
G  L

E

    ,  

  -

    

      -

  

 

Diplom-Informatiker Dietmar Berwanger

 , 



Universitätsprofessor Dr. Erich Grädel

Dr. IgorWalukiewicz

   

. Mai 

 � M 

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Preface � iii

P

G
  is a frameworkof analytical tools for reasoningaboutdecisions

under circumstances beyond the immediate control of the individual decision

maker. �e foundations of modern game theory have been laid by von Neumann

andMorgenstern in thefirst half of the th century [] at the intersectionbetween

mathematics and economy. Since then, game theory has undergone an outstanding

evolution, transgressing the boundaries of its parent disciplines, and reaching core

positions in every scientific area where interaction and decision matter.

�e effectiveness of game theory can be ascribed to two main concerns. As a

means for description, games represent a unified model for interactive situations

which abstracts from the contingencies of the specific environment. On the back-

ground of this model, game theory offers an extensive and intuitive language for

reasoning about the intricacies of interactions. In return, the insight gained within

the model supports decisions on subsequent actions, thus assigning the theory a

prescriptive competence.

To accomplish these functions, game theory shall establish a provision of viable

models and languages that are able to capture the relevant distinctions and simi-

larities in the concrete setting, while remaining operative, on the other hand. As

pointed out by Aumann in [], game theory is in this sense a science of classifi-

cation. In view of its aims and methods, game theory is closely related to logic.

On the common ground of the two sciences, logic has to offer a rich foundational

framework of formal languages and models.

Conversely, game-theoretic techniques turned out to provide a fruitful approach

to several essential issues in logic []. A moment of major impact on logical

methodology is marked by the understanding of quantifiers in terms of games,

proposed by Henkin [] and consolidated by Hintikka []. In this view, the value

of quantified first-order variables is assigned by two antagonistic players, Verifier

and Falsifier, reflecting the intuition thatVerifier tries tomake a formula true under

the challenge of Falsifier’s choices. �e notions of truth and provability can thus

be phrased in terms of winning strategies for Verifier, providing a game-theoretic

semantics for predicate logic which extends naturally to logics with generalised

quantifiers.

Another fundamental result at the boundary between games and logics is

Interestingly, the first formal theorem in game theory was contributed by a logician: in 

Zermelo proved that chess is determined [].

iv � Preface

the characterisation of elementary equivalence in term of Ehrenfeucht-Fraïssé

games []. Here, the players are concerned with the question whether two struc-

tures aredistinguishable bymeansof afirst-order formulae. If so, awinning strategy

corresponds to a separating formula. Structure-comparison games of this kindpro-

vide an invaluable model-theoretic tool and have been successfully adapted to a

large range of logics.

�e theoryof concurrent systems in computer science is a prominent application

area of game theory and logic. In this framework, the task of decision making is

conveyed to computational agents, equipped with a formal specification of their

objective. �e challenge is to design these agents as if they would be rational in

the original game-theoretic sense, i.e., acting deliberately towards achieving their

individual objective taking into account all possible actions of the other agents.

A common interpretation of concurrent systems is based on Kripke structures,

also called transition systems. In thismodel, the elements are associated to states of

the system, and binary transition relations represent actions that can be performed

on or by the system. Due to the occurrence of actions, the system evolves along

transitions, forming a path through the model. In an interactive setting, an indi-

vidual agentmay have control only over a restricted set of states so that the system’s

behaviour, i.e., the formed path, also depends on the actions of other agents. �e

question is whether and how an agent can ensure the system to behave according

to his objective.

In line with this interpretation, formal languages are designed to describe the

possible behaviours of concurrent systems and to specify the objectives of agents.

Accordingly, questions about the properties of a system can be translated into

questions about satisfaction or validity of logical formulae in Kripke structures.

Immediate applicationsof this approach arise, for instance, in control theory,where

wehave two agents, the controller and the environment, andwish to specify that the

controller can keep the system reliable under interference with the environment.

More generally, Kripke structures together with formal specifications of objectives

can be regarded as a a model for a large variety of interactive situations based

on discrete states and evolving sequentially over time. �is allows us to rely on

established logical methods towards reasoning about games.

Conversely, logics over Kripke structures can be naturally embedded into the

realm of game theory, by way of the appropriate game-theoretic semantics. �is

two-way correspondence between the classical and formal framework of modal

logics, i.e., logics intended for reasoning about Kripke structures, on the one hand,

Preface � v

and the intuitive world of game theory on the other hand, is of great potential.

In order to take advantage of this potential we shall, of course, not persist at

the definitional level. Unfortunately, regarding aspects of internal structure, the

gap between classical formal logics and game-oriented languages is very large.

For instance, already the notion of equivalence, which is fundamental for classical

logics, is far from being well-understood in terms of games []. Also, concepts of

rationality intrinsic to the game perspective are oßen very hard to capture in terms

of classical formalisms.

In the present thesis, we address the question of relating classical formal log-

ics and game logics with regard to their fine-structure, and try to bridge the gap

between these in a specific setting concerning two-player games over Kripke struc-

tures. On the classical side, we consider the µ-calculus Lµ, a very expressive and

robust formalism with outstanding model-theoretic properties which, however, is

widely agreed to be little intuitive. On the other side, we investigate formalisms

with generalised quantifiers defined via games arising naturally in the context of

concurrent systems: Parikh’s Game Logic GL and so-called path-game logics.

Parikh’s Game Logic, discussed in Chapter , is a dynamic formalism with

quantifiers ranging over games built by sequential composition, nondeterministic

choice, iteration and game dualisation, starting from a given set of atomic actions.

We show that the resulting language is very powerful, being able to express the

semantic games of the µ-calculus. Further, we prove that the syntactic device

of dualisation induces a strict semantic hierarchy which parallels the alternation

hierarchy of the µ-calculus.

Chapter  is dedicated to temporal logics with quantifiers associated to infinite

paths formed interactively by the players. According to the schedule of the forming

process and the conditions on the outcoming path, we first classify the underlying

families of games under topological viewpoint. �en, we study the structure of

winning strategies in regular games, and show that, in significant cases, these are

automatic or even memoryless. On basis of this, we embed the corresponding

temporal logics into the µ-calculus and show that, if first-order logic is used to

describe the quantified paths, the obtained language is equiexpressive to a well-

studied formalism, namely CTL
�

.

In the last two chapters we investigate the fine-structure of the µ-calculus with

respect to the question of how many variables are needed to specify a given

property. �e question arises naturally in the context of GL, CTL
�

, and other

process languages, which all turn out to translate into the two-variable fragment

vi � Preface

of Lµ. Our approach towards settling this question relies essentially on games. We

consider model-comparison games, more precisely, simulation games over finite

Kripke structures, which can be described in the µ-calculus.

In Chapter , we first identify a structural parameter, called entanglement,

representing an upper bound on the number of variables needed to define a given

finiteKripke structure, or, the (bi-)simulation game for that structure, inLµ. Besides

being a measure of descriptive complexity, it turns out that the entanglement also

captures relevant computational properties of the structure. We show that parity

games can be solved in polynomial time, if their entanglement is bounded by a

constant. �is is significant since no polynomial time algorithm for solving this

problem in the general case is known (although there are no strong reasons to

assume none exists).

Finally in Chapter  we show that the entanglement of a structure represents

indeed a lower bound on the number of variables needed to describe the corre-

sponding simulation game. As a consequence, it follows that the variable hierarchy

of the µ-calculus is strict. In particular, this result separates the expressive power

of GL from Lµ answering an open question posed by Parikh when he introduced

Game Logic in  [].

A. I would like to express my deep gratitute to my dear

friend and supervisor, Erich Grädel, for being close and caring through all this

years. I thank Igor Walukiewicz and David Janin heartily for reviewing my thesis

and for being wonderful hosts and great guests. I also wish to thank Anuj Dawar

andWolfgang�omas for their support and encouragement.

Love to my parents and my brother, and to Anne, Laura, Tessa, Christof, Gabi,

Ghit,i, and Sebastian, whomake the world be a wonderful place. Tomy co-authors

Achim, Giacomo, and Stephan: thanks for sharing. Antje, Aliaa & Eric, Elisabeth,

and Henrik were my office mates in Aachen, I couldn’t have dreamed of a better

company. Colin, Jens, Jacques, Łukasz, Madhu, Marc, Marcin, Olivier, Philipp,

Stefan, �omas, and Vince – thanks for the shiny memories.

I dedicate this thesis to Andreea, sine qua non. . .

C

 B 

. Models for interaction . 

. Logical specification formalisms 

. Model checking and parity games 

 G L 

. Syntax and Semantics . 

. Interpretation over Kripke structures 

. Expressing parity semantics . 

. Hierarchies within the µ-calculus 

 P  

. Origins . 

. Path games and their values . 

. Determinacy . 

. Definability . 

 E 

. Defining bisimulation and simulation types of finite structures . . 

. �e entanglement game: Catching the thief 

. Descriptive complexity . 

. Computational complexity . 

 T µ-C V H 

. �e existential hierarchy . 

. An existential preservation theorem 

vii

viii � Contents

. �e hierarchy theorem . 

B 

S I 

I 

 B

T
   of this thesis is founded on state-based models of

two-player games, and logical languages for reasoning about these models. In

the present chapter, we review some fundamental game-theoretic concepts which

we relate to specific questions in logic and computation. Departing from these, we

introduceKripke structures as a rawmodel for concurrent behaviour togetherwith

a criterion of observational equivalence captured by the notion of bisimulation.

�e second section is dedicated to logical formalisms for describing the behaviour

of Kripke structures. In the last section we introduce the semantic games for the

µ-calculus.

. M  

Game models describe situations of strategic interaction representing the actions

or decisions players can take and their preferences over the possible outcomes

arising as a consequence of these. To solve a game means to describe the possible

outcomes that may arise when players proceed rationally.

In the context of concurrent systems, we use Kripke structures to model the

dynamics of a system and logical specification languages to describe the player’s in-

terest,whichweassume tobeconflicting. Ingame-theoretic terms, this corresponds

to extensive zero-sum games of perfect information. �e case when the outcome

of such a game can be determined beforehand, is of particular interest, especially

in view of the implementation of good strategies for computational agents.

.. G 

�emost simple and abstractmodel of a game represents only the actions available

to the players and the utility they derive from the outcome of a play, depending on



 �  Background

the actions they choose.

Definition .. (Game in strategic form). A game in strategic form for n players is

represented by a tuple
���
Ai � i � n, � ui � i � n � , where, for each player i � n,� Ai is a nonempty set of actions, and

� ui �
	 i � n Ai �
� is a utility function.

In this perspective, a game has no internal structure. All that players can do is to

choose an action. A strategy of a player in a strategic game is any action available

to him. An outcome of such a game, or simply a play, is a tuple of actions, one for

each player:
�
a0, . . . , an � 1 ����	 i � n Ai.�e utility ui reflects how much the given

outcome is worth to player i.

In game-theoretic literature, utility is oßen assigned to a set of consequences of

outcomes rather than to the outcomes themselves. Formally, this means to extend

themodel by a setC of consequences towhich outcomes aremapped via a function

c � 	 i � n Ai � C, and to define utilities in terms of outcomes: ui � C ��� . By
detaching actions from immediate utility, this allows a higher level of abstraction.

In our discussion of Game Logic in Chapter  we will refer to a further abstraction

of strategic games, called game forms, in which utility is completely discarded.

Despite its simplicity, themodel of a strategic game already displays two essential

ingredients of a game. It captures which decisions the players can take, and, by

specifying their utility, a determination of why they may choose one or another

action.

However, any details about what else players may know about each other are

obscured. In practice, decisions are not encountered by all players once and simul-

taneously. �e course of a play is oßen rather sequential and players may be more

or less aware of events that have previously occurred. �ese aspects are captured

by games of perfect information in extensive form.

Such a game is adequately represented as a tree, i.e., andirected connected acyclic

graph, where the nodes are coloured to indicatewhich player is in turn tomove.We

will use a partitioning of the setT of tree nodes into disjoint subsetsTi, one for each

player, to represent this colouring. By a full path in a tree we mean a maximal path

starting from the root. Such a path may be either finite, in which case it terminates

at a leaf, or infinite.

Definition .. (Game in extensive form). A game in extensive form for n players

is represented by a tuple
���

,
�
Ti � i � n, � ui � i � n � , where � is a tree, called history, with

. Models for interaction � 

nodes associated to players, and, for each player, the utility function ui associates

to any full path in
�
a real number.

Extensive games are played in turns: At the beginning of a play, we are at the

root of the history
�
. Whenever the current node is in Ti, player i can choose a

successor fromwhich the play continues. If the current node has no successors, the

play ends, otherwise it goes on infinitely. In either case the utility is determined,

for each player, by the utility of the path formed during the play. In this way, an

outcome of an extensive game is just a full path through the history. In the same

way as in strategic games, we do not distinguish between plays and their outcome.

A strategy for a certain player in an extensive game is a plan that tells him how

to choose at every moment at which he is in turn. In that event, his decision may

depend on the previous history.

Definition .. (Strategy). Given an extensive game
� �

,
�
Ti � i � n, � ui � i � n � , a strategy

forplayer i is a function f � Ti � T associating to everyhistorynode vwhereplayer i

moves, some successor in
�
. We say that a play v0, v1, . . . of the game is according

to the strategy f , if for every vj � Ti, we have vj �
1

� f
�
i � .

Observe that the notion of utility introduced here allows to model situations of

either conflicting or common interests, or a mix of the two. However, the games

considered in logic and computer science usually focus on the analysis of conflict.

Moreover, in the general setting, only two antagonistic players are involved. For the

remainder of this thesis we will therefore restrict to 2-player games of a simplified

structure.

Definition .. (Win-or-lose game). Awin-or-lose game is a 2-player gamewhere,

for each play, precisely one of the players has utility 1 and the other one 0. An play

is winning for a player, if his utility for the play is 1.

Henceforth, whenever we refer to a game, we mean a win-or-lose game. Obvi-

ously, in such games, it is sufficient to specify the utility for one player. To simplify

notation, for a pair
�
f, g � of strategies for the two players in a game, we write f ĝ to

denote the unique play according to the two strategies.

Definition .. (Winning strategy). A strategy f for a player in a given game is

winning if he wins each play f ˆg, for every strategy g of his opponent.

A central issue in the context of purely competitive, win-or-lose games between

two players is whether one of the players can win regardless of the actions of his

opponent. If this is the case, there is a clear concept of a solution to this game.

 �  Background

Definition .. (Determinacy). Awin-or-lose game is determined if either one or

the other player has a winning strategy.

�roughout this thesis, wewill usually workwith games given in extensive form.

However, rather than specifying all ingredients explicitly, we will give a less formal

description of the dynamic of the game from which the history tree can be easily

reconstructed. Also, instead of referring to utility functions, we will rather speak

aboutwinning conditions representing the setof infinitepathswhere a certainplayer,

usually Player 0, wins. As a general convention for two-player games, we assume

that the player who has to move at a history node with no successors loses.

.. K 

Our concern with decision and interaction relies upon the assumption that, as a

consequence of action, the world is changing. An adequate model for representing

dynamically changing systems is provided by Kripke structures. �is prospective

relates the system to a set of states, presenting the possible transitions from one

state to another as being triggered by actions. �e particularities of each state are

recorded as atomic propositions. In view of this, Kripke structures are also called

(labelled) transition systems.

Definition .. (Kripke structure). A Kripke structure over a set A of actions

and a set P of atomic propositions is a structure

�
�

�
V,
�
Ea � a � A, � Vp � p � P � ,

with a domain V of elements called states, binary transition relations Ea � V � V
associated to the actions a � A, and monadic relationsVp � V , associated to the
atomic propositions p � P.
We will sometimes abstract from propositional and action labels and refer to

the graph
�
V, ��� Ea � a � A � � as the graph underlying to

�
. Conversely, we

say that
�
is a Kripke structure over this graph. It is appropriate to consider rooted

structures
�
, u, where all states are reachable from the distinguished state u in

the underlying graph. To refer to the set of successors of a state v via a binary

relation E, we use the notation vE � � � w �
�
v, w � � E � . Unless otherwise stated,

we will assume that the constituents of a Kripke structure are always named as in

this definition.

. Models for interaction � 

In the context of computer science, Kripke structures are used as a fundamental

model for describing the behaviour of reactive systems, involving programs that

maintain an ongoing interaction with the environment, such as communication

protocolsor resource schedulers inoperating systems. In suchamodel, theprogram

continuously performs actions in response to the requests of the environment,

which are themselves represented as actions. Accordingly, reactive systems can be

viewed as two-player extensive game forms. Conversely, if we abstract from the

aspect of utility, extensive games can be naturally described by Kripke structures.

B  

An issue of central importance regarding Kripke structures in general, and reactive

systems in particular, is whether two systems display the same behaviour.�e idea

of behavioural equivalence, is captured by the notion of bisimulation introduced

by Hennessy and Milner [].

Definition .. (Bisimulation). A bisimulation between two Kripke structures

�
�

�
V,
�
Ea � a � A, � Vp � p � P � and

���
�

�
V
�

,
�
E
�

a � a � A, � V �p � p � P �
is a non-empty relationZ � V � V � that respects the atomic propositions p � P,
in the sense that v � Vp if, and only if, v

� � V �p, for all � v, v � � � Z, and satisfies the

following forth and back conditions.

forth: for all
�
v, v
� � � Z, a � , and every w � vEa, there exists a state w � � vE �a

such that
�
w, w

� � � Z.
back: for all

�
v, v
� ��� Z, a �  and every w

�
such that w

� � v � E �a, there exists a
state w � Ea such that � w, w � � � Z.

We say that two rooted Kripke structure
�
, u and

� �
, u
�
are bisimilar, and write�

, u �
� �
, u
�
, if there exists a bisimulation Z between them with

�
u, u
� � � Z.

�e concept of bisimulation can be easily understood as a game in which two

players, called Challenger and Duplicator, compare the structures by moving two

pebbles, one for each structures.�is game is described as follows: at the beginning,

the pebbles are at u and u
�
. If the atomic type of the pebbled nodes differs, i.e.,

if there is an atomic proposition p satisfied by either u or u
�
but not by both,

then Challenger immediately wins. Otherwise, he chooses one of the structures

and moves the pebble to a successor of its current position along some action

 �  Background

a � A. In turn, Duplicator has to move the pebble in the other structure along

the same action. If an agent gets stuck he loses. Otherwise the game goes on forever.

Duplicator wins, if he never loses.

It is straightforward to show that every winning strategy in such a bisimulation

game can be turned into a bisimulation relation, and vice versa.

Lemma ... Duplicator wins the bisimulation game between
�
, u and

�
, u
�

if, and

only if,
�
, u �

� �
, u
�

.

Anormalised form for the behaviour of a systemmodelled by aKripke structure

is given by its unravelling. Intuitively, this is the tree consisting of all paths through

the structure that start at the initial state.

Definition .. (Unravelling). �e unravelling of a Kripke structure

�
�

�
V,
�
Ea � a � A, � Vp � p � P �

from a node u � V is a Kripke structure
�
over a tree, so that� the domain V

�
of
�
is the set of all sequences π � � v0a1v1a2 � vr � 1arvr with

vi � V and ai � , such that v0 � u and vi � vi � 1Eai ;� for every atomic proposition p � P, we have v0a1v1a2 . . . vr � 1arvr � V �
p

if, and only if, vr � V �
p ;� for all actions a, the transition E

�
a contains the pairs

�
π, πav � in V � � V �

.

Obviously, the natural projection
�
, u �

�
, u which sends every sequence

π � v0a1v1a2 . . . vr � 1arvr � V �
to its last node vr defines a bisimulation between

�
and
�
, u.

Besides behavioural equivalence, we are sometimes interested in the question

whether a system is able to reproduce the behaviour of another system.

Definition .. (Simulation). A simulation of a structure
�
by a structure

� �
is

a non-empty relation Z � K � K � that respects the atomic propositions p � P,
in the sense that v � Vp if, and only if, v

� � V �p, for all � v, v � ��� Z, and satisfies the

following condition.

forth: for all
�
v, v
� � � Z, a � , and every w � vEa, there exists a state w � � vE �a

such that
�
w, w

� � � Z.
We say that

� �
, u
�
simulates

�
, u and write

�
, u

� � �
, u
�
, if there is a simulation

from
�
to
� �

that contains
�
u, u
� � .

. Logical specification formalisms � 

�e bisimulation game described above .. can easily be adapted to capture

the concept of simulation. It suffices to require the Challenger to always move the

token in
�
, so that Duplicator must move in

� �
.

. L  

In this section, we review some general formalisms for reasoning about interactive

systems represented as Kripke structures. Our focus lies on specification logics i.e.,

languages inwhichwe express statements aboutwhat the systemshoulddo.Among

the various formalism developed for this purpose, we consider representatives

of three main groups: dynamic logics, oriented towards the live behaviour of a

system, temporal logics, representing either an a priori or an a posteriori view

on the system’s execution, and modal logics, designed for reasoning about Kripke

structures in general.

In order to compare logics with regard to their expressive power, we need to

relate formulae of different formalism.�us, we say that a formula φ from a logic �
is equivalent to a formula φ

�
from a possibly different logic � � , if the two formulae

have the same models. Accordingly, we write ����� � , if for every formula φ in �
there exist an equivalent formula φ

� � � � . Further, we write ����� � if both ����� �
and � � �	� and � �	� � if �
��� � , but ����	� � .
For extensive surveys on thematter of temporal and dynamic logics, and amore

gentle introduction to the µ-calculus, we refer the reader to [] and [].

.. P 

First-order predicate logic FO provides a frame of reference for any investigation

about logical formalism. Nevertheless, when speaking about Kripke structures, FO

is rather inappropriate for several reasons. On the one hand, the language is too

weak to express properties in which we are naturally interested, e.g., whether from

a given initial state a certain target state is reachable. On the other hand, FO is

too complex from a computational point of view, since its satisfiability problem

is undecidable. Finally, when used to describe behavioural properties of systems

modelled by Kripke structures, the language is over-expressive, in a certain sense,

as it is able to distinguish between bisimilar states.

 �  Background

Monadic second-order logicMSO, is an extensionof first-order logicwhich allows

quantification over monadic variables ranging over sets of elements rather than

individual elements. For a Kripke structure
�
, we may thus formulate a property

φ
�
Z � involving a new propositional predicate Z � P and express by � Z.φ

�
Z �

that φ holds in some expansion of
�
. Intuitively, MSO has the ability to “guess”

propositional predicates in addition to those provided by the structure. �is gives

rise to a very powerful language, able to express most of the relevant properties of

Kripke structures.

On the other hand,MSO is characterised by a very tight connection to the theory

of automata, which wewill discuss later. Via this connection, Büchi proved that the

monadic theory of one successor S1S, i.e., ofMSO interpreted over infinite words,

or paths, is decidable []. Generalising Büchi’s automata model, Rabin proved the

analogon of this result forMSO interpreted over the infinite binary tree, showing

that the monadic theory of two successors S2S is also decidable []. Further

extensions of this decidability result to arbitrary trees, due to Le Tourneau [] and

Shelah [], and iterated structures, due to Semenov [] and Walukiewicz [],

distinguishMSO as amilestone at the frontier of expressiveness and computability.

�roughout this thesis we will also refer to a sublogic of MSO, called monadic

path logicMPL, where the interpretation ofmonadic variables is restricted to range

not over arbitrary sets, but over infinite paths. When reasoning about sequential

processes, this turns out to be anatural quantificationpattern allowingus to express

many interesting properties of Kripke structures in a succinct way.

To cope with the excess of expressiveness of FO and its extensions, we may

restrict ourselves to formulae which respect the notion of behavioural equivalence.

Definition ... A formula φ of a given logic � is bisimulation-invariant, if it does
not distinguish between bisimilar structures. �at is, for every pair

�
, u �

� �
, u
�

,

we have
�
, u � φ if, and only if,

� �
, u
� � φ. We denote by � � � the fragment of �

consisting of all bisimulation-invariant formulae.

Unfortunately, relying on bisimulation-invariant fragments of FO,MPL, orMSO

is not a viable solution. As van Benthempoints out in [], it is already undecidable

whether a given FO-formula is bisimulation invariant or not. For this reason, pred-

icate logics are not directly used as specification languages for systemsmodelled by

Kripke structures. However, they represent yardsticks formeasuring the expressive

power of more specialised formalisms, like those we discuss in the following.

. Logical specification formalisms � 

.. M   

Modal logics are languages for reasoning about dynamic aspects of truth. Although

preoccupations with modal logics date back to ancient times, a rigorous semantics

was developed only in the last century reaching its current form with Kripke [].

�erefore, Kripke structures are inherently connected with modal logics.

Propositional modal logic extends propositional logic with amodal operator � .
Modal formulae φ are interpreted at states in Kripke structures. Intuitively, � φ
asserts that from the current state, a state where φ holds is directly reachable.

Dually, the expression ��� � � φ � , denoted as � φ, asserts that, at every successor

state, φ is true.

H-M L

In the original setting, transitions in a Kripke structure reflected whether a state

is accessible from another state or not. Consequently, this model features only

one transition relation, also called reachability relation. However, whenmodelling

systems that shiß from one state into another in response to the occurrence of

certain actions, it is appropriate to associate modalities to individual actions and to

use polymodal logics for reasoning about them. We consider here the polymodal

logic underlying Hennessy and Milner’s seminal study [] on the behavioural

equivalence of interactive systems.

Definition .. (Syntax of Hennessy-Milner Logic). Given a set A of actions

and a set P of atomic propositions, Hennessy-Milner logic ML consists of the

formulae constructed according to the following rules:

φ � ��� � p � � φ � φ � φ ��� a 	 φ
where p � P and a � A.
To define themeaning of a formula φ in a given Kripke structure

�
, we describe

its extension

 φ � � � , that is, the set ofworlds in
�
whereφholds.To simplifynotation,

we may omit the subscript, when clear from the context. Alternatively we will also

refer to the satisfaction relation
�
, u � φ defined by u �

 φ � � � .

Definition .. (Semantics of Hennessy-Milner Logic). Given a Kripke structure

�
�

�
V,
�
Ea � a � A, � Vp � p � P � ,

 �  Background

the extension ofML-formulae overA and P is defined inductively as follows:

 � � � � ��� ;

 p � � � � Vp;

 � φ � � � � V �

 φ � � ;

 φ1 � φ2 � � � �

 φ1 � ���

 φ2 � � ;

 � a 	 φ � � � � � v �

�
� w � vEa � w �

 φ � � � .

Dual connectives are introduced as a shorthand:

� � � � ; � φ1 � φ2 � � � � � φ1 � � φ2 � ;
 a � φ � � � a 	 φ.

When A consists only of one action a, we will simply write � and � instead of

� a 	 and
 a � .
Hennessy-Milner Logic provides a logical characterisation of bisimulation over

finitely branching Kripke structures, where for every state v � V and every action

a � A, the set vEa is finite.
�eorem .. ([]). For any pair of finitely branching Kripke structures

�
, u and� �

, u
�

, we have:

�
, u �

� �
, u
�

iff � φ � ML � � , u � φ � � � φ � ML � � � , u � � φ � .

According to this,ML-formulae are in particular invariant under bisimulation.

Also, they can be easily translated into FO. �e Modal Characterisation �eorem

of van Benthem states that, conversely, every bisimulation-invariant FO-formula

can be translated into ML. In other words, ML provides an effective syntax for

first-order properties that are invariant under bisimulation.

�eorem .. ([]). FO � � � ML � An FO-formula is bisimulation invariant if, and

only if, it is equivalent to anML-formula.

SinceML corresponds toa fragmentofFO, its expressivepowerdoescertainlynot

suffice to describe relevant properties of reactive systems. Nevertheless, it provides

a robust foundation for highly expressive formalism. Moreover, as pointed out

by Vardi [] and Grädel [], the modal quantification pattern guarantees good

algorithmic properties, even when the base logic is extended by more powerful

operators.

. Logical specification formalisms � 

P D L

Propositional Dynamic Logic was first introduced by Fischer and Ladner in []

for reasoning about the dynamic behaviour of nondeterministic programs. Syntac-

tically, this formalism extendsHennessy-Milner Logic by associatingmodalities to

programs built up from actions and tests.

Definition .. (Syntax of PDL). Given a set P of atomic propositions and a

set A of atomic actions, the expressions of PDL are of two sorts, formulae and

programs, generated respectively by the following grammar:

φ � ��� � p � � φ � φ � φ ��� ρ 	 φ
ρ � � a � φ? � ρ; ρ � ρ � ρ � ρ �

where p � P and a � A.

Intuitively, the program construction ρ1; ρ2 stands for sequential composition:

“execute ρ1 followed by ρ2”. �e nondeterministic choice operator ρ1 � ρ2 means:

“choose nondeterministically ρ1 or ρ2 and execute it”. �e iteration operator ρ
�

invests the language with a notion of unbounded recursion. It is interpreted as

follows: “execute ρ any nondeterministically chosen finite number of times (zero or

more)”. Finally, the test operator φ? corresponds to the scenario “check whether φ

holds. If so, proceed, otherwise fail.”

Before proceeding to the formal definition of semantics, let us introduce some

notation for handling binary relations. For the composition of two relations, we

write E1 � E2 � � � � v, w � � � � u � vE1 � w � uE2 � . �e reflexive transitive closure of

a relation is E
� � � � i � ω Ei with E0 corresponding to the identity over the relation’s

domain and Ei
�
1 � � E � Ei, for all i.

Definition .. (Semantics of PDL). Given a Kripke structure
�

providing the

meaning of atomic propositions p � P and actions a � A, formulae φ and

program expressions ρ extend to subsets

 φ � � � V respectively to binary relations

 �  Background

 ρ � � � V � V via simultaneous induction, as follows.

 a � � � � Ea;

 φ? � � � � � � v, v � � v �

 φ � � � .

 ρ1; ρ2 � � � �

 ρ1 � � �

 ρ2 � � ;

 ρ1 � ρ2 � � � �

 ρ1 � ���

 ρ2 � � ;

 ρ � � � � �

 ρ � � �

.

�eboolean connectives are interpreted as inML. Likewise, for themodal operator

we set:

 � ρ 	 φ � � � � � v �
�

� w.w � v

 ρ � � � w �

 φ � � � .
As in the case ofML, operators

�
, � , and
 a � are introduced as abbreviations for

the respective dual of � , � , and � a 	 .
When interpreted over linear-time models, i.e. rooted Kripke structures where

each state has precisely one successor, PDL is very expressive, as the following result

due to Henriksen and�iagarajan reveals.

Proposition .. ([]). Over linear-time models, PDL � MSO.

Nevertheless, the ability of PDL to express properties of programs has severe

limitations. A relevant issue is related to the notion of total correctness, meaning

that from a given state, every execution sequence of a certain program halts. �is

property cannot be expressed in plain PDL, and therefore several extensions have

been suggested. One of these extensions, proposed by Streett [], adds, for every

program ρ, a construct ∆ρ with the intended meaning that the program ρ can be

iterated infinitely oßen, i.e, that ρ has a non-halting execution sequence.

Definition .. (PDL with looping). ∆PDL extends PDL by adding, for every

program ρ the operator
�
ρ yielding a formula interpreted, in an appropriate

Kripke structure
�
, as follows:

 �
ρ � � � � � v � there exists an infinite sequence

�
vi � i � ω

such that v0
� v and vi �

1
� vi

 ρ � � , for all i � ω � .

. Logical specification formalisms � 

.. T 

A different prospective on computational systems modelled by Kripke structures

is given by the framework of temporal logics, founded by the work of Pnueli and

Manna[, ].Whilemodal logics as those introducedearlier refer explicitly to the

execution of programs, temporal logics are geared towards their behaviour in the

flowof time, referring to sequences of states thatmayoccurduring a run.According

to how the flow of time is perceived, a distinction is made between linear and

branching time. Linear time corresponds to executions of deterministic programs,

or an a posteriori view on the execution of a nondeterministic or concurrent

program, where each state has a unique successor. In contrast to this, branching

time sees the instants of time partially ordered, corresponding to an a priori view

on the possible executions of a nondeterministic or concurrent program.

L 

�e structure underlying the linear-time prospective is isomorphic to the ordering

of naturals
�
ω, � � . Every atomic proposition p � P is associated to the set Np

of instances of time i at which it is true. In this way, we can view every linear-time

model as an infinite word over the alphabet �
�
P � represented by a structure

α � �

�
ω, � , � Np � p � P � .

To reason about such structures, the syntax of LTL provides, in its basic variant,

temporal operators � φ and φ1 � φ2. Intuitively, � φ asserts that the formula φ will

hold at the next moment of time; φ1 � φ2 states that φ1 holds until, aßer finitely

many moments, φ2 holds.

Definition .. (Syntax of LTL). Given a set P of propositions, the formulae

of LinearTemporal LogicLTL are constructed according to the following grammar:

φ � ��� � p � φ � φ � � φ � � φ � φ � φ

where p � P.
Observe that, in contrast to ML and PDL, the syntax of LTL does not refer to

actions.

Definition .. (Semantics of LTL). Given a linear-time model

α � �

�
ω, � , � Np � p � P � ,

 �  Background

wedefine the truth of LTL-formulae inductively, using the notationα � i for the suffix

ofα starting at position i, i.e., the linear-timemodel induced inα by � j � i � j � ω � :
α �� � ;
α � p iff 0 � Vp;

α � � φ iff it is not the case that α � φ;

α � φ1 � φ2 iff α � φ1 or α � φ2;

α � � φ iff α � 1 � φ;

α � φ1 � φ2 iff � j
�
α � j � φ2 �

� �
i � j � α � i � φ1 � .

Clearly, LTL-formulae can be translated into FO.�at the converse also holds is a

very deep result showed by Kamp and later generalised by Gabbay, Pnueli, Shelah,

and Stavi.

�eorem .. ([, ]). Over linear-time models, LTL � FO.

B 

�estructures underlying branching-time logics are of tree-like nature, where each

moment of time may have several successors. �e full paths of such a tree are

then linear-time structures, corresponding to possible executions of a program.

Essentially, computation tree logics allow to quantify over these paths and to speak

about them in a way similar to LTL.

Definition .. (Syntax of CTL
�

). Given a set of atomic propositions P, the

formulae of the Computation Tree Logic CTL
�

are of two sorts, state and path

formulae, generated respectively by the following grammar:

φ � ��� � p � φ � φ � � φ � �
η

η � � φ � η � η � � η � � η � η � η

where p � P.
To define the semantics of branching-time logics in terms of Kripke structures,

we associate to every structure
�
, its computation tree, that is, the tree obtained

by unravelling
�
and dropping all action labels. For uniformity, we will consider

only Kripke structures where each state has at least one successor. �e infinite

. Logical specification formalisms � 

sequence of labels from �
�
P � seen on a path π through such a Kripke structure

then induces a linear-time structure, which we call the trace of π, denoted by
�
, π.

Intuitively, the formula
�
η asserts that there exists a path starting at the current

node whose trace models η.

Definition .. (Semantics of CTL
�

). Given a Kripke structure
�
, the truth

of CTL
�

-formulae is defined by mutual induction over path and state formulae.

�ereby, path formulae are interpreted over traces of full paths through (the com-

putation tree of)
�
according to the rules for LTL. �e quantifier

�
transforms any

path formula η into a state formula
�
η with the following extension:

 �
η � � � � � v � there exists an infinite path π �

�
v0, v1, . . . � in �

such that v0 � v and
�
, π � η � ;

Boolean connectives in state formulae are interpreted as inML.

Although we can phrase the semantics of CTL
�

in terms of Kripke structures,

the languages speaks, in fact, about trees, namely the computation trees associated

to the structures under consideration. Since over paths, CTL
�

corresponds to LTL

which can be translated into FO, by �eorem .., and monadic quantification

operates on paths, it is easy to see that CTL
�

can be translated into monadic path

logic MPL. �e following theorem, initially demonstrated by Hafer and �omas

for binary trees and extended by Moller and Rabinovich over arbitrary trees states

that the converse is true as well, showing that CTL
�

is expressively complete for

MPL, over the class of tree models, up to bisimulation.

�eorem .. ([, ]). Over trees,MPL � � � CTL � � AnMPL-formula is invariant

under bisimulation over trees if, and only if it is equivalent to a CTL
�

-formula.

Under the paradigm of temporal logics, LTL and CTL
�

cannot distinguish be-

tween individual actions. If we wish to compare the expressive power of temporal

and dynamic logics, it is therefore reasonable to restrict our consideration to struc-

tures with only one action. Yet, it turns out that even on such structures, CTL
�

cannot formalise properties which, can be expressed, e.g., in PDL.

Proposition .. ([, ]). CTL
� � ∆PDL over Kripke structures with a single

action.

 �  Background

Proof. In [], Wolper describes a translation of CTL
�

into ∆PDL. On the negative

side, the same author shows in [] that the property asserting that proposition p

holds at every second state of a structure cannot be formalised inCTL
�

. Already in

PDL, this property can be expressed as
 � a; a � � � p.
Another way to see that CTL

�

is less expressive than ∆PDL is by looking at

linear-time models, where CTL
�

collapses to LTL, and hence to FO, while already

PDL attains the expressive power ofMSO (see Proposition ..). �

.. T  µ-

Dynamic and temporal logics canbeunderstoodas extensionsofHennessy-Milner

Logicwithdifferentrecursionmechanisms.Asacommonfeature, recursioninthese

settings corresponds in fact to fixed point iteration. Typically inCTL
�

, for instance,

the equivalence

� �
φ � ψ � � ψ � � φ � � � �

φ � ψ � �
allows us to see the extension of

� �
φ � ψ � as a solution Z of the equation

 Z � � �

 ψ � � φ � � Z � � � .
Acloseranalysis showsthat

 � �

φ � ψ � � � isactually the least solutionof thisequation,
with respect to set inclusion. If we view the expression on the right side of the

equation as an operator Z �

 ψ � � φ � � Z � � � , then the value for Z in which we are

interested, is just the least fixed point of this operator.

In a similar way, we can use the characterisations of the basic iterative construc-

tions of PDL and ∆PDL,

� ρ � 	 φ � φ � � ρ � 	 φ, and ∆ρ � � ρ 	 ∆ρ,

to formulate their semantics in terms of least, respectively greatest fixed points of

the operators induced by the equations

 Z � � �

 φ � � ρ 	 Z � � , and

 Z � � �

 � ρ 	 Z � � .

Notice that all operatorsZ � F
�
Z � involved in these descriptions aremonotone,

in the sense that Z � Z � implies F
�
Z � � F � Z � � .

. Logical specification formalisms � 

�e modal µ-calculus Lµ introduced in its current form by Kozen [], extends

Hennessy-Milner Logic by incorporating into the language a constructor for build-

ing least fixed points of definable monotone operators. �is provides a notion of

recursion which invests the logic with very high expressive power, far beyond that

of CTL
�

and ∆PDL, as we shall see.

Definition .. (Syntax of Lµ). Given a set P of atomic propositions, a set

A of atomic actions and a set V of monadic variables, the formulae of Lµ are

constructed according to the following grammar:

φ � ��� � p � X � � φ � φ � φ ��� a 	 φ � µX.φ

where p � P, a � A, and X � V, and the fixed point rule µX.φ applies to

formulae φ
�
X � in which the free variable X appears only positively, that is, under

an even number of negations.

In contrast to themodal and temporal logics introduced so far, the languageofLµ
includes variables. �e number of distinct variables appearing in an Lµ-formula

induces the following syntactic hierarchy.

Definition .. (Variable hierarchy of Lµ). For any k ��� , the k-variable fragment

Lµ
 k � of the µ-calculus is the set of formulae ψ � Lµ that contain at most k distinct

variables.

Since we conceive the operator µ as a quantifier, the notions of variable binding,

free and bound occurrence, and quantifier scope are used in the sense familiar

from predicate logics. A formula in which all occurring variables are bound is

called closed.

Definition .. (Semantics of Lµ). To define the meaning of a formula φ � Lµ in
a Kripke structure

�
�

�
V,
�
Ea � a � A, � Ap � p � P � ,

wedescribe its extension

 φ � � χ referring toanassignmentχ � V � V thatprovides

interpretations of the free variables in φ. As in the case of Hennessy-Milner Logic,

the constant � corresponds to the empty set, atomic propositions p � P extend
to the sets Vp, and the extension of free variables X is given by χ

�
X � � V . For the

 �  Background

propositional and modal operators, we have

 � φ � � χ � � V �

 φ � � χ ;

 φ1 � φ2 � � χ � �

 φ1 � � χ �

 φ2 � � χ;

 � a 	 φ � � χ � � � v �

�
� w � vEa � w �

 φ � � χ � .

To understand the semantics of fixed point formulae µX.φ, note that a formula

φ
�
X � with a propositional variable X defines on every Kripke structure

�
(with

state set V , and with interpretations χ for free variables other than X occurring

in φ) an operator φ
� � �

�
V � � �

�
V � which maps any set T � V to the extension

 φ � � χ � X � � T � obtained with the assignment χ when the value of X is set to T. By

the requirement on φ to contain X only positively, this operator is monotone for

every
�
. From Knaster and Tarski’s classical fixed point theorem [], it follows

that φ
�
has a least fixed point,

lfp
�
φ

� � ��� � T � V � T �

 φ � � χ � X � T � � .

Now, we put

 µX.φ � � χ � � lfp
�
φ

� � .
As usual, we introduce the operators

�
, � , and
 a � to abbreviate the duals of � , � ,

respectively � a 	 . �e operator � is introduced as an abbreviation for the dual of µ.

In this way, � X.φ � � � µX. � φ
 � X � X � is interpreted as the greatest fixed point of φ �
.

By exploiting the duality between these operators, every Lµ-formula can be easily

brought into a form where negation does not interfere with the other operators.

Definition .. (Negation normal form). An Lµ-formula is in negation normal

form, if the negation operator appears only in front of atomic propositions.

Definition .. (Existential Lµ). A µ-calculus formula is called existential, if its

presentation in negation normal form contains no universal modality
 a � φ.
It canbe easily verified that the validity of existential formulae is preservedunder

simulation: For every pair of structures
�
, u

� � �
, u
�

and any existential formula

ψ such that
�
, u � ψ, we have

� �
, u
� � ψ.

It is oßenuseful to refer to the syntaxof formulae in termsof graphs.Considering

presentations in negated normal form, we first define the syntax tree
�
ψ of a

formulaψ � Lµ inductively, by associating atomic formulae (propositions and their

negations, variables, and the constants � , �) to isolated nodes, unary constructs

. Logical specification formalisms � 

� a 	 φ,
 a � φ, µX.φ, � X.φ to trees with a single immediate subtree
�
φ, and binary

constructs φ1 � φ2, φ1 � φ2 to trees with two immediate subtrees
�
φ1 and

�
φ2 . If

we now introduce, for every leaf corresponding to a variable occurrence X, a link

to (the unique node which corresponds to) to its binding definition µX.φ or � X.φ,
we obtain an operational representation of ψ as a tree with back edges, which we

call its syntax graph � ψ. Sometimes it is convenient to eliminate variables from the

representation of a formula by identifying every occurence of a variable with its

binding definition in the syntax tree thus obtaining a contracted syntax graph.

Essentially, syntax trees and graphs reflect the building process of a formula.

Conversely, from a consistent representation, i.e., a binary tree, with or without

back edges, where the leafs are labelled with atoms and the inner nodes with

boolean connectives, modalities, or fixed-point definitions µX, � X, we can easily

reconstruct the corresponding formula.

Let us fix a closed formula ψ � Lµ and consider, for any subformula φ, the graph

� ψ, φ obtained from the contracted syntax graph of ψ by choosing φ as a root and

discarding all nodes unreachable from φ. �en, � ψ, φ is itself a contracted syntax

graph, corresponding to the formula obtained by replacing recursively every free

occurrence of a variable in φ by its binding definition.

Definition .. (Closure of an Lµ-formula). Let ψ be an Lµ-formula without free

variables. For each subformula φ in ψ, we define its closure clψ
�
φ � as the formula

constructed according to � ψ, φ viewed as a syntax graph. By cl
�
ψ � we denote the

set of closures of all subformulae in ψ.

Intuitively, the notion of closure captures the meaning of a subformula within

a closed formula. All formulae in cl
�
ψ � are themselves closed. As an immediate

consequence of the above definition, we obtain the following characterisation.

Lemma ... �e closure cl
�
ψ � of an Lµ-formula ψ without free variables is the

smallest set of formulae so that ψ � cl � ψ � and
(i) if φ1 � φ2 � cl � ψ � or φ1 � φ2 � cl � ψ � , then � φ1, φ2 � � cl � ψ � ;
(ii) if � a 	 φ � cl � ψ � or
 a � φ � cl � ψ � , then φ � cl � ψ � ;
(iii) if µX.φ

�
X � � cl � ψ � or � X.φ � X � � cl � ψ � , then φ � µX.φ � X � � � cl � ψ � respec-

tively φ
�
� X.φ

�
X � � � cl � ψ � .

Least and greatest fixed points can also be constructed inductively. Given a

formula � X.ψ, we define for each ordinal α, the stage Xα of the gfp-induction of

 �  Background

ψ
�
by X0 � � V , Xα

�
1 � �

 ψ � � χ � X � Xα � , and Xα � ���

β � α Xβ if α is a limit ordinal.

By monotonicity, the stages of the gfp-induction decrease until a fixed point is

reached. By ordinal induction, one easily proves that this inductively constructed

fixed point coincides with the greatest fixed point. �e finite approximations of a

formula � X.φ are defined by φ0 � � � and φn �
1

� φ
 X � φn � (the formula obtained by

replacing every occurrence of X in φ, by φn. Obviously � X.φ � φn for all n, and on

finite Kripke structures (in fact, even on finitely branching ones) also the converse

holds: If
�
, v � φn for all n, then also

�
, v � � X.φ.

S F P. �ere is a variant of Lµ that admits simul-

taneous fixed points of several formulae. �is does not increase the expressive

power but allows more transparent formalisations. �e mechanism for building

simultaneous fixed-point formulae is the following. Given formulae φ1, . . . , φn and

variablesX1, . . . , Xn, we canwrite an equational system S � � � X1
� φ1, . . . , Xn � φn �

and build formulae
�
µXi � S � and � � Xi � S � . On every structure

�
, the sys-

tem S defines an operator S
�
mapping an n-tuple X̄ �

�
X1, . . . , Xn � of sets of

states to S
�
1

�
X̄ � , . . . , S �

n

�
X̄ � so that, for each i we have: S

�
i

�
X̄ � � �

 φi � ���

�
,X̄ � . As

S
�
is monotone, it has extremal fixed points lfp

�
S � �

�
Xµ
1
, . . . , Xµ

n � respectively
gfp
�
S � �

�
X �
1
. . . , X �n � , and we set

 � µXi � S � � � � � � Xµ

i and

�
� Xi � S � � � � � � X �i .

It is known that simultaneous least fixed points can be eliminated in favour of

nested individual fixed points.

Proposition .. ([]). Every formula in Lµ with simultaneous fixed points can be

translated into an equivalent formula in plain Lµ without increasing the number of

variables.

�e µ-calculus displays a series of pleasant model-theoretic properties. Being a

modal logic, Lµ is invariant under bisimulation, i.e. for every
�
, u �

� �
, u
�

and for

any ψ � Lµ, we have � , u � ψ if, and only, if
� �
, u
� � ψ.

As a consequence of bisimulation invariance and because everyKripke structure

is bisimilar to its tree unravelling, the µ-calculus enjoys the tree model property,

meaning that every satisfiable formula is satisfiable in a tree.

Another significant feature of Lµ is its finite model property.

�eorem .. ([]). Every satisfiable Lµ-formula has a finite model.

Since the unravelling of a finite model is a finitely branching tree, we obtain the

following corollary.

. Model checking and parity games � 

Corollary ... Every satisfiable Lµ-formula is satisfied in some finitely branching

tree.

Obviously, the least and greatest fixed point constructions ofLµ can be replicated

using monadic second-order quantification, thus, embedding Lµ into MSO. A

crucial insight into the expressive power of the µ-calculus is yield by the Modal

Characterisation �eorem of Janin and Walukiewicz, which identifies Lµ as the

bisimulation-invariant fragment ofMSO.

�eorem .. ([]). MSO � � � Lµ � An MSO-formula is invariant under bisimu-

lation if, and only if, it is equivalent to a formula of Lµ.

SinceMSO is considered to capture all reasonably desirable properties of Kripke

structures, this theorem indeed states that the µ-calculus is, in a broad sense,

expressively complete.

Indeed, all other modal and temporal logics studied throughout this sections

are embeddable into Lµ, but are considerably weaker in terms of expressive power.

An explicit embedding of ∆PDL into Lµ results from our treatment of Game Logic

in Chapter . �e relation between CTL
�

and ∆PDL was already established in

Proposition ... In Proposition .. we will also give a concrete example of

a property expressible in Lµ but not in ∆PDL. Consequently, the specification

formalisms discussed in the present section are ordered as follows, according to

their expressiveness.

Proposition ... LTL � CTL
� � ∆PDL � Lµ.

. M    

In the previous sections, we have considered concurrent systems modelled as

games over Kripke structures with winning conditions derived from behavioural

specifications represented by formulae of a certain logic. In this section we argue

that questions regarding the meaning of formulae over Kripke structures can

conversely be phrased (and solved) in terms of games.

Given a Kripke structure
�
modelling a reactive system, and a specification φ

in a certain logic � , the associated model-checking problem consists in deciding

whether the system
�

meets the specification φ, that is, whether
� � φ. �is

 �  Background

problem can be equivalently formulated in terms of the semantic games of the

logic under consideration.�e semantic games associated to Lµ (and to fixed point

logics in general) are parity games.

.. P 

Definition .. (Parity game). A parity game is represented by a rooted Kripke

structure � , v0 with

� �

�
V,V0, E,

�
Ωi � i � n � ,

where V is a set of positions with a designated subset V0, E � V � V is a transition

relation, andΩ �

�
Ωi � i � n is a labelling ofV with priorities 0, . . . , n � 1 determining

the winning condition. We denote the setV � V0 byV1. �e number n of different

priorities is called the index of � .
In a play of � , v0 two players, generically called Player 0 and Player 1, move a

token along the transitions of E starting from v0, thus forming a path v0, v1,

Once a position v is reached, Player 0 performs the move if v � V0, otherwise

Player 1. If the current position allows no further transitions, then the player in

turn to move loses. In case this never happens, the play is infinite and the winner

is established by looking at the sequence Ω
�
v0 � , Ω � v1 � , . . . If the least priority

appearing infinitely oßen in this sequence is even, Player 0wins the play, otherwise

Player 1 wins.

Alternatively, we may think of a parity game � , v0 as a game in extensive form,

where the history tree coresponds to the unravelling of � , v0 and the history nodes
are assigned to the players according to their last state.�en, thewinning condition

for Player 0 is satisfied by a full path in this history if it is finite and its last state

belongs to Player 1, or if is infinite and the least priority appearing infinitely oßen

on the path is even.

For these games, strategies that do not depend on the entire history, but only on

the current position are particularly relevant.

Definition .. (Memoryless strategy). A memoryless strategy for Player 0 in the

parity game � , v0 is a function σ � V0 � V assigning to each position v � V0 a

successor w � vE.

. Model checking and parity games � 

When viewing � as an extensive game, any such strategy naturally corresponds

to a strategy in the sense of Definition ...

�e Memoryless Determinacy �eorem of Emerson and Jutla states that parity

games are always determined with memoryless strategies.

�eorem .. (Memoryless determinacy []). In any parity game, either Player 0

or Player 1 has a memoryless winning strategy.

Every memoryless strategy σ induces in � a subgame � σ obtained by removing

the transitions
�
v, w � from v � V0 tow

�
σ
�
v � . Notice that if σ is a winning strategy

for a player, this player wins every play on � σ .

Since memoryless strategies are small objects and it can be checked efficiently

whether such a strategy is winning, the winner of a parity game can be established

in NP � co-NP. However, the best known deterministic algorithms for solving this

problem have running times that are polynomial with respect to the size of the

game graph, but exponential with respect to the index of the game [].

.. M    Lµ

In terms of games, the interpretation of negation is an intricate matter. To avoid

this difficulty, we will henceforth assume wihtout loss that formulae are presented

in negation normal form, where only atomic propositions appear negated.

Given a Kripke structure
�
, u and a Lµ-formula ψ, the model-checking game

�
� �
, ψ, u � is a parity game associated to the problemwhether

�
, v0 � ψ.�ere are

several, essentially equivalent, ways to define this game. In the more transparent

one, positions are pairs
�
v, φ � where φ is any, not necessarily closed subformula

of ψ, and it is assumed that every variable is bound at most once by a fixed-point

definition (see, e.g., [, ]). However, because we later want to reuse variables, we

resort to a variantmore familiar in automata theorywhich, instead of subformulae,

refers to their closure [, ].

�epositions in the game �
� �
, ψ, u � are pairs � v, φ � of states v � K and formulae

φ � cl � ψ � . �e first player, called Verifier, moves from the positions
�
v, φ1 � φ2 � ,�

v, � a 	 φ � , � v, p � with v � p, and
�
v, � p � with v � p and his opponent, called Falsifier,

moves fromeveryotherposition.All plays start at
�
u, ψ � andcanproceedas follows:� no moves are possible from

�
v, α � where α is atomic or negated atomic;

� from
�
v, φ1 � φ2 � or � v, φ1 � φ2 � available moves lead to

�
v, φ1 � and � v, φ2 � ;

 �  Background

� from
�
v, � a 	 φ � or � v,
 a � φ � there are available moves to all positions

�
w, φ �

where w is an a-successor of v;
� from

�
v, µX.φ

�
X � � or � v, � X.φ � X � � only one move is possible, leading to�

v, φ
�
µX.φ

�
X � � respectively � v, φ � � X.φ � X � � .

�us, a play proceeds along the paths in
�
and in the syntax tree of ψ, up to the

point where a fixed-point variable is met (a leaf in the syntax tree). �ere, the play

resumes with the variable’s binding definition in the second component. We call

this event regeneration of a variable. Observe that before a variable is regenerated,

its binding definition has already been met when the play descended the syntax

tree. We say that the variable is generated at that position.

One technically useful property of fixed point formulae is guardedness. In terms

of games this guarantees that between the binding definition of a variable and its

regeneration we always have at least one modal move.

Definition ... An Lµ-formula ψ is guarded if each path in the syntax tree of ψ

from a fixed point definition λX.φ to an occurrence ofX passes through amodality,

� a 	 η or
 a � η.
In [], Kupferman, Vardi, and Wolper give a procedure to transform any Lµ-

formula into an equivalent guarded formula.�is procedure does not increase the

number of variables and preserves existential formulae.

Proposition ... Every existential formula in Lµ
 k � is equivalent to a guarded

existential formula in Lµ
 k � .
While repeatedly regenerating variables, it may happen that neither Verifier nor

Falsifier gets stuck. To decide such plays, priorities have to be defined appropriately.

�e intuition is that, to establish the truth of a µ-formula, Verifier should regenerate

it only finitely oßen whereas � -formulae can be regenerated infinitely oßen. Of

course the difficulty may be that µ- and � -formulae are deeply nested and there

are several fixed-point formulae that are regenerated infinitely oßen during a play.

But it can be shown that among these, there is always an outermost one, which

determines thewinner: if it is a � -formulaVerifier wins, if it is a µ-formula, Falsifier

wins. Hence, the priority labeling assigns even priorities to positions
�
v, � X.φ � and

odd priorities to positions
�
v, µX.φ � . Further, priorities respect dependencies. If

� Y.φ depends on µX.η then priorities of positions
�
v, � Y.φ � are higher than those

of positions
�
w, µX.η � . �e remaining positions receive priorities that are higher

than those associated with fixed-point formulae.

. Model checking and parity games � 

�eorem .. ([, ]). Verifier has a winning strategy in themodel checking game

�
� �
, ψ, u � from position

�
u, ψ � iff � , u � ψ.

Besidesdefining the truthofLµ-formulae in termsof games, this characterisation

also gives us access to a notion of game-theoretic proof or rejection of the validity

of a formula. To be more precise, for a given structure
�
and a formula ψ � Lµ, a

(memoryless)winning strategy for Player 0 in themodel checking game �
� �
, ψ, u �

can be viewed as a proof of
�
, v � ψ in an interactive proof system. Verifier can

convince Falsifier that ψ holds at u, by choosing according to its strategy whenever

a disjunction or an existential subformula of ψ is considered. In the same way, a

(memoryless) winning strategy for Player 1 can be seen as a rejection of
�
, v � ψ.

�e following property follows from�eorem ...

Corollary ... Let
�
, u be a model of a formula ψ � Lµ and let σ be a winning

strategy for Verifier in the associated model-checking game �
� �
, ψ � . �en, for every

position
�
v, φ � reachable in � σ from the initial position

�
u, ψ � , we have � , v � clψ

�
φ � .

A different way to define model-checking games for Lµ refers to the closure of

subformulae rather than their occurrence [, ].�e games obtained in this way

areequivalent tothose introducedhere–infact, theyarebisimilar.Wemaytherefore

use this alternative definition where a more semantic viewpoint is appropriate.

We remark that the game theoretic semantics of Lµ in terms of parity games was

sucessfully generalised to least fixed point extensions of first-order logic and its

fragments, providing new insight beyond the scope ofmodal logics [, , , , ].

.. E    Lµ

A crucial feature of the µ-calculus is that it can express the notion of winning in its

natural model-checking games.

�eorem ... ([]) For every index n, there is a formula Wn � Lµ, such that in

any parity game � , v0 with n priorities Player 0 has a winning strategy if, and only if,
� , v0 � Wn.

We develop a variant of the formulaWn here. For convenience, let us abbreviate

the formula expressing that Player 0 can ensure that a position where φ holds is

reached in one move by

�
φ � �

�
V � � � φ � � � V � � � φ � .

 �  Background

Further, we write Ω � i for
� n
k � i �

1
Ωk. Empty disjunctions, like Ω � n , are interpreted

as false. For simplicity, let us assume that n is odd.

Definition .. (Parity characterisation). �eformulaWn expressing that Player 0

has a winning strategy in a parity game with n priorities is

Wn � � µZ1 � Z2 . . . µZn.
n�

i � 1
�
Ωi �

�
Zi � .

To understand this expression, let us consider the formulae Wi

�
φ � describing

those positions from which Player 0 can ensure that

(i) either he wins while no priority less than i is ever played, or

(ii) some position where φ holds is being reached.

We obtain, for odd i,

Wi

�
φ � � � µZ.Wi

�
1

�
φ � � Ωi �

�
Z � � ,

and, for even i,

Wi

�
φ � � � � Z.Wi

�
1

�
φ � � Ωi �

�
Z � � .

�us, the above expression forWn is given byW1

� � � .

.. T Lµ  

A well-studied measure for the descriptive complexity of Lµ is the the alternation

depth, that is, the number of (genuine) alternations between least and greatest fixed

points occurring in a formula.

Definition.. (AlternationhierarchyofLµ). �eµ-calculusalternationhierarchy

is defined as follows:

(i) �e first level of the hierarchy, Σµ
0

� Πµ
0
, consists of the formulae in which

no fixed-point operators occur.

(ii) For every higher level, Σµi �
1
is formed by closing Σµi � Π

µ
i under positive

boolean and modal operators, � , � , ��� 	 , and
 � � , and under the least fixed-

point operator µ.

(iii) �e levelΠ
�

i
�
1
is obtained dually, by closing Σµi � Π

µ
i under � instead of µ.

. Model checking and parity games � 

Interestingly, most most temporal and dynamic logics used for describing con-

current systems allow translations into low levels of theLµ alternationhierarchy.On

its first level this hierarchy already captures, for instance, PDL as well asCTL, while

their expressive extensions ∆PDL and CTL
�

do not exceed the second level. Still,

the low levels of this hierarchy do not exhaust the significant properties expressible

in Lµ.

In [] Bradfield showed that the alternation hierarchy of the µ-calculus is

semantically strict and that the formulaeWn are hard instances for the n-th level

of this hierarchy. Variants of this result, relying as well on variants ofWn, have also

been proved by Lenzi [] and Arnold [].

�eorem .. ([, ]). For any index n, the formulaWn is contained on the n-th

level of the µ-calculus hierarchy but there is no formula equivalent toWn at level n � 1.

 �  Background

 G L

W
   a very powerful and intuitive language for reasoning

about interaction, this creates, in turn, the exigence to devise appropriate

metalanguages for reasoning about games. An important contribution to this aim

has been brought by Parikh’s Game Logic GL, introduced in [], a formalism

concerned with the dynamic of games, more specifically, with the evolution of a

player’s power in a game.

In first instance,GL provides a syntax to compose complex games starting from

primitive ones, just in the same way as PDL programs are built up from atomic

actions. �is gives rise to game expressions specifying a schedule for two players,

Angel andDemon, according to the following outline.�e sequential composition

of two games γ1; γ2 means: play γ1 first, then γ2. �e nondeterministic choice

operator γ1 � γ2 lets Angel decide which of the two games γ1 or γ2 is to be played.

�e iteration operator γ
�

allows to play the game γ repeatedly, for a finite number

of times, whereby Angel can decide before each round whether a new round is to

be played. Finally, the test operator
�
φ? � invokes an independent observer to check

whether φ holds; if so, the play just ends, otherwise it breaks and Angel loses.

In extension to these, the formalism introduces an explicit alternation opera-

tor γd, which directs Angel and Demon to play γ with interchanged roles. As we

shall see, this notion of dualisation, corresponding to a form of game-theoretic

negation, represents a deep source of expressive power.

Similar to the games on Kripke structures discussed in the previous chapter, in

GL the interpretation of games refers to the states of an external system (theworld).

�e evolution of this system is determined by the interaction of the two players:

as an outcome of a game played at a given state, the system shißs into a new state.

Accordingly, the semanticmodel associates to every game theoutcomes, in termsof

states, that may arise when the game is played at a given state. However, in contrast

to PDL, where the possible outcomes of executing a program can be described as

a subset of the state set, transitions determined by games have a finer structure.

�is is captured by the notion of effectivity functions representing the power of a



 �  Game Logic

�

� �

a b c d

Figure .: An extensive game form with outcomes in � a, b, c, d �

player in a game. Given a set V of states, an effectivity function f � V � �
�

�
�
V � �

describes, for every state v, a collection of subsets ofV within which the player can

force the outcome when the game is being played at v. In line with this intuition,

effectivity functions are required to bemonotonic in the sense that, if Z � f � v � and
Z � Z � � V , then also Z

� � f � v � . For a formal review on effectivity functions, we

refer the reader to the survey of Vannucci [] on this topic.

To illustrate the notion of effectivity, let us consider the power of the two players

in the game form depicted in Figure .. Although the first player cannot guarantee

the play to end in any specific state of � a, b, c, d � , he can ensure, e.g., that an

outcome in � a, b � is achieved. In detail, the value of his effectivity function at a

state v associated to this game is

f
�
v � � � � a, b � , � c, d � , � a, b, c � , � a, b, d � , � a, c, d � , � b, c, d � , � a, b, c, d � � .

Dually, his opponent, can ensure that the play ends in any of the sets � a, c � , � a, d � ,
� b, c � , and � b, d � , or in any superset of these.
Effectivity functions bear a high level of abstraction.Non-determined games, for

instance, can be easily modelled by providing separate effectivity functions for the

two opponents.However, inGameLogic, games are assumed to be determined and

strictly competitive. �erefore, the values f
�
v � of one player’s effectivity implicitly

define the opponent’s effectivity f
�
v � � � � Z � V � Z �� f � v � � .

In Parikh’s original setting, primitive games are represented by the associated ef-

fectivity function, generalising thenotionof transition.Consequently, the intended

models forGL are higher-order transition systems, called neighbourhoodmodels,

with propositional state labels as usual, but effectivity relations over V � �
�
V �

rather than transitions overV � V . Statements about these models are constructed

by associating game expressions with modalities. Typically, the statement � γ 	 φ ex-
presses that, at the current state, Angel has a strategy to play the game γ in such a

way that either φ is true when the play ends, or the game breaks and Demon fails.

. Syntax and Semantics � 

Some conceptual remarks are in place here. In the classical view of game theory,

the notion of utility, or winning, and the specification of the actions available to the

players are essential to the definition of a game. What we refer to as a game in GL

is, to a large extent, detached from both of these aspects. At the atomic level, games

model only what the players can achieve, not how nor why they should pursuit

a certain outcome. �e composition of games, however, gradually adds possible

actions (choose one or the other game to play, reiterate or not) and also a sense of

losing (by reitering a game γ
�

infinitely oßen, or by failing a test). Finally, when a

game expression γ is casted into a propositional statement � γ 	 φ, a determination of

winning is provided.�us, game expressions inGL define rules for constructing an

extensive game form over internal positions while the atomic game forms and the

player’s utilities are provided in terms of external states of the world.�is interplay

of game-theoretical constituents with concepts from computer science results in a

non-classical notion of great potential. See [] for an extensive exposition on this

subject.

In the present chapter, we investigate the expressive power of Game Logic

interpreted in Kripke structures.�ese correspond to neighbourhoodmodels with

one-player atomic games. Alternation between players in complex games can be

induced syntactically, via the dualisation operator. We show that each new level of

syntactic alternationsmakes the logic stronger, i.e., that the alternation hierarchy of

GameLogic is strict.Ourproof technique relies in encoding thewinningconditions

for parity games into GL. �is further allows us to conclude that Game Logic

intersects nontrivially every finite level of the µ-calculus alternation hierarchy.

Finally, it shows that the model checking problem for the µ-calculus can be solved

efficiently if, and only if, this is the case for GL.

�e results developed in this chapter also raise a new question regarding the

structure of the µ-calculus variable hierarchy which will be answered in Chapter 

together with the open question posed by Parikh in [], whether Game Logic is

equal in expressive power to the µ-calculus.

. S  S

Syntactically, Game Logic extends the language of PDL by adding a dualisation

operator for complex programs, conceived as games.

 �  Game Logic

Definition .. (Syntax of Game Logic). Starting from a set P of atomic

propositions and a set A of atomic game actions, the expressions of GL are of

two sorts, formulae and games, generated respectively by the following grammar:

φ � ��� � p � � φ � φ � φ � � γ 	 φ
γ � � a � φ? � γ; γ � γ � γ � γ � � γd

where p � P and a � A.
�e meaning of these expressions is defined in terms of neighbourhood mod-

els, i.e., higher-order transition structures that supply descriptions of the player’s

effectivities in atomic games, for each state. In place of effectivity functions

f � V � �
�

�
�
V � � , we will use a relational encoding F � V � �

�
V � consist-

ing of the pairs
�
v, Z � with Z � f � v � .

Definition .. (Effectivity relation). An effectivity relation over a set V of states

is a relation F � V � �
�
V � closed under the following monotonicity condition: if�

v, Z � � F and Z � Z � � V , then � v, Z � � � F.
We shall find it useful to think of an effectivity relation F as an operator from

�
�
V � into itself, mapping any set Z � V to F

�
Z � � � � v �

�
v, Z � � F � . Notice that,

bymonotonicity of the effectivity relation, the associated operator ismonotone too.

�e natural composition of two operators
�
F1 � F2 � � Z � � � F1

�
F2
�
Z � � translates

back into the relational view as

F1 � F2 � � � � v, Z � � � v, F2 � Z � � � F1 � .
Assuming that game atomic forms are determined, it is sufficient to model only

the effectivity of one player explicitely.

Definition .. (Neighbourhood model). A neighourhood model over a set P

of atomic propositions and a setA of atomic actions is a structure

�
�

�
V,
�
Fa � a � A, � Vp � p � P �

where V is a set of states, Fa � V � �
�
V � are effectivity relations for all a � A,

and Vp � A are monadic relations for all p � P.
�e relations Fa are intended to describe the effectivity of Angel in the atomic

game a. As in the case of ordinary transition systems, the sets Vp consist of the

states where p holds. Starting from these, the semantics of GL extends complex

formulae to subsets of states and game expressions to effectivity functions over V .

. Syntax and Semantics � 

Definition .. (Semantics of Game Logic). Given a neighbourhood model
�

providing the meaning of primitive propositions p � P and actions a � A,
formulae φ and game expressions γ extend to subsets

 φ � � � V and effectivity

relations

 γ � � � V � �
�
V � via simultaneous induction, as follows.

For game expressions, we set:

 a � � � � Fa;

 φ? � � � � � � v, Z � � v � Z �

 φ � � � ;

 γ1; γ2 � � � �

 γ1 � � �

 γ2 � � ;

 γ1 � γ2 � � � �

 γ1 � ���

 γ2 � � ;

 γ � � � � � � � v, Z � � v � lfp � X � Z �

 γ � � � X � � � ;

 γd � � � � � � v, Z � � � v, Z � ��

 γ � � � .

�eboolean connectives are interpreted as usual; for themodal operator, we set:

 � γ 	 φ � � � � � v �
�
v,

 φ � � � �

 γ � � � �

 γ � � �

 φ � � � .

To see that the definition is sound, observe that the monotonicity of effectivity

relations is preserved along the composition process. In particular, this means that

the operatorX � Z �

 γ � � � X � defining the extension of γ �

ismonotone, and, hence,

has a least fixed point. To recover the intuitive understanding of iteration, we can

think of the inductive definition of this fixed point as the limit of the transfinite

sequence:

Attr0
�
Z � � � Z

Attri
�
1
�
Z � � � Z �

 γ � � � Attri � Z � � , for all ordinals i, and

Attrλ
�
Z � � ���

i � λAttr
i
�
Z � , for limit ordinals λ.

Each inductive stage Attri
�
1
�
Z � extends the previous one by adding those states

from which Angel can attract the play γ into Attri
�
Z � (or the game breaks and

Demon loses). By well-foundedness of the ordinals, it follows that from every

state appearing along this increasing sequence, Angel has a strategy to achieve

an outcome within Z by iterating γ finitely oßen. �e set of states at which the

sequence finally stabilises, coincides with the least fixed point of the operator

X � Z �

 γ � � � X � . By determinacy we can conclude that from every state outside

this fixed point, Demon has a strategy to keep any finite iteration of γ outside Z.

 �  Game Logic

. I  K 

When interpreted over neighbourhood models, Game Logic features interaction

already at the elementary level of atomic games.However, aswe are concernedwith

the expressive power inherent to the language rather than the underlying model,

and because we wish to view Game Logic in the context of established formalisms

for specifying interactive systems, we shall restrict ourself to interpretation of GL

over Kripke structures.

�e current understanding of transitions Ea as assertions about consequences

of actions (“if action a occurs to the system in state v, then it shißs into some state

w � vEa”), can be comprehended, in terms of games, as assertions about outcomes

of one-player game forms (“when playing game a at state v, the player in turn

can bring about any outcome w � vEa”). Concretely, this corresponds to casting

transition relations Ea � V � V as effectivity functions:

Fa � � � � v, Z � � V � �
�
V � � � � w � vEa � w � Z � .

Via this translation,Kripke structures canbeviewedas a subclassofneighbourhood

models, where atomic games are, in fact, one-player games. All interactive aspects

are, hence, controlled syntactically. Note that in the absence of alternation, i.e.,

when the dualisation operator is not involved, GL on these models is nothing but

PDL. In the presence of alternation, instead, the expressiveness of GL increases

significantly.

In Subection .. we have argued that ∆PDL, the extension of PDL by a looping

operator for expressing that aprogramcanbeexecuted infinitelyoßen, is apowerful

specification formalismwhich subsumesCTL
�

in expressive power. It turns out that

∆PDL can be translated into GL but not vice versa.

Proposition ... Over Kripke structures, ∆PDL � GL.

Proof. For the positive direction, notice that theGL-expression
�
γd � �

d

corresponds

to the looping operator ∆γ of ∆PDL.

On the negative side, Niwinski pointed out in [] that the µ-calculus for-

mula � X. � a 	 X � � b 	 X is not expressible in∆PDL. Essentially, the formula describes

the models able to simulate the following Kripke structure.

�a b

. Interpretation over Kripke structures � 

In the corresponding simulation gameChallenger chooses, in each round, either

actionaorb, andDuplicaterhas tomove to a corresponding successor in themodel,

infinitely oßen. At the attempt of describing this game, ∆PDL fails because it can

only capture finitely many alternations. In GL, instead, the property can be easily

described by interleaving iteration and dualisation: �
� �
ad � bd � � � d 	 � . �

At this point, the question arises,whether the ability ofGL todescribe alternation

exhibits similar limitations as ∆PDL. �e most promising approach to investigate

this question is offered by the fine-structure of the µ-calculus alternation hierarchy.

.. T G L   µ-

Since all operations used to define the semantics ofGLappear as built-in operations

in Lµ, it is an easy exercise to translate the syntax of GL into Lµ. �ereby, game

expressionsγare translated intoformulaeηγ
�
Z � withafreefixed-pointvariableZ, so

that on anyKripke structure
�
, the operators

 γ � � � � � andη �

coincide. Furthermore,

by repeatedly reusing variables, the image of this translation can be kept within the

two-variable fragment of Lµ.

Proposition .. ([]). Every GL-formula can be translated into an equivalent

formula of the µ-calculus using at most two fixed-point variables.

Proof. Let X and Y be two fixed point variables. To translate a formula ψ � GL

into Lµ, we construct three mappings � X , � Y , and ��� inductively over the subexpres-
sions of ψ.

�e operator translations � X and � Y associate to every occurring game expression

γ, an Lµ-formula γX
�
X � respectively γY � Y � with one free fixed-point variable:

gX � � � X gY � � � Y�
γ1 � γ2 � X � � γX

1
� γX

2

�
γ1 � γ2 � Y � � γY

1
� γY

2�
γ1; γ2 � X � � γX

1

 X � � γX

2
� �

γ1; γ2 � Y � � γY
1

 Y � � γY

2
��

φ? � X � � φ � � X
�
φ? � Y � � φ � � Y�

γd � X � � � γX
 X � � � X � �
γd � Y � � � γY
 Y � � � Y ��

γ
� � X � � µY.X � γY �

γ
� � Y � � µX.Y � γX

 �  Game Logic

�e proposition translation � � associates to every GL-formula an Lµ-sentence:

p � � � p� � φ � � � � � φ ��
φ1 � φ2 � � � � φ �1 � φ �2�
� γ 	 φ � � � � γX
 X � � φ � �

�en, for every structure
�
and every subset Z of states, we have for all subex-

pressions γ and φ of ψ:

 γ � � � Z � �

 γX � � � X � � Z � ,

 γ � � � Z � �

 γY � � � Z � � T � , and

 φ � � �

 φ � � � .
In particular, it follows that ψ � GL and ψ � are equivalent. �

Notice, that the translation rule for nondeterministic choice introduces two

occurrences of the free variable. While substituting the game modality, these are

both replaced with the same expression, thus leading to a possible exponential

blow-up of obtained Lµ-sentence. However, this phenomenon can be avoided by

translating into the equational µ-calculus rather than its linear variant. Obviously,

for the closure of the translation we obtain a size � cl
�
ψ � � � which linearly bounded

in the length of ψ.

.. P   G L

Despite its conceptual elegance, the interpretation ofGL game expressions in terms

of effectivity functions has a major disadvantage we work on Kripke structures:

these objects are not representablewithin the system itself. Even if the effectivity re-

lations for atomic games are interpretable as transitions, the extension of composed

expressions will usually not fit any more into this interpretation. For example, the

extension over the expression a; ad over a Kripke structure as in Figure . does

no not correspond to any transition relation over this system. On the one hand,

this is because transitions represent one-player games while, in complex game ex-

pressions, alternation really matters. On the other hand, effectivity functions may

encompass internal states, that do not correspond to states of the external Kripke

structure over which they are interpreted.

To bridge this gap, we rephrase the semantics ofGL in terms of parity games. In

this way, we will be able to refer not only to the interpretation of aGL-formula on a

. Interpretation over Kripke structures � 

given Kripke structure, but also about the game-expressions occurring within this

formula.Moreover, since parity games are themselves Kripke structures, we will be

able to refer not only about the truth value of a sentence but also about its proof

within the same formal system, in similar way as we do for the µ-calculus.

At this point we can rely on the games obtained via the translation ofGL into Lµ.

However, to access the details of these games, it is convenient to review their

construction explicitly.

For better readability, let us agree on a precedence order over GL-operators,

assuming that unary operators bind tighter than binary ones and that sequential

composition ; binds tighter than the choice operator � . Additionally, we define dual
operators as a shorthand:

φ1 � φ2 � � � � � φ1 � � φ2 � � � � � �
γ1 � γ2 � �

�
γd
1
� γd

2 � d γ � � �

�
γd � � d

To disentangle formulae and games, we transform each game in such a way that

tests apply only to � , � , atomic, or negated atomic propositions as follows:

�
φ1 � φ2 � ? � φ1? � φ2? � � φ � ? � � φ? d; � ? � �

�
?�

φ1 � φ2 � ? � φ1? � φ2?
�
� γ 	 φ � ? � γ; φ?

Further, we can exploit the following equivalences to put any GL-formula into

a negation normal form where negation applies only to atomic propositions, and

dualisation applies only to atomic games or surrender
� � ? � .

� � γ 	 φ � � γd 	 � φ φ?d � � � φ? ; � ? d � � � ?�
γ1; γ2 � d � γd1 ; γd2 �

γ
� � d � � γd � �

�e positions of the parity game associated to a GL-formula and a given Kripke

structure will comprise both external states of the system and internal states stem-

ming from the formula.

Definition .. (Closure). Given a formula ψ � GL in negation normal form, we

define its closure cl
�
ψ � as the smallest set which contains ψ and is closed under the

following operations:

(i) taking of subformulae: for each φ � cl
�
ψ � any subformula η of φ is also

contained in cl
�
ψ � ;

 �  Game Logic

(ii) choice: for each � γ1 � γ2 	 φ � cl
�
ψ � we have � � γ1 	 φ, � γ2 	 φ � � cl

�
ψ � and

likewise for � ;

(iii) unrolling: for each � γ � 	 φ � cl � ψ � also � γ; γ � 	 φ � cl � ψ � and likewise for � ;

(iv) splitting: for each � γ1; γ2 	 φ � cl � ψ � also � γ1 	 � γ2 	 φ � cl � ψ � .
Observe that � cl

�
ψ � � is linearly bounded by the number of symbols in ψ.

Now, we are ready now to define the semantic games for Game Logic.

Definition .. (Model checking game forGL). To any Kripke structure
�
, u and

any formula ψ � GL, we associate a parity game �
� �
, ψ, u � with positions

V � � � � v, φ � � ψ � cl � ψ � and v � V � .
�ereof, Player 0 holds all positions where the formula is of the shape

� , φ1 � φ2, � α? 	 φ, � g 	 φ, � γ1 � γ2 	 φ, or � γ � 	 φ,
where α stands for � , � , or atomic propositions, possibly negated. Additionally, V0

includes

� � v, p � � v � Vp � � �
�
v, � p � � v � Vp � .

�e remaining positions belong to Player 1.

All plays start at position
�
ψ, u � . �e transitions are given as follows.

� From positions
�
v, � � , � v, � � , � v, p � , or � v, � p � no moves can be done.

� From
�
v, φ1 � φ2 � or � v, φ1 � φ2 � two transitions lead to � v, φ1 � and � v, φ2 � .� From
�
v, � α? 	 φ � there is a transition to � v, φ � , if one of the following holds:

– α is
�
or
� d;

– α is p or pd and a � Vp;

– α is � p or � � p � d and a � Vp.

Otherwise, no moves can be done.
� From

�
v, � γ1 � γ2 	 φ � transitions lead to � v, � γ1 	 φ � and � v, � γ2 	 φ � .� From
�
v, � a 	 φ � there are transitions to each of � � w, φ � � � v, w � � Ea � , for all

a � A.� From
�
v, � γ � 	 φ � or � v, � γ � 	 φ � two transitions lead to

�
v, φ � and respectively�

v, � γ; γ � 	 φ � .

. Expressing parity semantics � 

� From
�
v, � γ1; γ2 	 � there is a transition to � v, � γ1 	 � γ2 	 φ � .

In order to determine the priority assignment, we first introduce a measure for

the alternated nesting of iteration in GL-games.

Definition.. (Star hierarchy). ForGL-games innegationnormal formwedefine

the following star alternation hierarchy:

(i) �e first level of the hierarchy, Σ
�

0

� Π
�

0
, consists of the

�

- and � -free games.

(ii) For every higher level, Σ
�

i
�
1
is formed by closing Σ

�

i � Π
�

i under ; , � , � and
�

.

(iii) �e levelΠ
�

i
�
1
is obtained dually, by closing under � instead of

�

.

Only the positions of the form
�
v, � γ � 	 φ � or � v, � γ � 	 φ � receive significant priority

colourings. Towards this, we look at the least i such that γ � Σi � Πi and assign�
v, � γ � 	 φ � to Ω2i

�
1 or, respectively,

�
v, � γ � 	 φ � to Ω2i

�
2. All remaining positions are

set to some irrelevant, high priority.

When we refer to the game �
� �
, ψ, u � , � ψ, u � we will usually not mention the

root
�
ψ, u � explicitly and write �

� �
, ψ, u � , or simply �

� �
, ψ � .

Essentially, the parity game obtained in this way for ψ follows the construction

of the semantic game for the translation of ψ into Lµ. �erefore, the correctness of

the construction follows immediately from the correctness of the translation.

Proposition ... A formula ψ � GL holds in a Kripke structure � , u if, and only if,
Player 0 has a winning strategy in the game �

� �
, ψ, u � .

Notice, that the number of positions inG
� �
, ψ, u � is bounded byO � � A � � � ψ � � .

Since the problem, whether Player 0 has a winning strategy in a parity game is

known to be inNP � Co-NP we can immediately conclude

Corollary ... �e model checking problem for GL over finite structures is in

NP � Co-NP.

. E  

In this section we will show that Game Logic is able to express the winning

conditions for parity games. Since these games capture the semantics of GL, this

means that the formalism of GL is strong enough to express its own definition of

 �  Game Logic

truth via the associated game structure. Moreover, it can also express the truth of

Lµ-formulae via these games. Intuitively, this indicates that the power of alternation

of Game Logic cannot be lower than that of the µ-calculus.

To make this precise, we first need to define our measure of alternation in GL.

�ealternationlevelsof theLµ hierarchyrecordthenumberofnestedalternations

between least and greatest fixed point operators. For formulae in negation normal

form, thiscorrespondstothenestingof
�

and � operatorswithinthegamemodalities.

Wecanthusextendthestarhierarchyovergames fromDefinition.. toahierarchy

over formulae.

Definition .. (Alternation hierarchy for GL). �e alternation hierarchy of GL

is the sequence
�
Σi � i � ω of sets consisting of formulae ψ in negation normal form,

such that

ψ � Σi iff � γ � � γ 	 φ � cl � ψ � � � Σ �

i � Π
�

i .

Next, we construct a GL formula to express the winning condition for Player 0

in a parity game
�

�

�
V,V0, E, Ω � with n priorities. In line with our remarks to the

construction of the corresponding formula in the µ-calculus (see Definition ..),

we will compose, for every priority i, a game γi corresponding to a subgame of the

parity game
�
. Our intention is to tailor γi so that it reflects the effectivity of Angel

to ensure in each play of the parity game
�
that he either wins, or the play reaches

a priority less than i. �en, γ1 describes its effectivity in the whole parity game.

Let a be the unique atomic game action corresponding to amove fromone game

position to another.�en, Angel’s effectivity in a single gamemove is described by

the composite game:

f � � V0?; a � V1?; a
d

Assuming n is odd, consider the sequence
�
γi � 1 �

i
�
n ofGL-games starting with

γn � �

�
Ωn?; f � �

;Ω � n?
and, for any even index i � n,

γi � �

�
Ω � i?

d;
�
Ωi?; f � Ω � i?; γi �

1 � � � ;Ω � i? d
while for i � n odd,

γi � �

�
Ωi?; f � Ω � i?; γi �

1 � �

;Ω � i?

. Expressing parity semantics � 

Beforeweproceed, let us seewhich options the players actually have in a game γi .

First, for a player to hold the star (or circle) means only little choice here, since he

can stop iterating γi only when some priority less then i is seen. �is is required

by the guards Ω � i? and Ω � i? d at the exit point of the iteration. But note that, in
that case he is forced to stop iterating, otherwise he loses. For Demon this is stated

explicitly by the condition Ω � i at the entry of the iteration, when i is even. For

Angel instead, this guard needs not to be set as he has to make his choices in such a

way that f is finally being played and it is pointless for him to cheat at that point: if

the current position in
�
has priority j he will always choose towards reaching the

subgame
�
Ωj?; f � in γj. Since all � choices are determined by the value of j, entering

a game γi with i � jwould lead Player 0 to fail the test aßer his next � choice.�us,

the actual choices take place in the structure, that is, when f is being played.

We are interested in γ1. Please note, that the meaning of any formula � γ1 	 φ does
not depend on φ, since γ1 is either finished by surrender or it never ends. �us we

can safely choose φ � � � . Let us denote � γ1 	 � byWn
� .

Example. For n � 3we obtain, by replacingΩ � 1 with � and omitting the ; operator,���
Ω1?f � Ω � 1?

�
Ω � 2?

d
�
Ω2?f � Ω � 2?

�
Ω3?f � �

Ω � 3? ��� �
Ω � 2? d � �

��� �
Proposition ... For every parity game

�
, u of index n we have

�
, u � Wn

� iff
�
, u � Wn.

Proof. Our intention is to translate the proof of theWn � Lµ on � , v into a proof
of Wn

� � GL on the same structure, and vice versa. Towards this, we look at the

model checking games resulting from the two formulae � � � �
� �
,Wn, u � , and

respectively, � � � � �
� �
,Wn

� , u � . Herein, the proofs appear as winning strategies.
�us, we can rephrase our aim in terms of parity games: If Player 0 has a winning

strategy in � then he also has a strategy in � � (and we are able to construct it), and

vice versa.

Let us assume that
�
, v satisfiesWn, i.e., Player 0has awinning strategy σ in

�
, u.

Hence, he also has a winning strategy τ in � . Observe that the relevant advices of
τ are all transitions of the type

�
v, � Zi � � �

w, Zi � where is i the priority of v. In
other words, the strategy τ of Player 0 in � is uniquely determined by his strategy

σ in
�
, u.

Now,gettingback toGL, in the lightof theaboveremarksconcerning the freedom

of choice in γi, we can see that for anywinning strategy of Player 0 in � � the relevant

 �  Game Logic

choices are structure choices of the type
�
v, a; ξi � � �

v, ξi � where, for i the priority
of v (assumed odd),

ξi
� �
�
Ωi?; f � Ω � i?; γi �

1 � �

;Ω � i?; γi � 1; γi � 2; � γ1 	 � .

Let us consider the strategy τ � for Player 0 in � � which works like σ (and τ) on

structure choices while preventing him on formula choices (� or �) to lose within

the next two steps.

Clearly, τ � carries precisely the same information as τ. In fact, both strategies

mirror the winning strategy σ on
�
, u. It is easy to verify that the priorities in �

and � � are assigned in a compatibleway, such that the set of plays according to these

strategies are essentially the same for both model checking games, consequently,

all wins for Player 0.

By the same token, we can also show conversely, that a winning strategy for

Player 0 in � � can be transferred via projection onto
�
, u to a winning strategy

in � . �is concludes our proof. �

Since for every number n, the formula Wn describing the parity conditions

for a game with n priorities is hard for the n-th level of the µ-calculus alternation

hierarchy, the translationof these formulae intoGL implies the following interesting

result.

�eorem ... No finite level of the µ-calculus alternation hierarchy captures the

expressive power of GL.

Moreover, we can conclude that the strictness of the alternation hierarchy for

the µ-calculus, formulated�eorem .., carries over to Game Logic.

�eorem ... �e alternation hierarchy of Game Logic is strict.

Proof. Obviously, Wn
� is contained in Σn. Since the translation of GL-formulae

into Lµ preserves the alternation level, that is, the number of alternated nestings

of
�

and � translates into the same number of nested least and greatest fixed point

operators, and the Lµ alternation hierarchy is strict, no GL-formula ψ � Σn � 1 can
be equivalent toWn

� . �

Finally, observe that the length ofWn
� is at most quadratic in n. Since themodel-

checking problem for an Lµ-formula ψ of alternation level n in a structure
�
, u can

be reduced to the problem of establishing whether Player 0 has a winning strategy

. Hierarchies within the µ-calculus � 

in �
� �
,Wn, u � , or equivalently, to the model-checking problem for Game Logic

�
� �
, ψ, u � � Wn

� , we obtain the following connection between the complexity of

GL and Lµ.

�eorem ... Model-checking for the µ-calculus can be performed in polynomial

time, if and only if, this is the case for Game Logic.

Although the above results show that we can define classes in GL which are

arbitrarily hard for Lµ, an indication not to underestimate its expressive power,

the question whether Game Logic attains the full power of Lµ remains open. A

definitive answer to this question results from our investigation of the Lµ variable

hierarchy in Chapter .

. H   µ-

Formulations of the parity winning condition in Lµ have been used by several

authors as a fundamental tool in different contexts. In [], Emerson and Jutla

proved that parity games are determined by characterising the winning positions

of each player in Lµ. Since these characterisations are complements of each other,

it follows that there are no undetermined positions. Via the correspondence es-

tablished by Gurevich and Harrington [] between parity games and Rabin tree

automata, this also implies that Rabin automata are closed under complement, thus

yielding a considerable simplification for the key argument in the proof of Rabin’s

decidability theorem [] of the MSO-theory of trees. As an even more powerful

result, in [] Walukiewicz proved that the MSO-theory of iterated structures is

decidable, using a very subtle refinement of this technique (see also [] for a treat-

ment on this topic). Considering parity games over infinite push-down graphs [],

Walukiewicz showed that these games are determined with automatic strategies,

by deriving a progress measure from an Lµ formulation of the parity winning con-

dition. Finally, the witnessing formulae developed in the different proofs of the Lµ
alternation hierarchy by Arnold, Lenzi, and Bradfield [, , , , ] all variants

of this formula.

Interestingly, in each of these contexts, the characterisation of a parity game

with n priorities was written over n variables. However, our formulation of this

property in Game Logic, which is embedded in the two-variable fragment of Lµ,

shows that already two variables are sufficient to express this property.

 �  Game Logic

Corollary ... �e set of winning positions for Player 0 in a parity game with n

priorities can be characterised by a µ-calculus formula using atmost two variables, for

any number n.

Since we believe this matter to be interesting beyond our investigation of Game

Logic, we present here an explicit Lµ-formulation of the parity condition in a game

with n priorities, over two variables.

Using the notation from Definition .. for any n, the sequence of formulae φi
for i � n, . . . , 1 is constructed inductively as follows:

φi
�
X � � � µY.

� �
Ωi �

�
Y � � � Ω � i � X � � � Ω � i � φi �

1

�
Y � � �

when i is odd and, otherwise,

φi
�
Y � � � � X.

���
Ωi �

�
X � � � Ω � i � Y � � � Ω � i � φi �

1

�
X � � � .

Recall that empty disjunctions asΩ � 1 orΩ � n are interpreted as false.
�e formula φ1 obtained in this way characterises the winning positions of

Player 0 in a party game with n, obviously with not more than two variables.

Example. For n � 3 we get

µX.
�
Ω1

�
X � Ω � 1 � Y.

�
Ω2

�
Y � Ω � 2X � Ω � 2

�
µX.Ω3

�
X � Ω � 3Y � ��� .

Particularly, this implies that, in terms of alternation, the entire complexity of

the µ-calculus is encountered already in the second level of its variable hierarchy.

Corollary ... �e alternation hierarchy of the two-variable fragment of Lµ is strict

and not contained in any finite level of the µ-calculus alternation hierarchy.

 P 

P
 ’ G L considered in the previous chapter provides an in-

terpretation of modalities by means of games. In the present chapter, we study

a different way of defining quantification in terms of games. Here, instead of tran-

sitions, the target object will be paths resulting from infinitely many interactions

between two players.

In the games underlying to this prospective, the players select, in each move,

a path of arbitrary finite length, rather than just an edge. �e outcome of a play

is an infinite path, and the winning condition is given by a formula from MSO,

LTL, or FO. Such games have a long tradition in descriptive set theory (in the

form of Banach-Mazur games) and have recently been shown to have interesting

application for planning in nondeterministic domains. In a first instance, we will

investigate the structure of winning strategies for certain subclasses of path games.

With each formalism defining a winning condition on infinite paths, we then

associate a logic over graphs, defining the winning regions of the associated path

games. We investigate the expressive power of the logics obtained in this way. It

turns out that the winning regions of path games with MSO-winning conditions

are definable in Lµ. Further, if the winning condition is defined in first-order logic

(over paths), then the winning regions are definable in monadic path logic, or, for

a large class of games, even in first-order logic. As a consequence, winning regions

of LTL path games are definable in CTL
�

.

. O

Pathgameshavebeenstudied indescriptiveset theory, in the formofBanach-Mazur

games (see [, Chapter ] or [, Chapter .H]). In their original variant (see [,

pp. –], the winning condition is a setW of real numbers; in the first move,

one of the players selects an interval d1 on the real line, then his opponent chooses

an interval d2
� d1, then the first player selects a further refinement d3

� d2 and so



 �  Path games

on.�e first player wins if the intersection � n � ω dn of all intervals contains a point
ofW , otherwise his opponent wins. �is game is essentially equivalent to a path

game on the infinite binary treeT2 or theω-branching treeTω. An important issue

in descriptive set theory is determinacy: to characterise the winning conditionsW

such that one of the two players has a winning strategy for the associated game.

�is is closely related to topological properties ofW (see Section .).

In a quite different setting, Pistore and Vardi [] have used path games for

task planning in nondeterministic domains. In their scenario, the desired infinite

behaviour is specified by formulae in linear temporal logic LTL, and it is assumed

that the outcome of actions may be nondeterministic; hence a plan does not have

only one possible execution path, but an execution tree. Between weak planning

(some possible execution path satisfies the specification) and strong planning (all

possible outcomes are consistent with the specification) there is a spectrum of

intermediate cases such as strong cyclic planning: every possible partial execution

of the plan can be extended to an execution reaching the desired goal. In this

context, planning can be modelled by a game between a friendly player E and a

hostile player A selecting the outcomes of nondeterministic actions. �e game is

played on the execution tree of the plan, and the question is whether the friendly

player E has a strategy to ensure that the outcome (a path through the computation

tree) satisfies the given LTL-specification. In contrast to the path games arising in

descriptive set theory, themain interest here are path gameswith finite alternations

between players. For instance, strong cyclic planning corresponds to a AEω-game

where a single move by A is followed by actions of E. Also the relevant questions

are quite different: Rather than determinacy (which is clear for winning conditions

in LTL) algorithmic issues play the central role. Pistore and Vardi show that the

planning problems in this context can be solved by automata-based methods in

E.

O   . Here we consider path games in a general,

abstract setting, but with emphasis on definability and complexity issues. In Sec-

tion . we describe path games and discuss their basic structure. In Section . we

review the classical results on determinacy of Banach-Mazur games.We then study

in Section .. path games that are positionally determined, i.e., admit winning

strategies that only depend on the current position, not on the history of the play.

In Section . we investigate definability issues. We are interested in the question

how the logical complexity of defining a winning condition (a property of infinite

paths) is related to the logical complexity of definingwhowins the associated game

. Path games and their values � 

(a property of game graphs). In particular, wewill see that thewinner of path games

with LTL winning conditions is definable in CTL
�

.

. P    

Path games are a class of zero-sum infinite two-player games with complete in-

formation, where moves of players consist of selecting and extending finite paths

through a graph. �e players will be called Ego and Alter (in short E and A). All

plays are infinite, and there is a utility function u, defining for each play a real

number. �e goal of Ego is to maximise the payoff while Alter wants to minimise

it.

A strategy for a player is a function, assigning to every initial segment of a play

a next move. Given a strategy f for Ego and a strategy g for Alter in a game � , we
write f ĝ for the unique play defined by f and g, and u

�
f ĝ � for its utility.�e values

of a game � , from the point of view of Ego and Alter, respectively, are

e
�

� � � � max
f

min
g
u
�
f ĝ � and a

�
� � � � min

g
max
f

u
�
f ĝ � .

A game is determined if e
�

� � � a
�

� � . In the case of win-or-lose games, where the

utility of any play is either  or , this amounts to saying that one of the two players

has a winning strategy. For two games � and
�

we write ��� � if e
�

� � � e � � �
and a

�
� � � a � � � . Finally, � � � if ��� � and

�
� � .

Let G �

�
V, F, v � be an arena consisting of a directed graph

�
V, F � without

terminal nodes, a distinguished start node v, and let u � Vω � � be a utility

function that assigns a real number to each infinite path through the graph.

We denote a move where Ego selects a finite path of length � 1 by E and an ω-

sequence of suchmoves by Eω; for Alter, we use corresponding notationA andAω.

Hence, for any arena G and utility function u we have the following games.
� � EA � ω � G, u � and � AE � ω � G, u � are the path games with infinite alternation

of finite path moves.

� � EA � kEω � G, u � and A
�
EA � kEω � G, u � , for arbitrary k � � , are the games

ending with an infinite path extension by Ego.

� � AE � kAω � G, u � and E � AE � kAω � G, u � are the games ending with an infinite

path extension by Alter.

 �  Path games

All these games together form the collection Path
�
G, u � of path games. (Obvi-

ously two consecutive finite path moves by the same players correspond to a single

move, so there is no need for prefixes containing EE or AA.)

It turns out that this infinite collection of games collapses to a finite lattice of just

eight different games. �is has been observed independently by Pistore and Vardi

[].

�eorem ... For every arena G and every utility function u, we have

Eω
�
G, u ��� EAEω

�
G, u � � AEω

�
G, u �

��� ���

�
EA � ω � G, u ���

�
AE � ω � G, u �

��� ���

EAω
�
G, u � � AEAω

�
G, u � � Aω

�
G, u �

Further, every path game
� � Path � G, u � is equivalent to one of these eight games.

Proof. �e comparison relations in the diagram follow by trivial arguments. We

just illustrate them for one case. To show that � �
�

for � � EAEω
�
G, u �

and
�

�

�
EA � ω � G, u � , consider first an optimal strategy f of Ego in

�
, with

e
� � � � ming P

�
f ĝ � . Ego can use this strategy also for � : he just plays as if he

would play � , making an arbitrary move whenever it would be A’s turn in
�
. Any

play in � that is consistentwith this strategy, is also aplay in
�
that is consistentwith

f , and therefore has utility at least e
� � � . Hence e � � � � e � � � . Second, consider an

optimal strategy g of Alter in � , with a
�

� � � maxf P
�
f ĝ � . In � �

�
EA � ω � G, u � ,

Alter answers the first move of E as prescribed by g, and moves arbitrarily in all

further moves. Again, every play that can be produced against this strategy is also

a play of � that is consistent with g, and therefore has utility at most a
�

� � . Hence
a
�

� � � a � � � . In all other cases the arguments are analogous.

To see that any other path game over G is equivalent to one of those displayed,

it suffices to show that

()
�
EA � kEω � G, u � � EAEω � G, u � , for all k � 1, and

() A
�
EA � kEω � G, u � � AEω � G, u � , for all k � 0.

By duality, we can then infer the following equivalences:

. Determinacy � 

()
�
AE � kAω � G, u � � AEAω

�
G, u � for all k � 1, and

() E
�
AE � kAω � G, u � � EAω

�
G, u � for all k � 0.

�e equivalences () and () follow with similar reasoning as above. Ego can

modify a strategy f for EAEω
�
G, u � to a strategy for

�
EA � kEω � G, u � . He chooses

the first move according to f and makes arbitrary moves the next k � 1 times; he

then considers the entire A
�
EA � k � 1-sequence of moves, which were played aßer

his first move, as one singlemove ofA in EAEω
�
G, u � and completes the play again

according to f . �e resulting play of
�
EA � kEω � G, u � is a consistent play with f in

EAEω
�
G, u � . Conversely a strategy of Ego for � EA � kEω also works if his opponent

lets Ego move for him in all moves aßer the first one, i.e., in the game EAEω
�
G, u � .

�is proves that the e-values of the two games coincide. All other equalities are

treated in a similar way. �

�e question arises whether the eight games displayed in the diagram are really

different orwhether they canbe collapsed further.�eanswerdependson the game

graph and the utility function, but for each comparison � in the diagram we find

simple cases where it is strict. Indeed, standard winning conditionsW � � 0, 1 � ω
(defining the utility function u

�
π � � 1 if π � W , and u

�
π � � 0 otherwise) show

that the eight games in the diagram are distinct on appropriate game graphs. Let us

consider here the completely connected graph with two nodes  and .

If the winning condition requires some initial segment then Ego wins the path

games where he moves first and loses those where Alter moves first. �us, starting

conditions separate the leß half of the diagram from the right one.

Reachability conditions and safety conditions separate games in which only one

player moves, i.e., with prefix Eω or Aω respectively, from the other ones.

A game with a Büchi condition is won by Ego if he has infinite control and lost

if he only has a finite number of finite moves (prefix ending with Aω). Similarly,

Co-Büchi conditions separate the games which are controlled by Ego from some

time onwards (with prefix ending in Eω) from the others.

. D

From now on we consider win-or-lose games, with a winning condition given by

a set of playsW . Player E wins the path game if the resulting infinite path belongs

toW , otherwise Player A wins.

 �  Path games

�etopological properties ofwinning conditionsW implying that the associated

path games are determined are known from descriptive set theory. We just recall

the basic topological notions and the results. �en, we will proceed to the issue

of memoryless determinacy, i.e. to the question which path games admit winning

strategies that only depend on the current position, not on the history of the play.

Note that path games with only finite alternations between the two players are

trivially determined, forwhateverwinning condition; hencewe restrict attention to

pathgameswithprefix
�
EA � ω or � AE � ω, andbyduality, it suffices toconsider

�
EA � ω .

By unravelling the game graph to a tree, we can embed any game
�
EA � ω � G,W � in

a Banach-Mazur game over the ω-branching tree Tω. �e determinacy of Banach-

Mazur games is closely related to the Baire property, a notion that arose from

topological classifications due to René Baire.

T. Weconsider thespaceBω of infinite sequencesovera setB, endowed

with the topology whose basic open sets areO
�
x � � � x � Bω, for x � B �

. A set L � Bω
is open if it is a union of setsO

�
x � , i.e., if L � W � Bω for someW � B �

. A treeT � B �

is a set of finite words that is closed under prefixes. It is easily seen that L � Bω
is closed (i.e., the complement of an open set) if L is the set of infinite branches of

some tree T � B �

, denoted L �
 T � .�is topological space is calledCantor space in

case B � � 0, 1 � , and Baire space in case B � ω.

�e class of Borel sets is the closure of the open sets under countable union and

complementation. Borel sets form a natural hierarchy of classes
�

0

η for 1 � η � ω1,

whose first levels are

�
0

1
(or G) � the open sets

�
0

1
(or F) � the closed sets

�
0

2
(or Fσ) � countable unions of closed sets

�
0

2
(or Gδ) � countable intersections of open sets

In general,
�

0

η contains the complements of the
�

0

η-sets,
�

0

η
�
1
is the class of

countable unions of
�

0

η-sets, and
�

0

λ
� � η � λ �

0

η for limit ordinals λ.

We recall that a set X in a topological space is nowhere dense if its closure does

not contain a non-empty open set. A set ismeager if it is a union of countablymany

nowhere dense sets and it has the Baire property if its symmetric difference with

some open set is meager. In particular, every Borel set has the Baire property.

We are now ready to formulate the �eorem of Banach and Mazur (see e.g.

[, ]). To keep in line with our general notation for path games we write

. Determinacy � 

�
EA � ω � Tω,W � for the Banach-Mazur game on theω-branching tree with winning

conditionW .

�eorem .. (Banach-Mazur). (i) PlayerA has awinning strategy for the game�
EA � ω � Tω,W � if, and only if,W is meager.

(ii) Player E has a winning strategy for
�
EA � ω � Tω,W � if, and only if, there exists a

finite word x � ω �

such that x � ωω � W is meager (i.e.,W is co-meager in some

basic open set).

As a consequence, it can be shown that for any class Γ �
�
ωω � that is closed

under complement and under union with open sets, all games
�
EA � ω � Tω,W �

with W � Γ are determined if, and only if, all sets in Γ have the Baire property.

Since Borel sets have the Baire property, it follows that Banach-Mazur games are

determined for Borel winning conditions. (Via a coding argument, this can also

been easily derived form Martin’s �eorem, saying that Gale-Stewart games with

Borel winning conditions are determined.)

Standard winning conditions used in applications (in particular the winning

conditions that can be described in S1S, i.e., MSO interpreted over paths) are

contained in very low levels of the Borel hierarchy. Hence all path games of this

form are determined.

.. M 

Ingeneral,winningstrategies canbeverycomplicated.As in thecaseofparitygames

considered in the previous chapter, we are particularly interested in memoryless,

or positional strategies which only depend on the current position, not on the

history of the play. On a game graph G �

�
V, F � a memoryless strategy has the

form f � V � V
�

assigning to every move v a finite path from v through G.

To start, we present a simple example of a path game, that is determined, but

does not admit a memoryless strategy.

Example. Let G2 be the completely connected directed graph with nodes  and ,

and let thewinning condition for Ego be the set of infinite sequences with infinitely

many initial segments that containmoreones thanzeros.Clearly, Egohas awinning

strategy for
�
EA � ω � G,W � , but not a memoryless one.

Note that this winning condition is on the
�

2-level of the Borel hierarchy. In

fact, this is the lowest level with such an example.

 �  Path games

Proposition ... If Ego has a winning strategy for a path game
�
EA � ω � G,W � with

W � �
0

2
, then he also has a memoryless winning strategy.

Proof. Let G �

�
V, F � be the game graph. SinceW is a countable union of closed

sets, we have W � � n � ω
 Tn � where each Tn � V �

is a tree. Further, let f be any

(non-positional) winning strategy for Ego.We claim that, in fact, Ego can win with

one move.

We construct this move by induction. Let x1 be the initial path chosen by Ego

according to f . Let i � 1 and suppose that we have already constructed a finite

path xi � � n � i Tn. If xiy � Ti for all finite y, then all infinite plays extending xi
remain in W , hence Ego wins with the initial move w � xi. Otherwise choose

some yi such that xiyi � Ti, and suppose that Alter prolongs the play from xi to

xiyi. Let xi �
1 � � f

�
xiyi � the result of the next move of Ego, according to his winning

strategy f .

If this process did not terminate, then it would produce an infinite play that is

consistent with f and won by Alter. Since f is a winning strategy for Ego, this is

impossible.Hence there exists somem � ω such that xmy � Tm for all y.�us, if Ego

moves to xm in his opening move, then he wins, no matter how the play proceeds

aßerwards. In particular, Ego wins with a memoryless strategy. �

While many important winning conditions are outside
�

0

2
, they may well be

Booleancombinationsof
�

0

2
-sets. For instance, this is the case forparity conditions,

Muller conditions, and more generally, S1S-definable winning conditions. In the

classical framework of infinite games on graphs (where moves are along edges

rather than paths) it is well-known that parity games admit memoryless winning

strategies, whereas there are simple games with Muller conditions that require

strategies with somememory.We will see that for path games, the class of winning

conditions admitting positional winning strategies is much larger than for classical

graph games.

Let G �

�
V, F � be a game graph with a colouring λ � V � C of the nodes

with a finite number of colours. �e winning condition is given by an ω-regular

setW � Cω which is defined by a formula in some appropriate logic over infinite

paths. In the most general case, we have S1S-formulae (i.e., MSO-formulae on

infinite paths with vocabulary ��� � � � Pc � c � C �) but we will also consider weaker
formalisms like first-order logic or, equivalently, LTL.

M   . As we mentioned before, typical ex-

amples of winning conditions for which strategies require memory on single-step

. Determinacy � 

games are Muller conditions. Such a condition is specified by a family � � 2C of
winning sets; a play is winning if the set of colours seen infinitely oßen belongs

to � .

Proposition ... All Muller path games
�
EA � ω � G, � � and � AE � ω � G, � � admit

memoryless winning strategies.

Proof. We will write w � v to denote that position w is reachable from position

v. For every position v � V , let C � v � be the set of colours reachable from v, that

is, C
�
v � � � � λ � w � � w � v � . Obviously, C � w � � C � v � whenever w � v. In case

C
�
w � � C

�
v � for all w � v, we call v a stable position. Note that from every

u � V some stable position is reachable. Further, if v is stable, then every reachable

position w � v is stable as well.
We claim that Ego has a winning strategy in

�
EA � ω � G, � � iff there is a stable

position v that is reachable from the initial position v0, so that C
�
v � � � .

To see this, let us assume that there is such a stable position v with C
�
v � � � .

�en, for every u � v, we choose a path p from u so that, when moving along p,

each colour of C
�
u � � C

�
v � is visited at least once, and set f � u ��� � p. In case v0 is

not reachable from v, we assign f
�
v0 � to some path that leads from v0 to v. Now f

is a memoryless winning strategy for Ego in
�
EA � ω � G, � � , because, aßer the first

move, no colours other then those inC
�
v � are seen.Moreover, every colour inC

�
v �

is visited at each move of Ego, hence, infinitely oßen.

Conversely, if for every stable position v reachable from v0 we have C
�
v � ��� ,

we can construct a winning strategy for Alter in a similar way. �

Note that in a finite arena all positions of a strongly connected component that

is terminal, i.e., with no outgoing edges, are stable.�us, the above characterisation

translates as follows: Ego wins the game iff there is a terminal component whose

set of colours belongs to � . Obviously this can be established in linear time w.r.t.

the size of the arena and the description of � .

Corollary ... On a finite arenaG, path games with aMuller winning condition �
can be solved in timeO

�
� G � � � � � � .

�eparity condition can be seen as a special case of theMuller condition. Recall

that, given an arena G �

�
V, F � with positions coloured by a priority function

Ω � V � � of finite range, this condition requires that the least priority seen

infinitely oßen on a play is even. It turns out that path games with parity conditions

 �  Path games

are positionally determined for any game prefix. (By�eorem .. we can restrict

attention to the eight prefixes Eω, Aω, AEω, EAω, EAEω,AEAω,
�
EA � ω, and � AE � ω.)

Proposition ... Every parity path game γ
�
G, parity � is determined via a memo-

ryless winning strategy.

G S1S- . In the following, we will use parity

gamesas an instrument to investigatepathgameswithwinningconditions specified

in the monadic second-order logic of paths, S1S. It is well known that every

S1S-definable class of infinite words can be recognised by a deterministic parity

automaton (see e.g. []). For words over the set of colours C, such an automaton

has the form � �

�
Q, C, q0, δ, Ω � , where Q is a finite set of states, q0 the initial

state, δ � Q � C � Q a deterministic transition function, andΩ � Q � � a priority

function. Given an input word, a run of � starts at the first word position in state

q0; if, at the current position v the automaton is in state q, it proceeds to the next

position assuming the state δ
�
q, λ
�
v � � . �e input is accepted if the least priority of

a state occurring infinitely oßen in the run is even.

Via a reduction to parity games, we will first show that S1S-games admit finite-

memory (or, automatic) strategies.By refining these,wewill thenestablish strategies

that are independent of the memory state, that is, positional.

Proposition ... For any winning condition ψ � S1S and any game prefix γ, the

path games γ
�
G, ψ � admit finite-memory winning strategies.

Proof. Let � �

�
Q, C, q0, δ, Ω � be an automaton that recognises the set of words

defined by ψ. Given an arena G �

�
V, E � with starting position v0, we define the

synchronised product G ��� to be the arena with positions V � Q, edges from�
v, q � to � v � , q � � whenever � v, v � � � E and δ

�
q, λ
�
v � � � q

�
, and designated starting

position
�
v0, q0 � . We will use two sets of colours for G ��� : one inherited from

G, λ
�
v, q � � � λ

�
v � , and the other one inherited from � , Ω

�
v, q � � � Ω

�
q � . When

referring to a specific colouring we write, respectively, G ����� λ and G ����� Ω.
Between the games on G and G ��� we can observe a strong relationship.

(i) For every prefix γ, a play starting from position
�
v0, q0 � is winning in

γ
�
G ���	� λ, ψ � if, and only if, it is winning in γ � G ���	� Ω, parity � .

(ii) �e arenas G, v0 and G ���	� λ,
�
v0, q0 � are bisimilar.

�e first assertion follows from the meaning of the automaton � , and entails a

strategical equivalence between the two games: Any winning strategy for a certain

. Determinacy � 

player inγ
�
G � �	� Ω, parity � is alsoawinning strategy for thatplayer inγ � G � �	� λ, ψ �

and vice versa. By Proposition .., there always exists a memoryless winning

strategy for the former game and, hence, for the latter one as well.

�e second statement holds because � is deterministic. It implies that every

winning strategy for a path game γ
�
G, ψ � starting fromposition v0 is also awinning

strategy for the game γ
�
G � � , ψ � starting from �

v0 , q0 � . Conversely, everywinning
strategy f for the latter game induces a winning strategy f

�
for the former one,

namely f
� �
v, s � � � f

� �
v, q
� � , s � where q � � � δ

�
q0, s � is the state reached by the

automaton aßer processing the word s. Since f can be chosen to be positional, we

obtain a winning strategy f
�
on γ

�
G, ψ � that does not depend on the entire history,

but only on a finite memory, namely the set of states Q. �

Note that the finite-memory strategy f
�
constructed above does not yet need to

be positional, since a position v in G has several copies
�
v, q � in G � � at which

the prescriptions of f may differ. In order to obtain a state-independent winning

strategy for γ
�
G, ψ � we will unify, for each node v � V , the prescriptions f � v, q � for

those position
�
v, q � which are reachable in a play of according to f .

�eorem ... For any winning condition ψ � S1S, the games
�
EA � ω � G, ψ � and�

AE � ω � G, ψ � admit memoryless winning strategies.

Proof. LetusassumethatEgowins thegame
�
EA � ω � G, ψ � starting frompositionv0.

We will base our argumentation on the game
�
EA � ω � G � � , ψ � , where Ego has a

memoryless winning strategy f .

For any v � V , we denote by Qf

�
v � the set of states q so that the position � v, q �

can be reached from position
�
v0, q0 � in a play according to f :

Qf

�
v � � � � δ � q0, s � � s prolongs f � v0, q0 � and leads to v � .

Let � q1, q2, . . . , qn � be an enumeration of Qf

�
v � , in which the initial state q0 is

taken first, in case it belongs toQf

�
v � .We construct a path associated to v along the

following steps. First, set p1 � � f
�
v, q1 � ; for 1 � i � n, let � v � , q � � be the node reached

aßer playing the path p1 � p2 � � � pi � 1 from position
�
v, qi � and set pi � � f

�
v
�
, q
� � .

Finally, let f
� �
v � be the concatenation of p1, p2, . . . , pn.

Now, consider a play on
�
EA � ω � G ��� , ψ � in which Ego chooses the path f � � v �

at any node
�
v, q � � V � Q. �is way, the play will start with f

�
q0, v0 � . Further,

at any position
�
v, q � at which Ego moves, the prescription f

� �
v � contains some

segment of the form
�
v
�
, q
� � � f � v � , q � � . In other words, everymove of Ego has some

 �  Path games

q1
f

�
v,q1 � �

q2 q �
2

f
�
v1 ,q �

2 � �

q3
f

�
v2 ,q �

3 �
q �
3

�

qn q �n
f

�
vn � 1 ,q �

n � �

v
f

�
v,q1 �

v1
f

�
v1 ,q �

2 �
v2

f
�
v2 ,q �

3 �
v3 vn � 1

f
�
vn � 1 ,q �

n � �

Figure .: Merging strategies at node v

“good part” which would also have been produced by f at the position
�
v
�
, q
� � . But

this means that the play cannot be distinguished, post-hoc, from a play where Ego

alwaysmoved according to the strategy f while all the “badparts”were produced by

Alter. Accordingly, Ego wins every play of
�
EA � ω � G � � , ψ � starting from �

q0, v0 � .
�is proves that f

�

is amemoryless strategy forEgo in the game
�
EA � ω � G � � , ψ � .

Since the values do not depend on the second component, f
�

induces amemoryless

strategy for Ego in
�
EA � ω � G, ψ � .

�e same construction works for the case
�
AE � ω � G, ψ � , if we take instead of

Qf

�
v � the setQ � v � � � � δ � q0, s � � s is a path from v0 to v � . �

�e above proof relies upon the fact that the players always take turns. If we

consider games where the players alternate only finitely many times, the situation

changes. Intuitively, a winning strategy of the solitaire player eventually forms

an infinite path which may not be broken apart into finite pieces to serve as a

memoryless strategy.

Proposition ... For any prefix γ with finitely many alternations between the

players, there are arenas G and winning conditions ψ � S1S so that no memoryless

strategy is winning in the game γ
�
G, ψ � .

Proof. Consider, for instance, the arena G2 from Example .. and a winning

condition ψ � S1S that requires the number of zeroes occurring in a play to be odd.

When starting from position 1, Ego obviously has winning strategies for each of

the games Eω
�
G, ψ � , AEω � G, ψ � , and EAEω � G, ψ � , but no memoryless ones. �

Nevertheless, these games are positionally determined for one of the players.

Indeed, if a playerwins a game γ
�
G, ψ � finally controlled byhis opponent, he always

has a memoryless winning strategy. �is is trivial when γ � � Eω, Aω, AEω, EAω � ;

. Determinacy � 

for the remaining cases EAEω andAEAω amemoryless strategy can be constructed

as in the proof of�eorem ...

Finally we consider winning conditions that do not depend on initial segments.

We say that ψ is a future-formula, if, for any ω-word π and any finite words x and

y, we have xπ � ψ if, and only if, yπ � ψ .

�eorem ... For any winning condition ψ � S1S specified by a future-formula and
every prefix γ, the games γ

�
G, ψ � admit a memoryless winning strategies.

Proof. �e core of our argument consists in showing that, given a solitaire game

Eω
�
G, ψ � , Ego has a uniform positional winning strategy that works for all starting

positions in his winning region.

We again consider the game Eω
�
G � � � Ω, parity � (see item (i) in the proof of

�eorem ..). When playing solitaire, path games do not differ from single-step

games, and it is well known that parity games admit winning strategies that are

uniform on the entire winning region. Let f be such a strategy. We use f to define a

memoryless strategy f
�

for � ω
�
G, ψ � as follows. Starting from anywinning position�

v0, q0 � in Eω � G � � � Ω, parity � , let � vn, qn � n � ω be the unique play according to f .
�ere are two cases. If the play visits only finitely many different positions, we have�
vi, qi � �

�
vj, qj � for some i, j and set f

� �
v0 � � � v0, v1, . . . , vi f

� �
vi � � � vi �

1, . . . , vj
(overwriting f

� �
v0 � if vi � v0).Otherwise, there are infinitelymanypositions

�
vj, qj �

where vj is fresh, in the sense that vj
�
vi for all i � j. In that case, we assign to

each fresh position vj the path f
� �
vj � � � vj �

1, . . . , vk which leads to the next fresh

position vk in the play. Next, for every node v where f
�
is still undefined but from

which a position v
� � dom � f � � is reachable in G, we choose a path t from v to v

�

and set f
� �
v � � � t. Aßer this, if dom

�
f
� � does not yet contain the entire winning

setW of Ego, we take a new starting position
�
v
�

0
, q0 � � W with v

�

0 � V � dom � f � � ,
and proceed as above, until f

�

is defined everywhere.

Weclaimthat f
�
is awinning strategy.Consider anyplayπ

�
that starts at awinning

position v for Ego in Eω
�
G, ψ � and that is consistent with f � . By the construction of

f
�
there exists a play π in the arenaG � � , consistent with f , such that the projection

of π to G differs from π
�
only by an initial segment. Now π is a winning for Ego

in Eω
�
G � � � Ω, parity � and therefore also for � ω

�
G � � � λ, ψ � (by item () in the

proof of �eorem ..). By item (), and since ψ is a future condition this implies

that π
�
is winning for Ego in the game Eω

�
G, ψ � .

�e caseAEω follows now immediately since EgowinsAEω
�
G, ψ � if all positions

v reachable from v0 are in his winning region. For the case EAEω, let g be a winning

 �  Path games

strategy for Ego. If g
�
v0 � leads to a position v from which v0 is again reachable,

then f
�
(constructed above for Eω

�
G, ψ � is a winning strategy also for EAEω � G, ψ � .

Otherwise, we may change f
�
for the initial position by f

� �
v0 � � � g

�
v0 � to obtain a

memoryless winning strategy. �e other cases follow by duality. �

. D

Wenowstudy thequestion inwhat logics (MSO,µ-calculus,FO,CTL
�

, . . .)winning

positions of path games with ω-regular winning conditions can be defined. Given

any formula φ from a logic on infinite paths (like S1S or LTL) and a quantifier

prefix γ for path games, we define the game formula γ.φ, to be evaluated over game

graphs, with the meaning that

G � γ . φ iff Player E wins the path game γ
�
G, φ � .

Note that theoperationφ � γ.φmapsa formulaover infinitepaths toa formulaover

graphs. Given a logic L over infinite paths, and a prefix γ, let γ.L � � � γ.φ � φ � L � .
As usual we write L � L � to denote that every formula in the logic L is equivalent

to some formula from the logic L
�
.

Our main definability result can be stated as follows.

�eorem ... For any game prefix γ,

(i) γ . S1S � Lµ;
(ii) γ . LTL � γ . FO � CTL �

.

Obviously, the properties expressed by formulae γ.φ are invariant under bisim-

ulation.�is has two relevant consequences:

(a) We can restrict attention to trees (obtained for instance by unravelling the

given game graph from the start node).

(b) It suffices to show that, on trees, γ . S1S � MSO, and γ . FO � MPLwhereMPL

is monadic path logic, i.e., monadic second-order logic where second-order

quantification is restricted to infinite paths.

�e first observation follows directly from the Modal Characterisation �eo-

rem .. of Janin andWalukiewicz that every bisimulation-invariant class of trees

. Definability � 

that isMSO-definable is also definable in the modal µ-calculus. �e second obser-

vation is a direct consequence of the Characterisation �eorem .. of CTL
�

in

terms ofMPL due to Hafer and�omas [] and Moller and Rabinovich [].

Proposition ... On trees,
�
EA � ω. S1S � MSO and

�
AE � ω. S1S � MSO.

Proof. Let x � y denote that y is reachable from x. A strategy for Player E in a

game
�
EA � ω � T,W � on a tree T �

�
V, F � is a partial function f � V � V , such that

w � f
�
w � for every w; it is winning if every infinite path through T containing

f
�
є � , y1, f � y1 � , y2, f � y2 � . . ., where f � yi � � yi �

1 for all i, satisfiesW . An equivalent

description can be given in terms of the set X � f
�
V � . A set X � V defines a

winning strategy for Player E in the game
�
EA � ω � T,W � if

(i)
� �
x � X � �

y
�
x � y � �

� z � X � � y � z � �
(ii) every path hitting X infinitely oßen is inW (i.e., it is winning for Player E)

(iii) X is non-empty.

Clearly these conditions are expressible inMSO. For the game
�
AE � ω � G,W � we

only have to replace () by the condition that the start node v is contained inX. �

Proposition ... Let γ be a game prefix with a bounded number of alternations

between E and A. �en γ . S1S � MSO and γ . FO � MPL.

Proof. Every move is represented by a path quantification; by relativising the

formula φ that defines the winning condition to the infinite path produced by the

players, we obtain anMSO-formula expressing that Player E has a winning strategy

for the game given by γ and φ. If φ a first-order formula over paths, then the entire

formula remains inMPL. �

�e most interesting case concerns winning conditions defined in first-order

logic (or equivalently, LTL). In our proof, we will use a normal form for first-order

logic on infinite paths (with �) that has been established by �omas []. Recall

that a first-order formula φ
�
x̄ � is bounded if it only contains bounded quantifiers

of form
�

� y � xi � or � �
y � xi � .

Proposition .. ([]). On infinite paths, every first-order formula is equivalent to

a formula of the form

�

i

�
� x
� �
y � x � φi � �

y
�

� z � y � ϑi �
where φi and ϑi are bounded.

 �  Path games

�eorem ... On trees,
�
EA � ω. FO � FO and

�
AE � ω. FO � FO.

Proof. Let ψ �
�
i

�
� x
� �
y � x � φi � �

y
�

� z � y � ϑi � be a first-order formula on

infinite paths describing a winning condition. We claim that, on trees,
�
EA � ωψ is

equivalent to the first-order formula

ψ
� � �

�
� p1 � � �

p2 � p1 � � � p3 � p2 � �
i � I ψ

� b �
i where

ψ � b �i � �

�
� x � p1 � � �

y . x � y � p2 � φi � � �
y � p2 � � � z . y � z � p3 � ϑi.

Let T �

�
V, E � and suppose first that Alter has a winning strategy for the game�

EA � ω � T, ψ � . We prove that T � � ψ �

. To see this we have to define an appropriate

Skolem function g � p1 � p2 such that for all p3 � p2 and all i � I
T � � ψ � b �i

�
p1, p2, p3 � .

Fixanyp1whichwecanconsideras thefirstmoveofEgo in thegame
�
EA � ω � T, ψ �

and any play P (i.e., any infinite path through T) that prolongs this move and that

is consistent with Alter’s winning strategy. Since Alter wins, we have that P � � ψ.
Hence there exists some J � I such that

P ���
i � J

�
x
�

� y � x � � φi � �
i � I � J � y

� �
z � y � � ϑi.

To put it differently, there exist
� forevery i � J andeverya � P awitnesshi � a � � P such thatP � � φi

�
a, hi

�
a � � ,

and

� for every i � I � J an element bi such that P �
� �
z � bi � � ϑi � bi, z � .

Now set

p2 � � max
� � hi � a � � a � p1, i � J � � � bi � i � I � J � � .

For any p3 we now obviously have that T � � ψ � b �i

�
p1, p2, p3 � .

For the converse, let f � V � V be a winning strategy for Ego in the game�
EA � ω � T, ψ � .We claim thatT � ψ

�

. Toward a contradiction, suppose thatT � � ψ �

.

Hence there exists a Skolem function g � V � V assigning to eachp1 an appropriate

p2 � p1 such that T � � ψ � b �i

�
p1, p2, p3 � for all p3 � p2 and all i � I. We can view g as

a strategy for Alter in the game
�
EA � ω � T, ψ � . If Ego plays according to f and Alter

. Definability � 

plays according to g, then the resulting infinite play f ĝ � q1q2q3 . . . satisfies ψ

(because f is a winning strategy). Hence there exists some i � I such that
f ĝ � � x

� �
y � x � φi � �

y
�

� z � y � ϑi.
Let a be a witness for x so that f ĝ �

� �
y � a � φi � a, y � . Choose the minimal

odd k, such that a � qk, and set p1 � � qk. �en qk �
1

� g
�
qk � � g

�
p1 � � p2. Since

f ĝ � �
y
�

� z � y � ϑi � y, z � , we have, in particular, for every b � p2 awitness h � b � � b
on f ĝ such that f ĝ � ϑi

�
b, h
�
b � � . Choose p3 � max � h � b � � b � p2 � It follows that

f ĝ � ψ � b �i

�
p1, p2, p3 � . Since ψ � b �i is bounded, its evaluation on T is equivalent to its

evaluationon f ĝ.Hencewehave shownthat there existsp1 such that forp2 � g
�
p1 � ,

given by the Skolem function g, we can find a p3 with T � ψ � b �i

�
p1, p2, p3 � . But this

contradicts the assumption that g is an appropriate Skolem function for � ψ �

.

We have shown that whenever Ego has a winning strategy for
�
EA � ω � T, ψ � then

T � ψ
�

andwheneverAlterhasawinning strategy, thenT � � ψ �

. Bycontraposition

anddeterminacy, the reverse implicationsalsohold.Forgamesof form
�
AE � ω � T, ψ �

the arguments are analogous. �

 �  Path games

 E

T
  , we develop a new parameter for the com-

plexity of finite directed graphs which measures to what extent the cycles of

the graph are intertwined. �is measure, called entanglement, is defined by way

of a game that is somewhat similar in spirit to the robber-and-cops games used

to describe tree width, directed tree width, and hypertree width. Nevertheless on

many classes of graphs, there are significant differences between entanglement and

the various incarnations of tree width.

We show that entanglement is intimately connected to the computational and

descriptive complexity of themodal µ-calculus. One one hand, the number of fixed

point variables needed to describe a finite graph up to bisimulation is captured by

its entanglement. �is will play a crucial role in the next chapter, where we prove

that the variable hierarchy of the µ-calculus is strict.

In addition to this, we show that parity games of bounded entanglement can

be solved in polynomial time. Specifically, we establish that the complexity of

solving a parity game can be parametrised in terms of the minimal entanglement

of subgames induced by a winning strategy.

. D   

   

We are concerned with formulae that describe finite Kripke structures, more pre-

cisely, the bisimulation-invariant properties at a given state. In particular, we are

interested in existential properties preserved under simulation.

Definition ... Let
�
be a Kripke structure with a designated state u. A formula

ψ � Lµ describes the bisimulation type of
�
, u if, for any structure

� �
, we have� �

, u
� � ψ iff

�
, u �

� �
, u
�
. Likewise, we say that ψ describes the simulation type

of
�
, u if, for any Kripke structure

� �
, we have

� �
, u
� � ψ iff

�
, u

� � �
, u
�
.



 �  Entanglement

A straightforward approach to describing a finite structure up to bisimulation

consists in forming a systemof simultaneous fixed points associated to the individ-

ual states. Given a finite structure
�

�

�
V,
�
Ea � a � A, � Vp � p � P � , the atomic type

of any node v � V is described by the formula

αv � � �
p � P
v � Vp

p � �
p � P
v

�
Vp

� p.

Let Sbe the systemdefining, for every node v � V , a propositionXv via the equation

Xv � αv � �
a � A

�
�

� v,w � � Ea
� a 	 Xw �
 a � � �

� v,w � � Ea
Xw � � .

It can be easily seen that on any Kripke structure
� �

, the greatest solution of

this system maps each variable Xv to the set � v � � V � � � , v � � � , v � � . Hence, the
bisimulation type of

�
, u is described by � Xu � S.

If we restrict the definitions of Xv in S to their existential part,

Xv � αv � �
a � A

� v,w � � Ea
� a 	 Xw,

the greatest solution of the obtained system maps every variable Xv to the set

� v � � V � � � , v � � �
, v
� � and thus � Xu � S describes the simulation type of

�
, u.

In general, however, this approach uses much more variables than needed. Any

acyclic finite structure can be described already in basic modal logic. Typically,

this is achieved by a formula whose syntax follows the finite tree obtained by

unravelling the structure. We may proceed similarly to describe structures with

cycles in the µ-calculus. Syntactically, Lµ-formulae are trees with back edges; each

reference to a fixed-point variable semantically instantiates its binding definition,

which occurred previously in the syntax tree.�is allows us to describe any Kripke

structure over a tree with back edges by associating greatest fixed-point variables

to each node with incoming back edges. We obtain a defining formula following

the tree edges, as in the acyclic case, additionally referencing for every back edge

the fixed-point variable associated to its target. For instance, the simulation type of

the structure from Figure . at state 0 is described by � X.
�
� a 	 X � � b 	 � b 	 � a 	 X � .

Likewise, it is possible to characterise any finite structure
�
by describing a tree

withback edges bisimilar to
�
. Such a tree canbeobtained, for example, bypartially

performing an unravelling of
�
as in Definition .., but with the difference that,

whenever a node that occurred previously on the current path is reached, a back

. Defining bisimulation and simulation types of finite structures � 

0 1 2

Figure .: A simple structure with cycles, (a-transitions plain, b-transitions thicker)

�
2

0

3

1 2

0

1 2

2
�

3

Figure .: Viewing a structure as a tree with back edges

edge to this occurrence is added instead of creating a new copy. (Later on, we will

formally introduce the notion of unravelling by generalising this procedure.) For

the simulation type of the structure from Figure 4.2, we thus obtain the formula:

� X.
�
� b 	 µY.

�
� b 	 � a 	 X � � a 	 � a 	 Y � � � a 	 � a 	 X � .

Notice, however, that a given structure may have several structurally different

trees with back edges as bisimilar companions, leading to syntactically different

descriptions. In particular, since we introduce variables for every note entered by

a back edge, the number of variables involved in those descriptions may differ, as

illustrated by the formulae obtained for the two bisimilar structures in Figure .:

� X. � b 	 � Y. � b 	
�
� a 	 X � � a 	 Y � � Z. � a 	 Z �

� � b 	 � b 	 � X.
�
� a 	 � b 	 � b 	 X � � a 	 � b 	 X � � a 	 X � .

0 1 2

0
�

1
�

0 1 2

1
� �

Figure .: Bisimilar companions with different cyclic structure

 �  Entanglement

To understand this phenomenon, we set out for an investigation of the cyclic

structure of graphs taking into account their unravelling as finite trees with back

edges. Towards this, we introduce a structural parameter for the complexity of

finite directed graphs which measures to what extent the cycles of the graph

are intertwined. �e definition of this measure, called entanglement, is given in

terms game similar in spirit to the robber and cops games used to describe tree

width, directed tree width, and hypertree width [, , ]. Nevertheless, there are

significant differences between entanglement and the various incarnations of tree

width.

As we will show, the entanglement of a finite Kripke structure provides an

upper bound for the number of fixed point variables needed to describe it up to

bisimulation. In Chapter , we will further prove that this bound is tight, in a fairly

general sense.

. T  : C 



Let � �

�
V, E � be a finite directed graphwith a designated root u.�e entanglement

of � , u, denoted ent
�

� , u � , is defined by way of a game, played by a thief against k

detectives on � according to the following rules. At the beginning, the thief is at the

given initial position u of � and the detectives are outside the graph. In any round,

the detectives may either stay where they are, or place one of them on the current

position v of the thief. �e thief, in turn, has to move to a successor w of v that is

not occupied by any detective. If no such position exists, the thief is caught and

the detectives have won. Note that the thief sees the move of the detectives before

he decides on his own move, and that he is forced to leave his current position,

regardless whether the detectives move or not.

Definition ... �e entanglement of � , u is the minimal number k � � such

that k detectives have a strategy to catch the thief on � starting from position u.

Notice that if, in a graph � , we consider two nodes u, u
�
from which all other

nodes are reachable, then ent
�

� , u � � ent
�

� , u � � .Whenwe deal with graphswhere

all nodes are reachable from some root, we may simply write ent
�

� � instead of

ent
�

� , u � , for any root u.

. �e entanglement game: Catching the thief � 

�e entanglement is an interesting measure on directed graphs. To deal with

undirected graphs, we view undirected edges � u, v � as pairs � u, v � and � v, u � of
directed edges. In the following a graph is always meant to be directed.

To get a feeling for thismeasure we collect a few simple observations concerning

the entanglement of certain familiar graphs. �e proofs are simple and leß to the

reader.

Proposition ... Let � be a finite directed graph.

(i) ent
�

� � � 0 if, and only if, � is acyclic.

(ii) If � is the graph of a unary function, then ent
�

� � � 1.

(iii) If � an undirected tree, then ent
�

� � � 2.
(iv) If � is the fully connected directed graph with n nodes, then ent

�
� � � n.

LetCn denote the directed cycle with n nodes. Given two graphs � �

�
V, E � and

� � �

�
V
�
, E
� � their asynchronous product is the graph � � � � �

�
V � V � , F � where

F ��� � uu � , vv � � �
 � u, v � � E � u � � v
� � �
 u � v �

�
u
�

v
� � � E � ��� .

Note, that Tmn � � Cm � Cn is the
�
m � n � -torus or, to put it differently, the graph

obtained from the directed
�
m � 1 � � � n � 1 � -grid by identifying the leß and right

border and the upper and lower border.

Proposition ... (i) For every n, ent
�
Tnn � � n.

(ii) For everym
�
n, ent

�
Tmn � � min

�
m, n � � 1.

Proof. On Tnn, a group of n detectives can catch the thief by placing themselves on

a diagonal, thus blocking every row and every column of the torus. On the other

side, it is obvious that the thief can escape against n � 1 detectives.

OnTmnwithm � n,mdetectivesareneeded toblockeveryrow,andanadditional

detective forces the thief to leave any columnaßer atmostnmoves, so that hefinally

must run into a detective. Again, it is obvious that the thief escapes if there are less

thanm � 1 detectives.
�

�e following proposition characterises the graphs with entanglement one.

Proposition ... �e entanglement of a directed graph is one, if and only if, the

graph is not acyclic, and in every strongly connected component, there is a node whose

removal makes the component acyclic.

 �  Entanglement

Proof. On any graph with this property, one detective catches the thief by placing

himself on the critical node in the current strongly connected component when

the thief passes there.�e thief will have to return to this node or leave the current

component. Eventually she will be caught in a terminal component.

Conversely if there is a strongly connected component without such a critical

node, then the thief may always proceed from his current position towards an

unguarded cycle and thus escape forever.

�

Corollary ... For k � 0 and k � 1, the problem whether a given graph has

entanglement k isN-complete.

�e definition of entanglement is reminiscent of the characterisation of tree

width via robber and cops games introduced by Seymour and�omas in [], and

especially of directed tree width as defined by Johnson, Robertson, Seymour, and

�omas []. However, we will see that entanglement is a quite different, and for

some purposes more accurate, measure than directed tree width. �is becomes

particularly apparent on trees with back edges which also play an important role in

our analysis of the variable hierarchy of the modal µ-calculus. It is easy to see that

the directed tree width of any tree with back edges is one. However, we will see that

the entanglement of trees with back edges can be arbitrarily large.

For undirected graphs, the precise relationship between tree width and entan-

glement is not known.

To obtain some insight, we can use the following sufficient criterion for the

existence of a winning strategy for k detectives.

Lemma ... Let � �

�
V, E � be a game graph. If for some k � � , there exists a

partial labelling i � V �
 k � under which every strongly connected subgraph � � �
contains a vertex u with a unique label in � , i.e. i

�
u � �

i
�
v � for all v � � , then we

have ent
�

� � � k.
Proof. We interpret the labelling i as a memoryless strategy for the detectives as

follows: whenever the thief reaches a position v � dom � i � in a play on � , detective
i
�
v � is placed at this position v, if i � v � is defined. Otherwise no detective moves.

Towards a contradiction, suppose that although the detectives follow this strat-

egy, the thief can form an infinite path without meeting any detective. Let now C

be the set of positions seen infinitely oßen on this path. Clearly, C induces in � a

strongly connected subgraph. Let u � C be a node whose label i
�
v � is unique in � .

. �e entanglement game: Catching the thief � 

According to the memoryless strategy described by i, the detective i
�
u � must have

been posted at u all the time since the play stabilised in � . On the other hand, every
position in C, in particular u, must have been re-visited infinitely oßen. But this

contradicts our assumption that the thief is not captured. �

Proposition ... For every n, the undirected
�
n � n � -grid has entanglement atmost

3n.

Proof. Consider the labelling i �
 n � �
 n � �
 3n � obtained by first assigning the

values 0, . . . , n to the horizontal median of the grid, i.e., i
�
n
2 , j � � � j for all j �
 n � .

For the two n
2 � n grids obtained when removing the positions already labelled,

we proceed independently and assign the values n, . . . , n � n
2 to their respective

medians, and so on, in step k applying the procedure to the still unlabelled domain

consisting of 2kmany n
2k
� n

2k
disconnected grids. It is easy to verify that the labelling

obtained this way satisfies the criterion of Lemma ... �

Proposition ... For any finite undirected graph � of tree width k, we have that

ent
�

� � � � k � 1 � � log � G � .

Proof. By definition, every graph � �

�
V, E � of tree width k can be decomposed as

a tree
�
labelled with subsets of at most k � 1 elements ofV , called blocks, such that

() every edge � u, v � � E is included in some block and () for any element v � V
the set of blocks which contain v is connected.

In every subtree � of such a decomposition tree, there exists a node s, we may

call it the center of � , which balances � in the sense that the two subtrees in � � � s �
carry almost the same number of vertices in their blocks (differences up to k are

admissible). Consider now the following memoryless detective strategy. First, all

vertices in the centre s of the decomposition tree receive indices 0, . . . , k. �en, we

repeat the process independently for the two subtrees disconnect by the removal of

s and assign to the vertices in their respective centres indices k � 1, . . . , 2k � 2. �e

process ends when all vertices of � are labelled. In this way, at most
�
k � 1 � log � V �

detective indices are assigned. Since the blocks of a tree decomposition separate the

graph, every strongly connected component of � will contain at least one unique

label. �is shows that the constructed labelling indeed represents a memoryless

strategy for at most
�
k � 1 � log � V � detectives.

�

 �  Entanglement

.. T     



Let
�

�

�
V, E � be a directed tree.Wewrite � E for the associated partial order on

�
.

Note that � E is just the reflexive, transitive closure of E.

Definition .. (Tree with back edges). A directed graph
�

�

�
V, F � is a tree with

back edges if there is a partitionF � E � B of the edges into tree edges and back edges
such that

�
V, E � is indeed a directed tree, and whenever � u, v � � B, then v � E u.

�e following observation shows that up to the choice of the root, the decom-

position into tree edges and back edges is unique.

Lemma ... Let
�

�

�
V, F � be a tree with back edges and v � V .�en there exists

at most one decomposition F � E � B into tree edges and back edges such that
�
V, E �

is a tree with root v.

Definition .. (Feedback). Let
�

�

�
V, E, B � be a tree with back edges. �e

feedback of a node v of
�

is the number of ancestors of v that are reachable by a

back-edge fromadescendant of v.�e feedbackof
�
, denoted fb

�
T � is themaximal

feedback of nodes on � . More formally,

fb
�
T � � max

v � V � � u � V � � w
�
u � E v � E w �

�
w, u � � B � � � .

We call a back-edge
�
w, u � , and likewise its target u, active at a node v in

�
, if

u � E v � E w.

Note that the feedback of
�
may depend on how the edges are decomposed into

tree edges and back edges, i.e., on the choice of the root. Consider, for instance the

leß graph from Figure .. If node 0 is taken as the root, then the feedback is 3;

instead, if we take node 1 as the root, then the feedback is 2.

Lemma ... Let
�

�

�
V, E, B � be a tree with back edges of feedback k. �en

there exists a partial labelling i � V � � 0, . . . , k � 1 � assigning to every target u of a
back-edge an index i

�
u � in such a way that no two nodes u, u

�

that are active at the

same node v have the same index.

Proof. �e values of this labelling are set while traversing the tree in breadth-first

order. Notice that every node uwith an incoming back edge is active at itself. As
�

. �e entanglement game: Catching the thief � 

has feedback k, there can be at most k � 1 other nodes active at u. All of these are

ancestors ofu, hence their index is already defined.�ere is at least one indexwhich

we can assign to u so that no conflict with the other currently active nodes arises.

�

Lemma ... �e entanglement of a tree with back edges is at most its feedback:

ent
� � � � fb � � � .

Proof. Suppose that fb
� � � � k. By Lemma .. there is a labelling i of the targets

of the back edges in
�

by numbers 0, . . . , k � 1 assigning different values to any

two nodes u, u
�

that are active at the same node v. �is labelling induces the

following strategy for the k detectives: at every node v reached by the thief, send

detective number i
�
v � to that position or, if the value is undefined, do nothing. By

induction over the stages of the play, we can now show that this strategy maintains

the following invariant: at every node v occurring in a play on
�
, all active nodes

u
�
v are occupied and, if the current node is itself active, a detective is on the

way. To see this, let us trace the evolution of the set Z � T of nodes occupied by a

detective. In the beginning of the play, Z is empty. A node v can be included into Z

if it is visited by the thief and active with regard to itself. At this point, our strategy

appoints detective i
�
v � to move to v. Since, by construction of the labelling, the

designated detective i
�
v � must come from a currently inactive position and, hence,

all currently active positions except v remain inZ. But if every nodewhich becomes

active is added to Z and no active node is ever given up, the thief can never move

along a back-edge, so that aßer a finite number of steps he reaches a leaf of the tree

and loses. But this means that we have a winning strategy for k detectives, hence

ent
� � � � k.

�

According to Definition .., every graph � can be unravelled from any node v

to a tree
�
G,v whose nodes are the paths in � from v. Clearly

�
G,v is infinite unless �

is finite and no cycle in � is reachable from v. A finite unravelling of a (finite) graph

� is defined in a similar way, but rather than an infinite tree, it produces a finite

tree with back edges. To construct a finite unravelling we proceed as in the usual

unravelling process with the following modification: whenever we have a path

v0v1 . . . vn in � with corresponding node v � v0v1 . . . vn in the unravelling, and a

successor w of vn that coincides with vi (for any i � n), then we may, instead of

creating the new node vw (with a tree edge from v to vw) put a back-edge from v to

its ancestor v0 . . . vi. Clearly this process is nondeterministic. In this way, any finite

 �  Entanglement

graph can be unravelled, in many different ways, to a finite tree with back edges.

Observe that different finite unravellings of a graph may have different feedback

and different entanglement.

Obviously, the entanglement of a graph is bounded by the entanglement of its

finite unravellings. Indeed, awinning strategy for kdetectives onafinite unravelling

of � immediately translates to a winning strategy on � .

Proposition ... �e entanglement of a graph is the minimal feedback (and the

minimal entanglement) of its finite unravellings:

ent
�

� , u � � min � fb � � � � � is a finite unravelling of � , u �
� min � ent � � � � � is a finite unravelling of � , u � .

Proof. For any finite unravelling
�
of a graph � , u, we have

ent
�

� , u � � ent � � � � fb � � � .
It remains to show that for any graph � with a designated node u, there exists some

finite unravelling
�
from u with fb

� � � � ent � � , u � .
To prove this, we view winning strategies for the detectives as descriptions of

finite unravellings. A strategy for k detectives tells us, for any finite path πv of the

thief whether a detective should be posted at the current node v, and if so, which

one. Such a strategy can be represented by a partial function g mapping finite

paths in � to � 0, . . . , k � 1 � . On the other hand, during the process of unravelling
a graph to a (finite) tree with back edges, we need to decide, for every successor v

of the current node, whether to create a new copy of v or to return to a previously

visited one, if any is available. To put this notion on a formal ground, we define an

unravelling function for a rooted graph � , u as a partial function ρ between finite

paths fromu through � ,mapping anypath v0, . . . , vr � 1, vr from v0
� u in its domain

to a strict prefix v0, v1, � , vj � 1 such that vj � 1 � vr. Such a function gives rise to an

unravelling of � in the following way: we start at the root and follow finite paths

through � . Whenever the current path π can be prolonged by a position v and the

value of ρ at πv is undefined, a fresh copy of v corresponding to πw is created as a

successor of π. In particular, this always happens if vwas not yet visited. Otherwise,

if ρ
�
π v � is defined, then the current path π is bent back to its prefix ρ

�
π � which

also corresponds to a copy of v. Formally, the unravelling of � , u driven by ρ is the
tree with back edges

�
defined as follows:

. Descriptive complexity � 

� the domain of
�

is the smallest set T which contains u � � v0 and for each

path π � T, it also contains all prolongations πv in � at which ρ is undefined;
� the tree edge partition is

E
� � � � � v0, . . . , vr � 1, v0, . . . , vr � 1, vr � � T � T � � vr � 1, vr � � E � � ;

� for all paths π � � v0, . . . , vr � 1 � T where ρ
�
πv � is defined, the back-relation

B
�
contains the pair

�
π, ρ

�
πv � � if � vr � 1, v � � E � .

We are now ready to prove that every winning strategy g for the k detectives

on � , u corresponds to an unravelling function ρ for � , u that controls a finite

unravelling with feedback k.

Note that the strategy g gives rise to a k-tuple
�
g0, . . . , gk � 1 � of functions

mapping every initial segment π of a possible play according to g to a k-tuple�
g0
�
π � , . . . , gk � 1 � π � � where each gi � π � is a prefix of π recording the state of the

play (i.e., the current path of the thief) at the last move of detective i.

Now, for every path π and possible prolongation by v, we check whether, aßer

playing π, there is any detective posted at v. If this is the case, i.e, when, for some i,

the end node of gi
�
π � is v, we set ρ � π v � � � πi. Otherwise we leave the value of ρ

undefined at π, v. It is not hard to check that, if g is a winning strategy for the

detectives, the associated unravelling is finite and has feedback k.

�

. D 

In this section we start investigating the connection between the entanglement of

a Kripke structure and the Lµ-formulae defining it. First, observe that the feedback

of the syntax graph of a formula φ in Lµ is not greater than the number of variables

occurring in φ.

�e entanglement of a Kripke structure
�

�

�
V,
�
Ea � a � A, � Vp � p � P � is the

entanglement of the underlying graph
�
V, E � where E � � a � A Ea. We now show

that every Kripke structure of entanglement k can be described, up to bisimulation,

in the µ-calculus using only k fixed-point variables.

Proposition ... Let
�

be a finite Kripke structure with ent
� � � � k. �en, for

any node u of
�
, there exist formulae in Lµ
 k � that describe the bisimulation type,

respectively the simulation type of
�
, u.

 �  Entanglement

Proof. According to Proposition .., the system
�
can be unravelled from any

node u to a finite tree
�

with back edges, with root u and feedback k. Clearly�
, u �

�
, u. Hence, it is sufficient to prove the proposition for

�
, u. Assume that

for every action a � A, the transitions in � are partitioned into tree edges and

back edges Ea � Ba.

Let i � � � � 0, . . . , k � 1 � bethepartial labellingof � definedinLemma...On

the basis of this labelling, we construct a sequence of formulae
�
ψv � v � T over fixed-

point variablesX0, . . . , Xk � 1 while traversing the nodes of � in reverse breadth-first

order. For every action a � A, the transitions in � are partitioned into tree edges

and back edges Ea � Ba.

To describe a state v � � and the relationship with its successors, let

φv � � αv � �
a � A

�
�

� v,w � � Ea
� a 	 ψw � �

� v,w � � Ba
� a 	 Xi � w �

�
 a �
�

�

� v,w � � Ea
ψw �

�

� v,w � � Ba
Xi � w � � � ,

where αv expresses the atomic type of v:

αv � � �
p � P
v � Vp

p � �
p � P
v

�
Vp

� p.

If v has an incoming back-edge, we set ψv � � � Xi � v � . φv; otherwise, we let ψv � � φv.

Note that since we proceed from the leaves of
�

to the root, this process is

well-defined, and that in ψv the variables Xi � z � occur free, for any node z
�
v that is

active at v. In particular, all variables in the formulaψu , corresponding to the root u

of
�
, are bound.

We claim that
�
, v � ψu iff

�
, v �

�
, u. First, we show that

�
, u � ψu, and

hence
�
, v � ψu for any

�
, v �

�
, u. To see this, we prove that Verifier has a

winning strategy for the associated model-checking game.

Note that, since ψu has only greatest fixed points, any infinite play of the model-

checking game is won by Verifier. It thus suffices to show that from any position of

form
�
v, φv � , Verifier has a strategy to make sure that the play proceeds to a next

position of form
�
w, φw � , unless Falsifier moves to position

�
v, αv � and then loses

in the next move. But by the construction of the formula, it is obvious that Verifier

can play so that any position at which he moves is of one of the following three

types.

(i)
�
v, � a 	 ψw � , where � v, w � � Ea: then, Verifier moves to position

�
w, ψw � .

. Computational complexity � 

(ii)
�
v, � a 	 Xi � w � � , where

�
v, w � � Ba: in this case, he moves to

�
w, Xi � w � � .

(iii)
�
w,

�
� v,z � � Ea ψz �

�
� v,z � � Ba Xi � z � � for some edge

�
v, w � � Ea � Ba: in this case,

Verifier selects the appropriate disjunct with z � w and moves accordingly

either to
�
w, ψw � or to � w, Xi � w � � .

In all cases the play will proceed to
�
w, φw � . Hence, Falsifier can force a play to be

finite only by moving to a position
�
v, αv � , where he loses. Otherwise the resulting

play is infinite and thus always won by Verifier.

For the converse, suppose that
�
, v �� � , u. Since � is finite, the non-bisimilarity

it witnessed at a finite stage. �at is, there is a basic modal formula separating
�
, v

from
�
, u, andFalsifier can force themodel-checking game forψu on

�
, v infinitely

many moves to a position of form
�
w, αw � such that w and w

�

have distinct atomic

types. �is proves that
�
, v �� ψu.

By the same argument, we obtain a description of the simulation type of
�
, u

using formulae φv restricted to their existential part:

φv � � αv � �
a � A

�
�

� v,w � � Ea
� a 	 ψw � �

� v,w � � Ba
� a 	 Xi � w � � .

�

As the entanglement of a Kripke structure regards only the underlying graph,

one can easily find examples of high entanglement that can be described with

very few variables. For instance, in a Kripke structure over a strongly connected

finite graph with no atomic propositions and only a single action a, all states are

bisimilar, and canbedescribedby � X.
�
� a 	 X �
 a � X � , regardless of the entanglement

of the underlying graph. Nevertheless, in the following chapter we shall see that

we can establish a strong relationship between the notion of entanglement and the

descriptive complexity of Lµ, under fairly general assumptions.

. C 

An intriguing open problem related to the µ-calculus regards the computational

complexity of itsmodel checking problem, or equivalently, the problem to establish

the winner in a parity game.

Parity games were introduced in Section . as path-forming games played

between two players on labelled graphs � �

�
V,V0, E,

�
Ω � i � n � . In this place, it is

 �  Entanglement

convenient to think of the priority partition as a function Ω � V �
 n � , mapping

a position v � Vi to the priority i. Recall that these games are determined with

memoryless strategies. Any memoryless strategy σ induces a subgraph � σ of the

original game graph. If σ is a winning strategy for a player, hewins every play on � σ .

Since these subgames are small objects and it can be checked efficiently whether a

player wins every play on a given graph, the winner of a finite parity game can be

determined in NP � co-NP. In general, the best known deterministic algorithms

to decide the winner of a parity game have running times that are polynomial with

respect to the size of the game graph, but exponential with respect to the number

of different priorities occurring in the game []. However, for game graphs of

bounded tree width, Obdrzalek has showed in [], that the problem can be solved

in polynomial time with respect to the the size of the graph, independently of the

number of priorities.

In the remainder of this chapter we will show that the entanglement of a parity

game graph is a pivotal parameter for its computational complexity. To maintain

the relationship between games and algorithms conceptually close, we base our

analysis on alternating machines (for a comprehensive introduction on alternating

computation, see e.g. []).

.. A  

Many algorithmic issues in graph theory are related to the problem of cycle de-

tection, typically, to determine whether a given graph contains a cycle satisfying

certain properties. When alternation comes into play, that is, when we consider

paths formed interactively, the questions become particularly interesting but oßen

rather complex, too. In this framework, we will study the entanglement of a graph

as ameasure of howmuchmemory is needed to determine whether a path formed

on-the-fly enters a cycle.

As a basis for later development, let us first consider a procedure for deciding

whether k detectives are sufficient to capture the thief on a given graph. �e

following algorithm represents a straightforward implementation of the game as

an alternating algorithm, where the role of the thief is played by the existential

player while the detectives are controlled by the universal player.

procedure Entanglement
���
, v0, k �

input graph
�����

V, E � , initial position v0, candidate k �	� V �

. Computational complexity � 

// accept iff ent
� �
, v0 � � k

v � � v0, � di � i � � k � � ��� ; // current position of thief and detectives

do

existentially guess i � � k ��� � pass � // appoint detective i or pass

if i 	 pass then di
� � v // guard current node

if vE
 d ��� then accept

else universally choose v � vE;
repeat

Since this algorithm requires space only to store the current positions of the

thief and the k detectives, it runs in alternating space O
� �
k � 1 � log � V � � which

corresponds to deterministic polynomial time.

Lemma... �eproblemof deciding, for a fixed parameter k, whether a given graph

� has ent
�

� � � k can be solved in polynomial time with respect to the size of � .

Notice that, if we regard the parameter k as part of the input, the algorithm

yields an E upper bound for the complexity of deciding the entanglement

of a graph. At the present time, we do not know whether this bound is strict; even,

hardness for NP does not seem obvious. To settle the precise complexity of the

problem remains subject to further research.

.. P 

Similar to the thief and detective game, the dynamics of a parity game consists in

forming a path through a graph. However, while in the former game the detectives

can influence the forming process only indirectly, by obstructing ways of return,

in a parity game both players determine directly how the path is prolonged in their

turn. Besides this dynamic aspect, also the objectives of players are quite different at

a first sight.While the detectives aim at turning the play back to a guarded position,

each player of a parity game tries to achieve that the least priority seen infinitely

oßen on the path is of a certain parity.

�e key insight which brings the two games to a common ground is the Mem-

oryless Determinacy �eorem for parity games: whichever player has a winning

strategy in a game � �

�
V,V0, E, Ω � from a given initial position, also has amemo-

ryless one.�is means, that either player may commit, for each reachable position

v � V which he controls, to precisely one successor σ
�
v � � vE and henceforth

 �  Entanglement

follows this commitment in every play of � without losing any chance to win. It

follows that, whenever a play returns to a previously visited position v, the winner

can be established by looking at the least priority seen since the first occurrence

of v.�erefore can view parity games on finite game graphs as path forming games

of finite duration where the objective is to reach a cycle with minimal priority of a

certain parity.

In light of this, we obtain an immediate method to determine the winner of a

paritygamebysimulatingtheplayers’moveswhilemaintainingthehistoryofvisited

positions inorder todetectwhether a cyclewas reachedand to retrace theoccurring

priorities. To store the full history, an implementation of this method requires

space O
�
� V � log � V � � in the worst case; since the procedure uses alternation to

simulate the single game moves, this situates us in A
�
O
�
� V � log � V � � � , or

D
�
� V � O ��� V � � � .

What makes this approach highly impractical is its extensive representation of

the play’s history. In fact, the power of alternation is limited to the formation of

the path, while the history is surveyed in a deterministic way. We can significantly

improve this by interleaving thief and detective games with parity games in such a

way that the formation of cycles in history is surveyed interactively.

.. I  

Intuitively, wemay think of a parity game as an affair between three agents, Player 

and , and a referee who wishes to establish which of the two indeed wins the

game. In our approach, the referee memorises the entire history of the game. But

as we have seen, the occurrence of a cycle in a path-forming game on a graph �
can already be detected by storing at most ent

�
� � many positions. Hence, if we

could provide the referee with the power of sufficientlymany detectives, this would

reduce the space requirement.�ecruxof thematter ishowtofit sucha three-player

setting into the two-player model of alternating computation.

Our proposal to overcome this difficulty is to let one of the players act as a

referee who challenges the other player in the parity game, but in the same time

controls the detectives in an overlying thief and detective game which regards the

interactively formed path as if it would be formed by the thief alone.

Formally, this leads toanewgame.Foragamegraph � �

�
V,V0, E, Ω � , aPlayer i �

� 0, 1 � , and a number k, the superdetective game �
 i, k � is played between the

. Computational complexity � 

Superdetective controlling k detectives and the positions ofVi, and the Challenger

in hold of the positions inV1 � i. Starting from an initial position position v0, in any

move the Superdetectivemayplace one of the kdetectives on the current position v,

or leave them in place. If the current position v belongs to V1 � i, Challenger has to
move to somepositionw � vE, otherwise the Superdetectivemoves. (If a player gets

stuck, he immediately loses.) �e play ends if a position w occupied by a detective

is reached and the Superdetective wins if, and only if, the least priority seen since

the detective was placed there is even, for i � 0 respectively odd, for i � 1.

�e following lemma states that parity games can be reduced to Superdetective

games with an appropriate number of detectives.

Lemma ... (i) If Player i has a winning strategy for the parity game � , then
the Superdetective wins the superdetective game �
 i, k � with k � ent

�
� � .

(ii) If for some k ��� , the Superdetective wins the game �
 i, k � , then Player i has a
winning strategy for the parity game � .

Proof. Let σ be a memoryless winning strategy of Player i for the game � and let

� σ be the subgame of � induced by this strategy. �en, the least priority seen on

any cycle of � σ is favourable to Player i. �is remains true for any cycle formed in

�
 i, k � where Player i acting as a Superdetective follows the same strategy σ. On the

other hand, obviously ent
�

� σ � � ent � � � � k, whichmeans that the Superdetective

also has a strategy to place the k detectives so that every path through � σ will finally

meet a guarded position v and hence form a cycle, witnessing that he wins.

For the converse, assume otherwise that Player 1 � i has a memoryless winning

strategy τ in the parity game � . But thenhe could follow this strategywhen acting as

a Challenger in the �
 i, k � , so that the play would actually remain in � σ
 i, k � where
no cycle is favourable to Player i. Hence, regardless of the number k of detectives,

the Superdetective i cannot win, in contradiction to our assumption.

�

Note that computing the winner of a superdetective game �
 i, k � requires al-
ternating space

�
2k � 1 � log � V � . Indeed, one just plays the game recording the

current position of the thief and the current position of each detective, along with

the minimal priority that has been seen since he was last posted.

procedure Superdetective
���
, v0, j, k �

input parity game
� ���

V,V0, E, Ω � , initial position v0 � V , Player j, k detectives
// accept iff Superdetective has a winning strategy in

� �
j, k � with k detectives

 �  Entanglement

v � � v0 // current position�
di � i � � k � � ��� // positions guarded by detectives�
hi � i � � k � � � � // most significant priorities

repeat

if j
�
0 then

existentially guess i � � k � � � pass � // appoint detective i or pass

else

universally choose i � � k � � � pass � // other player’s detective

if i 	 pass then
di
� � v; hi � � Ω � v � // guard current node

v � � Move
� �

, v � // simulate a game step

forall i � � k � do // update history

hi
� � min

�
hi, Ω

�
v � �

repeat

until (v
�
di for some i) // cycle detected

if (j
�
0 and hi is even) or (j

�
1 and hi is odd) then accept

else reject

We are now ready to prove that parity games of bounded entanglement can be

solved in polynomial time. In fact we establish a more specific result, taking into

account the minimal entanglement of subgames induced by a winning strategy.

�eorem ... �e winner of a parity game � �

�
V,V0, E, Ω � can be determined

in A
��� �

k log � V � � � , where k is the minimum entanglement of a subgame � σ

induced by a memoryless winning strategy σ in � .

Proof. We first describe the procedure informally, in the form of a game. Given

a parity game � �

�
V,V0, E, Ω � and an initial position v0, each player i selects a

number ki and claims that he has awinning strategy from v0 such that ent
�

� σ � � ki.
�e smaller of the two numbers k0, k1 is then chosen to verify that Superdetective

wins the game �
 i, ki � . If this is the case the procedure accepts the claim of Player i,

otherwise Player
�
1 � i � is declared the winner.

Here is a more formal description of the procedure:

procedure SolveParity
���
, v �

input parity game
�����

V,V0, E, Ω � , initial position v � V
// accept iff Player  wins the game

existentially guess k0 �	� V �
universally choose k1 �	� V �

. Computational complexity � 

if k0 � k1 then
if Superdetective

� �
, v, 0, k0 � then accept

else reject

else

if Superdetective
� �

, v, 1, k1 � then reject

else accept

endif

We claim that Player 0 has a winning strategy in a parity game � , v if, and only
if, the alternating procedure ParitySolve

�
� , v � accepts.

To see this, assume that Player 0 has a memoryless winning strategy σ from v.

�en, the guess k0 � � ent
�

� σ � leads to acceptance. Indeed, for k1 � k0, Player wins
the superdetective game �
 0, k0 � by using the strategy σ as a parity player together
with the detective strategy for � σ . On the other hand, for k1 � k0, the procedure
accepts as well, since Player 1 cannot win the superdetective game �
 1, k1 � without
having a winning strategy for the parity game.

�e converse follows by symmetric arguments exchanging the roles of the two

players. �

Corollary ... Parity games of bounded entanglement can be solved in polynomial

time.

 �  Entanglement

 T µ-C V

H

T
 µ- extends basic modal logic by adding monadic variables

bound by least and greatest fixed points of definable operators. As we have

seen, this provides a notion of recursion which invests the logic with very high

expressive power.

On the other hand, the variables also import a considerable conceptual complex-

ity. �e alternation depth of Lµ-formulae is a well-studied measure of conceptual

complexity. Since the hierarchy induced by this measure is semantically strict, this

notion of syntactic complexity of a formula is reflected in its semantic complexity.

Interestingly, most of the formalisms commonly used for process description

allow translations into low levels of theLµ alternationhierarchy.On its first level this

hierarchy already captures, for instance, PDL as well as CTL, while their expressive

extensions ∆PDL and CTL
�

do not exceed the second level. Still, the low levels of

this hierarchy do not exhaust the significant properties expressible in Lµ. As stated

in �eorem .., e.g., the formula Wn stating that the first player has a winning

strategy in parity games of index n.

By reusing fixed point variables several times it is possible to write many Lµ-

formulae, even with highly nested fixed-point definitions, using only very few

variables. �is is actually the case for GL which subsumes the aforementioned

formalisms, ∆PDL and CTL
�

, but also contains formulae describing the winning

position of a parity game.

In this context, the question arises, whether a higher number of variables is

indeed necessary, or, in other words, whether the number of variables of a formula

is reflected as a measure of its semantic complexity.

In the previous chapter we have analysed the descriptive complexity of formulae

defining the simulation types of finiteKripke structures showing that thenumberof

variablesneeded todescribe such structuresup tobisimulation, orup to simulation,

is captured by their entanglement. In the present chapter we will prove that the



 �  �e µ-Calculus Variable Hierarchy

variable hierarchy of the µ-calculus is indeed strict, by first showing that this

number of variables is indeed required, if we allow only existential modalities.

�en, we prove an existential preservation theorem for the family of Lµ-formulae

over at most k variables that define simulation types of finite strongly connected

structures. Since hard formulae for the level k of the existential hierarchy belong to

this family, this leads us to the strictness of the hierarchy in the general case.

. T  

As we have seen in the previous section, the entanglement of a graph provides an

upper bound for the number of variables required to describe any Kripke structure

over this graph. However, the descriptive complexity does not depend only on the

underlying graph, but also on the labelling of transitions and stateswith actions and

atomic propositions. For instance, the simulation type of any strongly connected

Kripke structure over a language with only one action and no atomic properties is

describedby the formula � X. � a 	 X, regardless of the entanglementof theunderlying

graph.

In the sequel of this article we show that, with a particular labelling of edges,

the structural complexity of a graph, in terms of entanglement, is reflected in the

descriptive complexity of its simulation type measured by the number of variables

needed to describe it in the µ-calculus.

Definition ... A Kripke structure
�

is deterministic if every state v � V has at

most one a-successor, for all actions a � A; it is co-deterministic if every state
has at most one a-predecessor, for all actions a. Further, we say that a structure

is singular with respect to simulation, if there are no two states v
�
w such that�

, v
� �

, w. A finite structure rigid, if it is deterministic, co-deterministic, and

singular with respect to simulation.

Lemma ... Every connected finite graph can be labelled in such a way that the

resulting Kripke structure is rigid.

Proof. Given a finite graph � �

�
V, E � , the Kripke structure which assigns to

every edge
�
v, w � � E a distinct action label is obviously rigid. Formally, this yields

a structure over a set of actions A � � E, with state domain V and singleton

transition relations Evw � � � � v, w � � , for all � v, w � � E. �

. �e existential hierarchy � 

According to Proposition .., the simulation type of any structure with en-

tanglement k can be described by an existential formula in Lµ
 k � . In this section

we prove that, if the structure is rigid, no existential formula from Lµ
 k � 1 � can
describe its simulation type. �is establishes that the variable hierarchy of is strict

for the existential fragment of Lµ.

For a simple example of a rigid Kripke structure with entanglement k, consider

the complete graph over k vertices labelled as in the previous lemma.

Our argument pivots around the model-checking game �
� �
, ψ � associated to

a Kripke structure
�
, u and a formula ψ defining its simulation type. Obviously,

Verifier has a winning strategy in this game. In general, we may understand the

subgame � σ induced by a (memoryless) winning strategy σ of Verifier in �
� �
, ψ �

as a proof for
�
, u � ψ. We will argue that, on the one hand, if

�
is rigid, the

entanglement of such a proof cannot be lower than the entanglement of
�

itself.

On the other hand, we will show that this proof is already contained in the syntax

graph ofψ, and hence its entanglement is at least as high as the number of variables

used in ψ.

.. D 

�e rigidity of a structure ensures that the simulation types of its states do not

overlap. �is allows us to narrow the gap between the semantics and the syntax of

formulae ψ describing the simulation type of a rigid structure
�
, u. Concretely, we

show that the proof of
�
, u � ψ, i.e., the subgame induced by a winning strategy in

the associatedmodel-checking game, can be embedded into the syntax graph of ψ.

Definition ... We call a formula ψ definite on a Kripke structure
�
, if for every

subformula η � cl � ψ � , there exists precisely one state v such that � , v � η.

�e notion is meaningful only over structures without propositional symbols.

Notice that, if we consider rigid structures under this proviso, the formulae con-

structed in Proposition .. as a description of their simulation type are indeed

definite.

Lemma ... Let
�
be a rigid Kripke structure with a designated state u.�en, every

existential formula ψ � Lµ defining the simulation type of
�
, u can be transformed,

without increasing the number of variables, into an equivalent existential formula ψ
�

that is definite on
�
.

 �  �e µ-Calculus Variable Hierarchy

Proof. First, we dispose of the subformulae of ψ that do not hold at any node of
�
.

Let ψ
�
be the formula obtained from ψ by replacing every such subformula with � .

�en, ψ
�
is still true on

�
and, being existential, on all models of ψ. On the other

hand, ψ
�
obviously implies ψ so that we have ψ

� � ψ.
Further, we successively eliminate all subformulae true at more than one node.

Assume that for some η � cl � ψ � we have � , v1 � η and
�
, v2 � η with v1

�
v2 and

let ψ
�
be the formula obtained from ψ by replacing η with

�
.

Clearly, ψ implies ψ
�
. To prove the converse, we will construct for every tree an

extension that satisfies η at all nodes while preserving the validity of ψ. Notice that

every extension of a tree
�
is similar to

�
. Consequently, existential formulae are

preserved under extensions.

Let
�
be a tree with edges labelled byA. We establish a matching correspon-

dence between the nodes of
�

and
�

in the following way. For any node x � T,
consider the sequence of actions on the path from the root to x. In

�
, there is at

most one nodew reachable from the designated root u via this sequence of actions,

since the structure is deterministic. We set matchT
�
x � � � w, if the sequence is

indeed executable in
�
, otherwise we leave the value undefined. Now let

� �
be the

extension of
�
obtained by adding at every node x the unravelling

� �
w of

�
from

the node w � � v1 ifmatchT
�
x � �

v1 and w � � v2 otherwise.

Claim. For any tree
�
, the constructed extension

� �
has the following properties:

(i) If
�

� ψ
�

then
� � � ψ.

(ii) If
� � � ψ then

�
� ψ.

(i) Every subtree of
� �

rooted at a node x � T extends an unravelling
� �
w of�

, w, where η holds. Since η is existential and thus preserved under extensions, it

follows that also
� �
x , the subtree of

� �
rooted at x, is a model of η. Moreover, if σw

is a winning strategy for Verifier in �
� � �

w , η � , it will also be a winning strategy in
�
� � �

x , η � .
By means of this, we can extend any winning strategy σ of Verifier in �

� �
, ψ
� �

to a strategy in �
� � �

, ψ � as follows. At every position � x, φ � where x � T and φ
�
η

choose according to σ. As Falsifier cannot move in the tree, the play will stay on

nodes of
�

unless a position
�
x, η � is reached. When this occurs, Verifier drops

σ and proceeds with the strategy σw which is winning in �
� � �

w , η � and thus in

�
� � �

x , η � . In that way, every play of �
� � �

, ψ � is won by Verifier which means that� � � ψ.

. �e existential hierarchy � 

(ii) Assuming that
� � � ψ, let Z be a simulation relation witnessing that

�
, u

�
� �

. �en, the relation

Z
� � � � � v, x � � Z � x � T and v � matchT �

�
x � �

is a simulation from
�
, u to

�
.

Obviously, Z
�

relates u with the root of
�
. Since Z is a simulation, for any�

v, x � � Z � , a � A, and every a-successor u of v there exists an a-successor y

of x such that
�
u, y � � Z. Clearly, matchT �

�
y � � u, so we just need to show that

y � T. Let us assume, towards a contradiction, that y is a new node, y � T � � T.
�en, in

�
there is a node w

�
matchT

�
x � with a-successor u � , so that y � u

�

.

On the other hand,
�
u, y � � Z, hence u �

y. As
�

is singular with respect to

simulation, this means that u and u
�
are actually the same node. But then this node

would have two different a-predecessors, w and v, in contradiction to the fact that�
is co-deterministic. Hence, Z

�
witnesses the simulation

� � �
. �is proves the

second part of our claim and we can conclude that ψ
� � ψ.

Notice that whenever the subformulae � a 	 � and η � � occur, they are also

removed as they hold at more than one node; if the atom
�
appears as a conjunct

we can safely drop it.

With this rewriting, ψ will eventually consist only of subformulae satisfied at

precisely one node of
�
. �

In particular, definiteness implies that every fixed-point definition holds at

precisely one state. Accordingly, for any winning strategy σ in this game, the

projection
�
v, φ � � φ induces an embedding of � σ

� �
, ψ � into the syntax graph � ψ .

Corollary ... Let ψ be an existential formula that is definite on a rigid structure�
and assume

�
, u � ψ. �en, for any winning strategy σ for Verifier in the game

�
� �
, ψ � the induced subgame � σ

� �
, ψ � , is embeddable into the syntax graph of ψ.

.. C 

Up to now, we have seen that, in our specific setting, any formula describing a

structure contains a proof of its validity on that structure. In the next step we argue

that, moreover, this proof essentially contains (a bisimilar copy of) the structure in

question.

 �  �e µ-Calculus Variable Hierarchy

Observe that a model-checking game does not necessarily explore the entire

structure on which it is played. For example, if we are interested in the property

µX.
�
� a 	 X � � b 	 � � expressing that ab-transition is reachable in themodel, awinning

strategy for Verifier would just display an a-path ending with a b-transition. To

capture the part of amodel explored by awinning strategy, we introduce the notion

of structure cast by a strategy.

Definition ... Given a Kripke structure
�
, and an existential Lµ-formula ψ

such that
�
, u � ψ, let σ be a winning strategy for Verifier in the model-checking

game �
� �
, ψ � , inducing the subgame � σ . �e cast of σ, is the Kripke structure

ˇ� σ
�

�
V̌,
�
Ěa � a � A � over a subset V̌ of vertices from � σ consisting of the root�

u, ψ � and the target
�
w, η � of every possible move

�
v, � a 	 η � � �

w, η � in � σ .

Between two of these vertices
�
v, φ � , � w, η � we allow an Ěa-transition if in � σ there

is a path from
�
v, φ � to a predecessor � v, � a 	 η � of � w, η � which avoids V̌ .

Model-checking games are constructed out of a Kripke structure and a formula.

By casting a winning strategy we perform a reverse operation, where we set out

from a specific game, or a proof, and extract the relevant structural component. In

line with this intuition, the following lemma points out that everymodel-checking

game for an existential formula contains a model of the formula.

Lemma ... Let ψ be an existential Lµ-formula and let
�
, u be a model of ψ. �en,

for any winning strategy σ of Verifier in the model-checking game � � � �
� �
, ψ � , the

cast of � σ at state
�
u, ψ � is also a model of ψ.

Proof. We show that Verifier wins the model-checking game � � � � �
�
ˇ� σ , ψ � for ψ

on the cast structure starting from position
� �
u, ψ � , ψ � . Towards this, we perform

a generic play of � � while replicating, on the side, a play of � according to the

Verifier strategy σ. �ereby we transfer every move of Falsifier from � � to � and,

conversely, everymove of Verifier back to � � so that the parallel plays maintain the

following invariant in each turn: whenever the current position in � � is
� �
v, α � , β � ,

the current position in � is
�
v, β � .

�is is done in the following way. At the starting position, the proposed invari-

ant obviously holds. If Falsifier moves in the main game � � from some position� �
v, α � , η1 � η2 � to � � v, α � , ηi � , we move in the secondary game � from the current

position
�
v, η1 � η2 � to � v, ηi � . If Verifier is in turn to move in the main game � � at

a disjunction, e.g.,
� �
v, α � , η1 � η2 � , the current position in the secondary game �

is
�
v, η1 � η2 � . In this case we first execute the move in � to

�
v, ηi � according to σ

. �e existential hierarchy � 

and then choose
� �
v, α � , ηi � in � � . Similarly, when the current position in the main

game is
� �
v, α � , � a 	 β � , and, hence, � v, � a 	 β � in the secondary game, we first perform

in � the move
�
w, β � indicated by σ and then choose � � w, β � , β � in � � .

It canbe easily checked that the choices transferredbetween thegames are always

available.Particularly, in the caseofmodalmoves, this follows fromthedefinitionof

the cast structure. Hence, Verifier can always move in � � if he canmove in � . Since
σ is a winning strategy for the latter game, a play can end only at positions

�
v,
� � in

which case the play of � � also reaches a terminal position
� �
w, β � , � � , whereVerifier

wins.Otherwise, both plays are infinite and the sequences of formulae they visit are

the same; accordingly, thanks to his winning strategy in � , Verifier simultaneously

wins � � . �

For the case of formulae describing the simulation type of aKripke structure, the

cast of a winning strategy must, hence, be similar to the structure itself. Moreover,

for structures that are singular with respect to simulation, this relation has natural

witnesses.

Lemma ... Given a
�
-singular structure

�
, u, let ψ � Lµ be an existential formula

describing its simulation type, and let σ be a winning strategy for Verifier in �
� �
, ψ � .

�en, there exists a simulation from
�
, u to ˇ� σ ,

�
u, ψ � such that, Z � � � v, � v, φ � � ��

, v � φ � .
Proof. According to Lemma .., we have ˇ� σ ,

�
u, ψ � � ψ. As ψ describes the

simulation type of
�
, u, this implies that

�
, u

� ˇ� σ ,
�
u, ψ � . Among the simulations

witnessing this, let Z be minimal (with respect to set inclusion).�en, for any pair�
v,
�
w, φ � � � Z, we have

�
, v

� ˇ� σ ,
�
w, φ � . On the other hand, we also have

ˇ� σ ,
�
w, φ � � �

, w, since � σ is a model checking game and themodalmoves follow

the transitions of
�
. �us, we obtain

�
, v

� �
, w and, by our assumption that

�
is

�
-singular, it follows that v � w. �

It is not hard to show that a relation Z of the above kind is, in fact, a bisimulation

between
� �

and the structure induced by its range in ˇ� σ .

.. T  

As a last step towards proving that simulation-type descriptions are hard formulae

for the existential variablehierarchy,we show that the entanglementof the structure

 �  �e µ-Calculus Variable Hierarchy

is bounded by the number of variables of any existential formula describing its

simulation type.

Lemma ... Let
�
be a

�
-singular structure with a distinguished node u. If there

existsanexistential formulaψ � Lµ
 k � that isdefiniteon � anddescribes the simulation

type of
�
, u, then ent

� � � � k.
Proof. According to Lemma .., we may assume that ψ is guarded. Let ψ1, . . . ψn
be the fixed-point subformulae in ψ, i.e., ψi � λY.φi with λ � � µ, � � and Y �
� X0, . . . , Xk � 1 � , and let cl � ψi � be the closure ofψi inψ. Recall that by the definiteness
of ψ, there is a unique node vi with

�
, vi � cl

�
ψi � . Recall further that ψj depends on

ψi, if in the syntax graph Sψ (which is a tree with back edges), the node ψi is active

at ψj, i.e., there is a descendent Y of ψj with a back-edge to ψi.

Consider awinning strategyσ forVerifier in themodel checkinggameassociated

to
�
, u � ψ. By Corollary .., the induced subgame � σ is embedded in the syntax

graph � ψ via the projection
�
v, φ � � φ. On the other hand, its cast simulates

�
, u.

We fix a simulation Z from
�
, u to ˇ� σ ,

�
u, ψ � as in Lemma ...

On the basis of this, we define a strategy for k detectives in the entanglement

game on
�
starting at u. To each state v of

�
reached by the thief in a play against

this strategy, we will associate a position
�
v, φ � in ˇ� σ such that

�
v,
�
v, φ � � � Z.

�e initial state u is associated to position
�
u, ψ � . Suppose that, in a round of

the play, the thief sits at some position v in
�
which is associated to

�
v, φ � in ˇ� σ .

Each free variable Xj in φ is defined at a fixed-point subformula ψj,φ � � ψ1, . . . , ψn �
and, by definiteness, there exists precisely one state vφ,j in

�
where the closure

cl
�
ψj,φ � holds. �e strategy of the detectives is to move those detectives j � k to v

for which vj,φ � v. If now the thief, in turn, moves from v to some successor w not

occupied by any detective, we associate with w a successor
�
w, ϑ � of � v, φ � in ˇ� σ

such that
�
w,
�
w, ϑ � � � Z, and proceed to the next round. Lemma .. guarantees

that a suitable successor
�
w, ϑ � always exists in ˇ� σ . Accordingly, in � σ there is a

path from
�
v, φ � leading to � w, ϑ � via positions of the form �

v, φ
� � . �is establishes

a correspondence between plays of the entanglement game on
�
, u and paths in

� σ and furthermore, their projections to paths in � ψ.

We shall prove that the strategy defined in this way is winning for the detectives.

Towards a contradiction, assume that the thief can form an infinite path π from

u through
�
when playing against this strategy. We look at the associated path π

�

through � σ and at its projection π
� �
to a path through the syntax graph Sψ. Since

π, and hence π
� �
is infinite, some fixed-point definition ψj must be regenerated

. �e existential hierarchy � 

infinitely oßen on π
� �
. We want to show that this cannot happen.

Indeed, suppose that at node
�
v, φ � the fixed-point formula ψi is regenerated.

�is means that there is a variable Xj such that ψj,φ � ψi and vj,φ � v. Since ψ is

guarded,Xjmust be free inφ. By definiteness, any next regeneration ofψimust also

take place at v. But, at the moment when the thief moves from v to w, detective j is

at v and stays there until, on the corresponding path π
� �

a new fixed point formula

ψℓ with the same variable Xj is opened, and a node v
� �

v is reached where cl
�
ψℓ �

holds. Before this has happened, the thief cannot move back to v.

�us, in order to have a further regeneration of ψi the path π
� �
must go through

the following steps:

. From ψi the path proceeds to a fixed point definition ψm � λY.φm with a

different variable Y
�
Xj so that ψm depends on ψi (i.e., ψi is active at ψm);

. from there the path must reach a definition ψℓ � λXjφℓ, so that in the

corresponding path on
�
, the detective j is lured away from v;

. then the path must regenerate Y to ψm, and

. proceed from ψm to Xj where it can finally regenerate ψi.

Hence, we have seen that between any two regenerations of ψi on π
� �

we must

have a regeneration of a formula ψm that depends onψi. As a consequence, all fixed

point formulae are regenerated only finitely oßen on π
� �
. �

At this point we are ready to state our separation theorem.

�eorem ... Let � be a finite directed graph of entanglement k such that every

node of � is reachable from u. �en, there exists a Kripke structure
�
over � so that

the simulation type of
�
, u can be described by an existential formula in Lµ
 k � , but

not by any existential formula in Lµ
 k � 1 � .
Proof. According to Lemma .., it is possible to assign transition labels to the

edges of � so that the resulting Kripke structure
�

is rigid; no atomic atomic

predicates are set.

Since ent
� � � � k, an existential formula χ � Lµ
 k � describing the simulation

type of
�
, u can be constructed, according to Proposition ...

Towards a contradiction, assume that there is an existential formulaψ � Lµ
 k � 1 �
defining the simulation type of

�
, u. According to Lemma .., we can assume

without loss of generality, that ψ is definite. But then, by Lemma .. it would

follow that ent
� � � � k � 1. �

 �  �e µ-Calculus Variable Hierarchy

As a conclusion, this shows that every existential formula describing the simula-

tion type of a k-entangled rigid structure requires at least k variables. However, this

does not yet exclude the existence of equivalent Lµ-formula over fewer variables

but with universal modalities.

. A   

�e key argument in our proof of the hierarchy theorem consists in the following

preservation property, which implies that the formulae we used to separate the

hierarchic levels of the existential fragment alsowitness the strictness of the variable

hierarchy in the case of the full µ-calculus.

�eorem ... Let
�

be a finite Kripke structure over a strongly connected graph.

�en every formula ψ � Lµ
 k � that defines the simulation type of a state
�
, u is

equivalent to an existential formula ψ
� � Lµ
 k � .

To show that universal modalities can be safely eliminated from any formula ψ

of the considered kind, we take a detour and first show that they can be eliminated

from the formula expressing that some node at which ψ holds is reachable. To refer

to this formula, we use a shorthand borrowed from temporal logics:
�
ψ � � µX.ψ � �

a � A � a 	 X.

Lemma .. in the second part of this section then states that from any formula

equivalent to
�
ψ, an existential formula equivalent to ψ can be recovered without

increasing the number of variables.

Lemma ... Let
�
be a finite strongly connected structure with a distinguished state

u and let ψ
�
be a formula defining the simulation type of

�
, u. �en, every formula

χ ��� ψ
�
can be transformed, without increasing the number of variables, into an

equivalent formula χ
�
with the following properties:

(i) no universal modalities occur in χ
�
;

(ii) χ
�

is of shape � ψ, where ψ contains no µ-operators;

(iii) every formula φ � cl � χ � � holds at some state of
�
.

Proof. (i) Given an Lµ-formula χ, we say that a subformula � a 	 φ starting with a

diamond is vital, if clχ
�
φ � implies

�
ψ

�
. Dually, a subformula
 a � φ starting with a

box is vital, if the negation � clχ
�
φ � implies

�
ψ

�
.

. An existential preservation theorem � 

E  . For χ � � ψ �
, let χ

�
be the formula obtained by

replacing any occurrence of a vital box-subformula
 a � φ with � . �en, χ obviously

implies χ
�
. For the converse, let us consider a tree model

�
of χ

�
. If, at all its

nodes,
�
, v �
 a � clχ

�
φ � holds, then � � χ. Else, there exists a node v � T with�

, v � � a 	 � clχ
�
φ � . But, since
 a � φ is vital, thismeans that

�
, v and hence

�
verifies�

ψ
�
. Either way, we obtain

�
� χ and hence χ � χ � .

E - . By iterating the above elimination

step a finite number of times, we obtain a formula χ � � ψ
�
without vital box-

subformulae. Let now χ
�

be the formula obtained from χ by substituting simul-

taneously all remaining (i.e., non-vital) box-subformulae with � and all non-vital

diamond-subformulae with
�
.

We will first show that the obtained formula χ
�

implies χ. Let
�
be a tree model

of χ
�

and, for every non-vital subformula � a 	 φ of χ, let
�
φ be a tree model of

clχ
�
φ � � � � ψ �

. Using the latter models, we construct an extension
� �

of
�

by

introducing for every node v � T and every non-vital subformula � a 	 φ of χ, a fresh
copy of

�
φ to which we connect v via an a-edge.

Since χ
�
contains no box-subformulae, it is preserved under extensions. Conse-

quently
� � � χ

�
and Verifier has a winning strategy σ in the model-checking game

�
� � �

, χ
� � . Also, for every tree � φ, Verifier has a winning strategy σφ in the game

�
� �

φ, clχ
�
φ � � . We can combine these strategies, to obtain a winning strategy for

Verifier in the game �
� � �

, χ � as follows. Move according to σ unless a position

with a non-vital subformula of χ is met; up to that point, the play cannot leave T,

otherwise, since
�
ψ

�
is falsified at any nodew � T � � T, any vital subformula � a 	 φ

would fail at w. Moreover, no subformula
 a � φ can occur, as it would correspond

to a � position in �
� � �

, χ
� � . Consequently, σ leads the play to a position � v, � a 	 φ �

where v � T and � a 	 φ is non-vital. At that event, let the Verifier choose the a-

successor at the root of
�
φ and proceed with his memoryless winning strategy σφ

for the remaining game. In this way, Verifier finally wins any play of �
� � �

, χ � .
Notice that, for all nodes w � T � � T, we have � � , w �� � ψ �

, and hence
� �

verifies�
ψ

�
(or, equivalently, χ) if, and only if,

�
does. Hence, we have the following chain

of implications, showing that χ
�
implies χ:

�
� χ
����� � � � χ

����� � � � χ
��� �

� χ.

For the converse, consider a tree model
�

� χ and, for every (non-vital) subfor-

mula
 a � φ of χ, a tree model
�
� φ � � clχ

�
φ � � � � ψ �

. As in the previous step, we

construct an extension
� �

of
�

by connecting every node v � T via an a-edge to

 �  �e µ-Calculus Variable Hierarchy

a fresh copy of
�
� φ, for every subformula
 a � φ of χ. Since χ � � ψ �

is preserved

under extensions,
� �

is still a model of χ. Let σ be a winning strategy for Verifier in

the model-checking game �
� � �

, χ � . We will show that σ is also a winning strategy

for Verifier in �
� �
, χ
� � .

Notice that, in �
� � �

, χ � Falsifier has a winning strategy from every position�
v,
 a � φ � with v � T, by moving to the a-successor of v at the root of

�
� φ. Conse-

quently, any play according toVerifier’s strategy σ will avoid such positions. Besides

this, at every position
�
v, � a 	 φ � where v � T and � a 	 φ is a vital subformula of χ, the

strategy σ will appoint a successor position
�
w, φ � withw � T, otherwise, since any

a-successor w
� � T � � T falsifies

�
ψ

�
, φ would fail too. Summarising, every play

of �
� � �

, χ � according to σ, will avoid universal modalities and meet only nodes

v � T, unless a position a non-vital subformula � a 	 φ occurs. But under these condi-
tions, we can replicate every play of �

� � �
, χ � according to σ as a play of �

� �
, χ
� � : in

case a non-vital subformula � a 	 φ of χ is met in the former game, Verifier immedi-

ately wins �
� �
, χ
� � , since the non-vital diamond-subformulae have been replaced

by
�
. Otherwise, the outcome of the play is the same for both games and Verifier

wins as well.

�is concludes the proof that χ � χ � .

(ii) By the above result, we can assume without loss that χ � � ψ �
contains no box-

modalities. For n being the number of states in
�
, let ψ be the formula obtained by

replacing every occurrence of a least fixed-point subformula µX.φ in χ by it’s n-th

approximant φn. �en, by definition of the µ-operator, ψ implies χ and thus
�
ψ

implies
�
χ, which is equivalent to χ. Conversely, since

�
, u � χ and

�
has n states,

we have
�
, u � ψ. As ψ is preserved under simulation, this means that ψ

�
implies

ψ. Accordingly
�
ψ

�
, which is equivalent to χ, implies

�
ψ. Hence, χ � � ψ.

Note that the transformation of χ into
�
ψ does not increase the number of

variables, as we can pick any of the variables already occurring in χ to expand the�
-notation.

(iii) By theprevious argument,we can assume that χ is of shape
�
ψwhereψ contains

no boxes, i.e., χ � µX.ψ � �
a � a 	 X. Clearly, χ itself holds at every node of � and

therefore, for every transition a occurring in
�
, there is a node v � V where � a 	 χ,

and thus clχ
�
� a 	 X � , holds. Hence, any subformula φ of χ, with

�
, v �� clχ

�
φ � for all

v, must actually be a subformula of ψ. Let ψ
�
be the formula obtained by replacing

every such occurrence φ inψ with � . On the one hand,ψ � then obviously impliesψ.

On the other hand, as
�
, u � � ψ, there must exists a node v of

�
where ψ holds.

. An existential preservation theorem � 

At that node we also have
�
, v � ψ

�
and, because ψ

�
is preserved under simulation,

this means that ψ
�
v implies ψ

�
. But then

�
ψ

�
implies

�
ψ
�
and, by

�
ψ � � ψ �

, it

follows that
�
ψ implies

�
ψ
�
. �

R    . Before we proceed towards

proving the Preservation �eorem, we will introduce some notions which will be

useful in the proof of Lemma ..

Given a formula ψ � Lµ, we call a subformula φ radical, if it appears directly

under a modal quantifier in ψ. We refer to the closure of radicals in ψ by

cl0
�
ψ � � � � ψ � � � φ � cl � ψ � ��� a 	 φ � cl � ψ � or

 a � φ � cl � ψ � for some a � A � .
Radical formulae are the first to be met when a play of the model-checking

game reaches a new node of the Kripke structure. For this reason, we need to care

for game positions carrying radical formulae when merging strategies of different

games.

Let
�
, u be a model of ψ � Lµ and σ a winning strategy for Verifier in �

� �
, ψ � .

For any node v � V , we define the strategic type of v in � , u under σ as follows:
tp

�
σ

�
v � � � � φ � cl0 � ψ � � position � v, φ � is reachable in � σ

� �
, ψ � � .

Inarbitrarygames, the typeofanodecanberathercomplex.However, forexistential

formulae, Verifier has full control over the moves in the Kripke structure. In the

ideal case, he can foresee for every node, a single radical formula to be proved there.

Given a Kripke structure
�
, u and a formula ψ, we say that a Verifier strategy

σ in the model-checking game �
� �
, ψ � is crisp, if the strategic type tp �

σ

�
v � of any

v � V consists of not more than one radical. Accordingly, we call a model
�
, u

of ψ crisp (under σ), if Verifier has a crisp winning strategy σ in the associated

model-checking game.

�e subsequent lemmas, that can be easily proved, provide us with sharp tools

for manipulating models of existential formulae.

Lemma ... Given a structure
�
, u every existential formula ψ � Lµ with � , u � ψ

also has a tree model
�

bisimilar to
�
, u which is crisp. Moreover, if

�
is finitely

branching, then
�
can be chosen so as well.

Lemma ... Let
�
be a crisp tree model of a formula ψ � Lµ under a strategy σ and

let x � T be a node with strategic type tp
�
σ

�
x � � � φ � . �en, for every crisp tree model

 �  �e µ-Calculus Variable Hierarchy

� of φ, the tree
�
 x � � � � ψ, obtained by replacing the subtree of

�
rooted at x with

� , is still a crisp model of ψ.

We are now ready for the final step, the elimination of the
�
-operator.

Lemma ... Let
�
be a finite strongly connected structure with a state u and let ψ

�

describe the simulation type of
�
, u. �en, every formula ψ � Lµ so that � ψ � � ψ �

can be transformed, without increasing the number of variables, into a formula ψ
�

without universal modalities, so that ψ
� � ψ

�
.

Proof. According to Lemma .., we can assume that ψ contains no universal

modalities or least fixed point operators and that (the closure of) every subformula

is true at some node in
�
.

We will first show that for any node v in
�
, there is a subformula φ of ψ whose

closure clψ
�
φ � implies ψ

�
v . Actually, we always find a radical formula with this

property.

Towards a contradiction, let us assume that ψ
�
v is not implied by any radical

subformulaofψ.�ismeans that everyφ � cl0 � ψ � hasa treemodel
�
φwhich falsifies

ψ
�
v . According to Corollary .., we can choose

�
φ to be a finitely branching tree

that falsifies already an approximant of ψ
�
v to some finite stage mφ. Observe that

this approximant
�
ψ

�
v �
 � � � mφ � is a modal formula. Let us denote its modal depth

by nφ. Further, let us fix a number nwhich is greater than any nφ for φ � cl0 � ψ � and
co-prime to every number up to the size of the domain V .

By Lemma .., we can assume without loss of generality that each
�
φ is a crisp

model ofφ, this beingwitnessed by a crispwinning strategy forVerifier in the game

�
� �

φ, φ � . In particular, � ψ is a crisp model of ψ. Let σψ be a crisp winning strategy

for Verifier in the model-checking game �
� �

ψ, ψ � .
With aid of these, we construct a sequence of trees

� �
i � 0 �

i � ω, together with crisp
Verifier strategies σi witnessing that

�
i � ψ. To start, we set

�
0 � �

�
ψ and σ0 � � σψ .

In every step i � 0, the tree
�
i

�
1 is obtained from

�
i by performing the following

manipulations at depth n
�
i � 1 � . For each subtree of

�
i rooted at a node x of this

depth, we check whether
�
i, x � ψ

�
v . If this is not the case, the subtree remains

unchanged. Else, we look at the strategic type of x under σi. If the type is empty,

we simply cut all successors of x. Otherwise, tp
�
i
σi

�
x � consists of a single radical

formula φ, and we replace the subtree
�
i, x with

�
φ. According to Lemma .., the

resulting tree
�
i

�
1 is a model of ψ, and the composition of the strategy σi with the

crisp strategies σφ on the newly appended subtrees
�
φ yields a crispVerifier strategy

σi �
1 for the model-checking game �

� �
i

�
1, ψ � .

. �e hierarchy theorem � 

By construction, each of the trees
�
i is finitely branching and the sequence� �

i � 0 �
i � ω converges in the prefix topology of finitely branching trees (see []). Let�

ω be the limit of this sequence. Since no µ-operators occur in ψ, its model class is

topologically closed on finitely branching trees, according to []. Consequently,�
ω is still a model of ψ. By our hypothesis, ψ implies

�
ψ

�
.�us, at some depth d in�

ω a node x with
�
ω, x � ψ

�
v appears. Since

�
is strongly connected, vmust lie on

a cycle in
�
. Hence, for k � � V � being the length of such a cycle, there exist nodes

y with
�
ω, y � ψ

�
v at every depth d � jk. However, our construction eliminated all

subtrees carrying the similarity type of v at depthsmultiple of n. Since nwas chosen

to be co-prime to any integer up to � V � , it follows that
�
ω cannot satisfy ψ. �is

is a contradiction which invalidates our assumption that ψ
�
v is not implied by any

φ � cl0 � ψ � .
Hence, for every node v � V , there exists a formula φv � cl0 � ψ � implying ψ

�
v .

We can show that the converse also holds, if v is maximal with respect to the

preorder
�
, in the sense that for every w with v

�
w we have w

�
v. Recall that,

by Lemma .. (iii), the formula φv must be verified at some node w in
�
. Since

φv is existential and thus preserved under extension, it follows that ψ
�
w implies φv,

which further implies ψ
�
v . But this means that v

�
w and, by maximality of v, that

w and v are bisimilar. Hence,
�
, v � φv and consequently ψ

�
v � φv.

�is concludes the proof for the case when u is maximal in
�

with respect to
�
. Otherwise, we could not guarantee, of course, that φu � ψ

�
u . But in that case, a

formulaequivalent to ψ
�
u canberecovered fromcl0

�
ψ � withoutgreatdifficulty. �

. T  

Up to now we have showed how to construct, for every level k of the variable

hierarchy, existential formulae which are not equivalent to any existential formula

from a lower hierarchical level. However, this leß open the question whether there

exist equivalent formulae in Lµ
 k � 1 � which use universal quantification. Due to

our Preservation�eorem, we are now able to assert that this cannot be the case.

�eorem ... For every k, there exist formulae ψ � Lµ
 k � that are not equivalent to
any formula in Lµ
 k � 1 � .
Proof. Consider a rigid strongly connected Kripke structure

�
of entanglement k

and letψ
� � Lµ be a formula describing the simulation type of

�
, u for some stateu.

 �  �e µ-Calculus Variable Hierarchy

Towards a contradiction, assume that there exists a formula ψ � Lµ
 k � 1 � equiv-
alent to ψ

�
. Since ψ defines the simulation type of

�
, a finite strongly connected

structure, we can apply �eorem .. to conclude that there also exists a formula

ψ
� � Lµ
 k � 1 � using only existential modalities which is equivalent to ψ

�
. But this

contradicts the separation theorem .. for the existential fragment. �

.. S    

�eresults of the previous sections provideuswith a generic technique to construct

witnesses for the Lµ-variable hierarchy. �e first examples for the strictness of the

existential hierarchy, which turn out to be valid witnesses for the unrestricted case

too, have been presented in []. �ey rely on rigid k-cliques where every action is

labelled differently, leading to formulae over a vocabulary with k2 modalities.

To show that already over a fixed vocabulary, the variable hierarchy remains

strict. we construct rigid Kripke structures over only two modalities leading to

formulae that are strict at each level of the variable hierarchy.

Definition ... For every k � 0, let � k � �

�
V, Ea, Eb � be the Kripke structure with

state set V �
 k � �
 k � and transition relations

Ea � � � � � i, j � , � i, j � 1 � � � i � 0, j � 0 �
� � � � i, 0 � , � i � 1, k � 1 � � � i � 0 � and

Eb � � � � � i, j � , � � i � j � mod k,
�
j � 1 � mod k � � � 0 � i, j � k � .

Let us first verify that these structures � k indeed fulfil the premises formulated

in the proof of the separation theorem ...

Lemma ... For every k, the structure � k �

�
V, Er, Es � satisfies the following

conditions:

(i) ent
�

� k � � k;

(ii)
�
is deterministic and co-deterministic;

(iii)
�
is singular with respect to simulation.

Proof. Toprove thefirst issue,weuseour characterisationof entanglement in terms

of games, and show that the thief has a winning strategy in any game on � k with

less than k detectives, but he loses when they come in k or more.

. �e hierarchy theorem � 

Figure .: �e Kripke structure
�
3 (a-transitions thicker, b-transitions plain)

�
0, 0 � �

0, 1 � �
0, 2 �

�
1, 2 � �

1, 1 � �
1, 0 �

�
2, 0 � �

2, 1 � �
2, 2 �

We will refer to the rows of the state set Ci � � � i, j � 0 � j � k � as islands. Each
island induces a cycle, and every two islands are connected by an edge, so that they

forma k-clique. Intuitively, if there are less than k cops, at everymoment at least one

of the islandsmust be unguarded and the thief can always navigate fromhis current

position to that island without bumping into a detective by pursuing the following

strategy: Whenever the current island i is unguarded and, moreover, no detective

is on his way to the current position, proceed on i. In the event that a detective is

sent to the current position, at least one island jmust be leß unguarded. Since the

current island was previously unguarded, the path from the current position to the

safe island j is still free. Hence, set out on this path and follow it until the island j is

reached. Upon arrival, jwill still be an unguarded island so that the strategy can be

reiterated.

In case k or more detectives are available, they can distribute to the different

islands, e.g., by following the thief to any position
�
i, 0 � he reaches during the play.

�en the robbermustmove to a fresh island aßermost k � 1 steps. But aßer k times,

there are no unguarded islands leß, so the thief loses.

It is easily seen that
�
is deterministic and co-deterministic.

To verify that it is also singular with respect to
�
, observe first that the the nodes

of � k are aligned on the finite r-path from
�
k � 1, k � 1 � to � 0, 0 � in descending

lexicographic order. Clearly,
�
k � 1, k � 1 � cannot be simulated by any other node.

Let us assume that we have a simulation u
�

v between distinct nodes. Since

� k is strongly connected, there exists a unique path from u to
�
k � 1, k � 1 � . �e

sequence of actions seen on this path can also be executed starting from v since

u
�

v. By determinism of � k the node w reached via this sequence is uniquely

 �  �e µ-Calculus Variable Hierarchy

determined. However, since the simulation relation propagates along actions, it

follows that
�
k � 1, k � 1 � �

w which implies
�
k � 1, k � 1 � � w, in contradiction

to the co-determinacy of � . �

According to this, the structures � k can be used as witnesses in the proof of the

separation theorem .. yielding strict formulae for each level k of the existential

variable hierarchy. Since � k is strongly connected, the Existential Preservation

�eorem .., establishes that these formulae actually witness the strictness of the

variable hierarchy of the µ-calculus, already over a language with two modalities

only.

Corollary ... For every integer k, there are bimodal existential formulaeψk � Lµ
 k �
that are not equivalent to any formula in Lµ
 k � 1 � .
We explicitly construct witnessing formulae describing the simulation type of

� k,
�
0, 0 � , as in the proof of proof of Proposition ... Towards this, we build

a sequence of formulae
�
φi,j � 0 �

i,j � k over the fixed-point variables X0, . . . , Xk � 1 by
induction on j, setting for all i simultaneously φi,0 � � Xi and for every j � 0:

φi,j � � � a 	 φi,j � 1 � � b 	 φi �
j,j � 1.

�en, we define the system S of rules

X0 � � � b 	 φ0,n � 1 and Xi � � � a 	 φi � 1,k � 1 � � b 	 φi,n � 1 for 0 � i � k.
�e formula � X0.S obtained as a description for the simulation type of � k at state�
0.0 � is strict for the level k of the variable hierarchy.

B

[] A. A,�emu-calculus alternation-depth is strict on binary trees, RAIRO

Informatique�éorique et Applications,  (), pp. –.

[] A. A  D. N, Rudiments of µ-calculus, North Holland, .

[] R. J. A, What is game theory trying to accomplish?, in Frontiers of

Economics, K. Arrow and S. Honkapohja, eds., Basil Blackwell, .

[] J. L. B, J. D,  J. G, Structural complexity , Springer-

Verlag, .

[] D. B,Game logic is strong enough for parity games, Studia Logica, 

(), pp. –. Special issue on Game Logic and Game Algebra edited

by M. Pauly and R. Parikh.

[] D. B A. B,Automata for guarded fixed point logics,

in Automata, Logics, and Infinite Games, E. Grädel,W.�omas, and T.Wilke,

eds., no.  in LNCS, Springer Verlag, , ch. , pp. –.

[] , �e monadic theory of tree-like structures, in Automata, Logics, and

Infinite Games, E. Grädel, W. �omas, and T. Wilke, eds., no.  in LNCS,

Springer Verlag, , ch. , pp. –.

[] D. B  E. G,Games andmodel checking for guarded logics,

in Proceedings of LPAR , Lecture Notes in Computer Science Nr. ,

Springer, , pp. –.

[] D. B  E. G, Fixed-point logics and solitaire games,�eory

of Computing Systems,  (), pp.  – .

[] D. B, E. G,  S. K, Once upon a time in the west.

Determinacy, complexity and definability of path games, in Proceedings of the

th International Conference on Logic for Programming and Automated

Reasoning, LPAR , Almaty, M. Vardi and A. Voronkov, eds., vol.  of

LNCS, Springer-Verlag, , pp. –.



 � Bibliography

[] D. B, E. G,  G. L, On the variable hierarchy of the

modal mu-calculus, in Computer Science Logic, CSL , J. Bradfield, ed.,

vol.  of LNCS, Springer-Verlag, , pp. –.

[] D. B  G. L,�e variable hierarchy of the µ-calculus is strict,

in STACS , Proceedings of the nd Symposium on�eoretical Aspects

of Computer Science, vol.  of LNCS, Springer-Verlag, , pp. –.

[] J. B,�e modal µ-calculus alternation hierarchy is strict, �eoretical

Computer Science,  (), pp. –.

[] J. B  C. S,Modal logics and mu-calculi: an introduction,

inHandbook of ProcessAlgebra, A. P. J. Bergstra and S. Smolka, eds., Elsevier,

North-Holland, .

[] J. C. B, �e modal mu-calculus alternation hierarchy is strict, in

Proceedings of the th International Conference on Concurrency �eory,

CONCUR ’, U. Montanari and V. Sassone, eds., vol.  of Lecture Notes

in Computer Science, Springer-Verlag, August , pp. –.

[] J. C. B, Simplifying the modal mu-calculus alternation hierarchy., in

STACS, , pp. –.

[] J. B, On a decision method in restricted second-order arithmetic, in Proc.

 Int. Cong. for Logic, Mothodologand Philossophy of Science, Stanford

University Press, , pp. –.

[] A. E, An application of games to the completeness problem for

formalized theories, Fundamenta Mathematicae,  (), pp. –.

[] A.E,Temporalandmodal logic, inHandbookof�eoreticalComputer

Science, vol B., J. van Leeuwen, ed., Elsevier, , pp. –.

[] A. E  C. J, Tree automata, mu-calculus and determinacy, in

Proc. nd IEEE Symp. on Foundations of Computer Science, , pp. –

.

[] E. A. E  C. S. J, Tree automata, mu-calculus and determinacy

(extended abstract), in ndAnnual SymposiumonFoundations ofComputer

Science, San Juan, Puerto Rico, – Oct. , IEEE, pp. –.

[] M. F  R. L, Propositional dynamic logic of regular programs,

Journal of Computer and System Sciences,  (), pp. –.

[] D. G, A. P, S. S,  J. S, On the temporal analysis

of fairness, in POPL ’: Proceedings of the th ACM SIGPLAN-SIGACT

Bibliography � 

symposium on Principles of programming languages, New York, NY, USA,

, ACM Press, pp. –.

[] G. G, N. L,  F. S, Robbers, marshals, and guards:

Game theoretic and logical characterizations of hypertree width, in Proc. th

ACM Symp. on Principles of Database Systems, , pp. –.

[] E. G,Why are modal logics so robustly decidable?, Bulletin of the Euro-

pean Association for�eoretical Computer Science,  (), pp. –.

[] , Finite model theory and descriptive complexity, in Finite Model �eory

and Its Applications, Springer-Verlag, . To appear.

[] E. G, W. T,  T. W, eds., Automata, Logics, and Infinite

Games, no.  in Lecture Notes in Compter Science, Springer-Verlag, .

[] E.G  I.W,Guarded fixed point logic, in Proc. th IEEE

Symp. on Logic in Computer Science, , pp. –.

[] Y. G  L. H, Trees, automata, and games, in Proceed-

ings of the fourteenth annualACMsymposiumon theory of computing, ,

pp. –.

[] T. H  W. T, Computation tree logic CTL
�

and path quanti-

fiers in the monadic theory of the binary tree, in Automata, Languages, and

Programming, th International Colloquium, ICALP, vol.  of Lecture

Notes in Computer Science, Springer, , pp. –.

[] L. H, Some remarks on infinitely long formulas, in Proceedings of the

Symposium on Foundations of Mathematics: Infinitistic Methods, Polish

Scientific Publishers, , pp. –.

[] M. C. B. H  R. M, On observing nondeterminism and con-

currency, in Automata, Languages and Programming, th Colloquium, J. W.

de Bakker and J. van Leeuwen, eds., vol.  of LNCS, Springer-Verlag, .

[] J. G. H  P. S. T,Dynamic linear time temporal logic.,

Ann. Pure Appl. Logic,  (), pp. –.

[] J. H, Language-games for quantifiers, in Studies in Logical �eory,

N.Rescher, ed., vol. ofAmericanPhilosophicalQuarterlyMonographSeries,

Basil Blackwell, , pp. –.

[] W. H, Logic and games, in �e Stanford Encyclopedia of Philosophy,

E. N. Zalta, ed., http://plato.stanford.edu/archives/win/entries/logic-

games/, Winter .

 � Bibliography

[] D. J  G. L, On the logical definability of topologically closed rec-

ognizable languages of infinite trees, Computing and Informatics,  (),

pp. –.

[] D. J  I.W, Automata for the modal µ-calculus and related

results, in Proceedings of MFCS , Lecture Notes in Computer Science

Nr. , Springer-Verlag, , pp. –.

[] , On the expressive completeness of the propositional mu-calculus with

respect to monadic second order logic, in Proceedings of th International

Conference on Concurrency�eory CONCUR ’, no.  in Lecture Notes

in Computer Science, Springer-Verlag, , pp. –.

[] T. J, N. R, P. D. S,  R. T, Directed tree-

width, J. Comb.�eory Ser. B,  (), pp. –.

[] M. J, Small progress measures for solving parity games, in STACS

, th Annual Symposium on�eoretical Aspects of Computer Science,

Proceedings, vol.  of Lecture Notes in Computer Science, Springer, ,

pp. –.

[] H.W.K,TenseLogic and the�eory of LinearOrder, PhDthesis,University

of California, Los Angeles, .

[] A. K, �e Higher Infinite, Springer, .

[] A. K, Classical Descriptive Set �eory, Springer, .

[] D. K, Results on the propositional µ-calculus, �eoretical Computer Sci-

ence,  (), pp. –.

[] ,A finite model theorem for the propositional µ-calculus, Studia Logica, 

(), pp. –.

[] S. A. K, Semantical analysis of modal logic I: Normalmodal propositional

calculi,Zeitschriß fürMathematischeLogikundGrundlagenderMathematik,

 (), pp. –.

[] O. K, M. V,  P. W, An automata-theoretic approach

to branching-timemodel checking, Journal of the ACM,  (), pp. –.

[] J. L T, Decision problems related to the concept of operation, PhD

thesis, University of California, Berkeley, .

[] G. L, A hierarchy theorem for the mu-calculus, in Proceedings of the

rd International Colloquium on Automata, Languages and Programming,

Bibliography � 

ICALP ’, F. Meyer auf der Heide and B. Monien, eds., vol.  of Lecture

Notes in Computer Science, Springer-Verlag, July , pp. –.

[] Z. M  A. P, Temporal Verification of Reactive Systems: Specifi-

cation, Springer-Verlag, .

[] R. M, ed., �e Scottish Book. Mathematics from the Scottish Café,

Birkhäuser, .

[] F. M  A. M. R, Counting on ctl*: on the expressive power

of monadic path logic., Information andComputation,  (), pp. –.

[] D. N,�e propositional µ-calculus is more expressive than the proposi-

tional dynamic logic of looping. Unpublished manuscript. .

[] J. O, Fast mu-calculus model checking when tree-width is bounded,

in CAV’, vol.  of LNCS, Springer-Verlag, , pp. –.

[] R. P, Propositional game logic, in IEEE Symposium on Foundations of

Computer Science, IEEE, , pp. –.

[] ,�e logic of games and its applications, Annals of discrete mathematics,

 (), pp. –.

[] M. P, Game logic for game theorists, Tech. Rep. INS-R, CWI, Ams-

terdam, September .

[] , Logic for Social Soßware, PhD thesis, University of Amsterdam, .

[] M. P  M. V,�e planning spectrum – one, two, three, infinity,

in Proc. th IEEE Symp. on Logic in Computer Science, .

[] A. P,�e temporal logic of programs, in Proceedings of the th Annual

IEEE Symposium on the Foundations of Computer Science, , pp. –.

[] M. R,Decidability of second-order theories and automata on infinite trees,

Transactions of the AMS,  (), pp. –.

[] A. L. S,Decidability of monadic theories, in Proceedings of the th In-

ternational Symposium onMathematical Foundations of Computer Science,

MFCS ’, vol.  of LNCS, Springer-Verlag, , pp. –.

[] P. D. S  R. T, Graph searching and a min-max theorem for

tree-width, J. Comb.�eory Ser. B,  (), pp. –.

[] S. S, �e monadic theory of order, Annals of Mathematics,  (),

pp. –.

 � Bibliography

[] C.S,Bisimulation,modal logicandmodel checkinggames, Logic Journal

of the IGPL,  (), pp. –.

[] R. S. S,Propositional dynamic logic of looping and converse is elementary

decidable, Information and Control,  (), pp. –.

[] A. T,Contributions to the theory of models I, II, IndagationesMathemat-

icae,  (), pp. –.

[] W. T, A combinatorial approach to the theory of omega-automata, In-

formation and Control,  (), pp. –.

[] J.  B, When are two games the same? available at

http://turing.wins.uva.nl/ johan/TORINO.ps.

[] J.  B, Modal Correspondence �eory, PhD thesis, University of

Amsterdam, .

[] , Exploring Logical Dynamics, CSLI Publications, Stanford, .

[] S. V, Effectivity functions and stable governance structures, Annals of

Operations Research,  (), pp. –.

[] M.V,Why ismodal logic so robustly decidable?, inDescriptiveComplexity

and Finite Models, N. Immerman and P. Kolaitis, eds., vol.  of DIMACS

Series in Discrete Mathematics and �eoretical Computer Science, AMS,

, pp. –.

[] J.  N O. M,�e�eory of Games and Economic

Behavior, Princeton Univ. Pres, .

[] I.W,Pushdownprocesses:Games andmodel checking, Information

and Computation,  (), pp. –.

[] , Monadic second-order logic on tree-like structures, TCS,  (),

pp. –.

[] P. W, A translation from full branching time temporal logic to one letter

propositional dynamic logic with looping. Unpublished manuscript, .

[] , Temporal logic can be more expressive, Information and Control, 

(), pp. –.

[] E. Z, Über eine anwendung der mengenlehre auf die theorie des

schachspiels, in Proceedings of the Fißh Congress of Mathematicians, ,

pp.  – .

S I

A actions, 

P atomic propositions, 

Ea transition, 

Vp proposition, 

� bisimilar, 
�

similar, 

FO first-order logic, 

MSO monadic second-order

logic, 

MPL monadic path logic, 

� � � bisimulation-invariant

fragment, 

ML Hennessy-Milner Logic, 

 � � � extension, 

� satisfaction, 

� next, 

� until, 

LTL Linear Temporal Logic, 

CTL
�

Computation Tree Logic, 

Lµ µ-calculus, 
Lµ
 k � k-variable fragment, �
ψ syntax tree, 

� ψ syntax graph, 

clψ
�
φ � closure, 

φi finite approximant, 

Ω priority, 

� σ induced subgame, 

Wn Lµ parity characterisation, 
; sequential composition, 

� choice, 
�

iteration, 
d dualisation, 

GL Game Logic, 

� � GL-translation, 

� dual choice, 

� dual iteration, 

Wn
� parity characterisation, 

 T � infinite branches of T, 
� colour restriction, 

γ.L Path game logic, 

ent entanglement, 

Cn cycle, 

fb feedback, 
ˇ� σ cast of σ, 



 � Symbol Index

I

∆PDL, 

µ-calculus, 

action, 

active node, 

Baire space, 

bisimulation, 

— invariant formula, 

bisimulation type, 

Cantor space, 

cast, 

closure, , 

Computation Tree Logic, 

dualisation, 

effectivity

— function, 

— relation, 

entanglement, 

existential, 

extension, 

feedback, 

finite approximant, 

finite model property, 

first-order logic, 

formula

— bounded , 

— definite, 

— future, 

— radical, 

— vital, 

full path, 

game

— Banach-Mazur, 

— determined, 

— extensive form, 

— parity, 

— strategic form, 

— superdetective, 

— win-or-lose, 

game form, 

Game Logic, 

guarded, 

Hennessy-Milner logic, 

hierarchy

— GL alternation , 

— Lµ alternation, 

— star, 



 � Index

Kripke structure, 

— rooted, 

Linear Temporal Logic, 

monadic path logic, 

monadic second-order logic, 

negation normal form, 

neighbourhood model, 

path game, 

PDL, 

reactive system, 

set

— Borel, 

— closed, 

—meager, 

— nowhere dense, 

— open, 

simulation, 

simulation type, 

state, 

strategic type, 

strategy, 

—memoryless, 

— winning, 

structure

— co-deterministic, 

— deterministic , 

— rigid, 

— singular, 

synchronised product, 

syntax graph, 

syntax tree, 

tree model property, 

tree with back edges, 

unravelling, 

— driven by, 

— finite, 

— function, 

utility, 

winning condition, 

Index � 

Lebenslauf

DW B

. Mai  geboren in Lugoj, Rumänien

 –  Deutsche Grundschule in Lugoj

 –  Lyzeum für Mathematik und Physik in Timişoara

Juni  Bacalaureat (rumänische Hochschulreife)

 Geschwister-Scholl-Gymnasium in Mannheim

Dez.  Abitur

 –  Studium der Informatik an der RWTHAachen

Mai  Diplom Informatik

 –  Wissenschaßlicher Angestellter am Lehr- und

Forschungsgebiet Mathematische Grundlagen

der Informatik, RWTHAachen

