @, a formula y(x) € GNF*,

and ¢ € {0,1}, the problem whether Player ¢ wins the model-checking game
G (A, y(a)) is in PP

Proof. For y € GNFI+ the problem is in NP and hence also in PNP. Let now v €
GNF,‘:+ , and assume that the result has already been established for formulae in
GNF, and hence, by the closure of PP under complements, also for formulae in
GNFZ”. The game for a formula in GNF;”+1 can be viewed as a game for the top level
existential positive formula whose terminal positions are either literals, or answer
guarded formulae o A @~ with ¢~ € GNF, . There are only a polynomial number of
such terminal nodes and we can construct them efficiently. For nodes of the form o A
¢~ we distinguish two cases: if o evaluates to false, we label the node as winning
for Player 1. If & evaluates to true, the node is the root of a new game ¢ (2, ¢). In
this case we apply the already established PNF-algorithm to determine the winner,
and label the node accordingly. We are left with a game for an existential positive
formula that we can solve in PNY. Altogether this is a polynomial composition of
PNP_algorithms which is again a PN? algorithm. O

A more sophisticated implementation of this algorithmic idea results in a PNF

algorithm that queries the NP-oracle in a restricted way. Indeed one can make sure
that each query to the oracle depends only on the answers to a logarithmic number
(with respect to the the length of the formula) of previously asked queries, i.e.,
the problem is in the class PWOP(which, by a result due to [7], is the same as
PNP[O(log?n)]

logn)
the class of problems solvable by a polyomial-time algorithm with at
most O(log2 n) calls to an oracle in NP. As shown by Bérdny, ten Cate, and Segoufin
[3] the model checking problem for GNF is actually complete for this complexity
class.

For the provenance analysis of an existential positive formula in a semiring K,
it does not suffice to guess a strategy and check whether it is winning. Instead one

Semiring Provenance for Guarded Logics 25

has to sum up the provenance values of all possible strategies. For each individual
strategy it is still possible to compute the value in polynomial time, provided that
this is the case for the basic semiring operations, and that we have an additive cost
measure. For provenance values in the semiring of natural numbers we hence have a
summation over exponentially many values of a polynomial-time computable func-
tion into N; this can be done by a #P-algorithm.

Theorem 7.10 The problem of computing provenance values in N (with the stan-
dard logarithmic cost measure) for existential positive first-order formulae is #P-
complete.

It is open to what extent this result can be generalized beyond existential positive
formulae, i.e. formulae in GNFT, to higher levels of GNF*.

References

1. H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragments of
predicate logic. Journal of Philosophical Logic, 27:217-274, 1998.

2. V. Barany, G. Gottlob, and M. Otto. Querying the guarded fragment. In Proceedings of the
2010 25th Annual IEEE Symposium on Logic in Computer Science, LICS *10, pages 1-10,
2010.

3. V. Barany, B. ten Cate, and L. Segoufin. Guarded negation. J. ACM, 62(3):22:1-22:26, 2015.

4. M. Benedikt, P. Bourhis, and M. Vanden Boom. Characterizing definability in decidable fix-
point logics. In 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, pages 107:1-107:14, 2017.

5. M. Benedikt, B. ten Cate, and M. Vanden Boom. Effective interpolation and preservation in
guarded logics. ACM Trans. Comput. Log., 17(2):8, 2016.

6. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2001.
7. J. Castro and C. Seara. Complexity classes between @,f and A[. RAIRO - Theoretical Infor-
matics and Applications - Informatique Théorique et Applications, 30(2):101-121, 1996.

8. A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In Pro-
ceedings of FOCS 1988, pages 328-337, 1988.

9. E. Gridel. On the restraining power of guards. Journal of Symbolic Logic, 64:1719-1742,
1999.

10. E. Gradel. Why are modal logics so robustly decidable? Bulletin of the European Association
for Theoretical Computer Science, 68:90-103, 1999.

11. E. Grédel and M.Otto. The freedoms of (guarded) bisimulation. In Trends in Logic: Johan
van Benthem on Logical and Informational Dynamics, pages 3-31. Springer, 2014.

12. E. Gridel and V. Tannen. Semiring provenance for first-order model checking.
arXiv:1712.01980 [cs.LO], 2017.

13. E. Griédel and V. Tannen. Provenance analysis for logic and games. arXiv: 1907.08470
[es.LO], 2019.

14. E. Gridel and I. Walukiewicz. Guarded fixed point logic. In Proceedings of LICS 1999, pages
45-54, 1999.

15. R. Ladner. The computational complexity of provability in systems of propositional modal
logic. SIAM Journal on Computing, 6:467-480, 1977.

16. E. Spaan. Complexity of modal logics. PhD thesis, University of Amsterdam, Institute for
Logic, Language and Computation, 1993.

17. M. Vardi. Why is modal logic so robustly decidable? In N. Immerman and P. Kolaitis, ed-
itors, Descriptive Complexity and Finite Models, volume 31 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 149-184. AMS, 1997.

