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PREFACE

AME THEORY isaframework of analytical tools for reasoning about decisions
G under circumstances beyond the immediate control of the individual decision
maker. The foundations of modern game theory have been laid by von Neumann
and Morgenstern in the first half of the 20th century [74] at the intersection between
mathematics and economy. Since then, game theory has undergone an outstanding
evolution, transgressing the boundaries of its parent disciplines, and reaching core
positions in every scientific area where interaction and decision matter.

The eftectiveness of game theory can be ascribed to two main concerns. As a
means for description, games represent a unified model for interactive situations
which abstracts from the contingencies of the specific environment. On the back-
ground of this model, game theory offers an extensive and intuitive language for
reasoning about the intricacies of interactions. In return, the insight gained within
the model supports decisions on subsequent actions, thus assigning the theory a
prescriptive competence.

To accomplish these functions, game theory shall establish a provision of viable
models and languages that are able to capture the relevant distinctions and simi-
larities in the concrete setting, while remaining operative, on the other hand. As
pointed out by Aumann in [3], game theory is in this sense a science of classifi-
cation. In view of its aims and methods, game theory is closely related to logic.!
On the common ground of the two sciences, logic has to offer a rich foundational
framework of formal languages and models.

Conversely, game-theoretic techniques turned out to provide a fruitful approach
to several essential issues in logic [35]. A moment of major impact on logical
methodology is marked by the understanding of quantifiers in terms of games,
proposed by Henkin [31] and consolidated by Hintikka [34]. In this view, the value
of quantified first-order variables is assigned by two antagonistic players, Verifier
and Falsifier, reflecting the intuition that Verifier tries to make a formula true under
the challenge of Falsifier’s choices. The notions of truth and provability can thus
be phrased in terms of winning strategies for Verifier, providing a game-theoretic
semantics for predicate logic which extends naturally to logics with generalised
quantifiers.

Another fundamental result at the boundary between games and logics is

'Interestingly, the first formal theorem in game theory was contributed by a logician: in 1913
Zermelo proved that chess is determined [79].
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the characterisation of elementary equivalence in term of Ehrenfeucht-Fraissé
games [18]. Here, the players are concerned with the question whether two struc-
tures are distinguishable by means of a first-order formulae. If so, a winning strategy
corresponds to a separating formula. Structure-comparison games of this kind pro-
vide an invaluable model-theoretic tool and have been successfully adapted to a
large range of logics.

The theory of concurrent systems in computer science is a prominent application
area of game theory and logic. In this framework, the task of decision making is
conveyed to computational agents, equipped with a formal specification of their
objective. The challenge is to design these agents as if they would be rational in
the original game-theoretic sense, i.e., acting deliberately towards achieving their
individual objective taking into account all possible actions of the other agents.

A common interpretation of concurrent systems is based on Kripke structures,
also called transition systems. In this model, the elements are associated to states of
the system, and binary transition relations represent actions that can be performed
on or by the system. Due to the occurrence of actions, the system evolves along
transitions, forming a path through the model. In an interactive setting, an indi-
vidual agent may have control only over a restricted set of states so that the systems
behaviour, i.e., the formed path, also depends on the actions of other agents. The
question is whether and how an agent can ensure the system to behave according
to his objective.

In line with this interpretation, formal languages are designed to describe the
possible behaviours of concurrent systems and to specify the objectives of agents.
Accordingly, questions about the properties of a system can be translated into
questions about satisfaction or validity of logical formulae in Kripke structures.
Immediate applications of this approach arise, for instance, in control theory, where
we have two agents, the controller and the environment, and wish to specify that the
controller can keep the system reliable under interference with the environment.
More generally, Kripke structures together with formal specifications of objectives
can be regarded as a a model for a large variety of interactive situations based
on discrete states and evolving sequentially over time. This allows us to rely on
established logical methods towards reasoning about games.

Conversely, logics over Kripke structures can be naturally embedded into the
realm of game theory, by way of the appropriate game-theoretic semantics. This
two-way correspondence between the classical and formal framework of modal
logics, i.e., logics intended for reasoning about Kripke structures, on the one hand,
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and the intuitive world of game theory on the other hand, is of great potential.

In order to take advantage of this potential we shall, of course, not persist at
the definitional level. Unfortunately, regarding aspects of internal structure, the
gap between classical formal logics and game-oriented languages is very large.
For instance, already the notion of equivalence, which is fundamental for classical
logics, is far from being well-understood in terms of games [69]. Also, concepts of
rationality intrinsic to the game perspective are often very hard to capture in terms
of classical formalisms.

In the present thesis, we address the question of relating classical formal log-
ics and game logics with regard to their fine-structure, and try to bridge the gap
between these in a specific setting concerning two-player games over Kripke struc-
tures. On the classical side, we consider the y-calculus Ly, a very expressive and
robust formalism with outstanding model-theoretic properties which, however, is
widely agreed to be little intuitive. On the other side, we investigate formalisms
with generalised quantifiers defined via games arising naturally in the context of
concurrent systems: Parikhs Game Logic GL and so-called path-game logics.

Parikhs Game Logic, discussed in Chapter 2, is a dynamic formalism with
quantifiers ranging over games built by sequential composition, nondeterministic
choice, iteration and game dualisation, starting from a given set of atomic actions.
We show that the resulting language is very powerful, being able to express the
semantic games of the p-calculus. Further, we prove that the syntactic device
of dualisation induces a strict semantic hierarchy which parallels the alternation
hierarchy of the y-calculus.

Chapter 3 is dedicated to temporal logics with quantifiers associated to infinite
paths formed interactively by the players. According to the schedule of the forming
process and the conditions on the outcoming path, we first classify the underlying
families of games under topological viewpoint. Then, we study the structure of
winning strategies in regular games, and show that, in significant cases, these are
automatic or even memoryless. On basis of this, we embed the corresponding
temporal logics into the y-calculus and show that, if first-order logic is used to
describe the quantified paths, the obtained language is equiexpressive to a well-
studied formalism, namely CTL*.

In the last two chapters we investigate the fine-structure of the y-calculus with
respect to the question of how many variables are needed to specify a given
property. The question arises naturally in the context of GL, CTL*, and other
process languages, which all turn out to translate into the two-variable fragment
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of L,. Our approach towards settling this question relies essentially on games. We
consider model-comparison games, more precisely, simulation games over finite
Kripke structures, which can be described in the y-calculus.

In Chapter 4, we first identify a structural parameter, called entanglement,
representing an upper bound on the number of variables needed to define a given
finite Kripke structure, or, the (bi-)simulation game for that structure, in L,,. Besides
being a measure of descriptive complexity, it turns out that the entanglement also
captures relevant computational properties of the structure. We show that parity
games can be solved in polynomial time, if their entanglement is bounded by a
constant. This is significant since no polynomial time algorithm for solving this
problem in the general case is known (although there are no strong reasons to
assume none exists).

Finally in Chapter 5 we show that the entanglement of a structure represents
indeed a lower bound on the number of variables needed to describe the corre-
sponding simulation game. As a consequence, it follows that the variable hierarchy
of the p-calculus is strict. In particular, this result separates the expressive power
of GL from L, answering an open question posed by Parikh when he introduced
Game Logic in 1983 [55].
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1 BACKGROUND

HE FORMAL APPARATUS of this thesis is founded on state-based models of
T two-player games, and logical languages for reasoning about these models. In
the present chapter, we review some fundamental game-theoretic concepts which
we relate to specific questions in logic and computation. Departing from these, we
introduce Kripke structures as a raw model for concurrent behaviour together with
a criterion of observational equivalence captured by the notion of bisimulation.
The second section is dedicated to logical formalisms for describing the behaviour
of Kripke structures. In the last section we introduce the semantic games for the
p-calculus.

1.1 MODELS FOR INTERACTION

Game models describe situations of strategic interaction representing the actions
or decisions players can take and their preferences over the possible outcomes
arising as a consequence of these. To solve a game means to describe the possible
outcomes that may arise when players proceed rationally.

In the context of concurrent systems, we use Kripke structures to model the
dynamics of a system and logical specification languages to describe the player’s in-
terest, which we assume to be conflicting. In game-theoretic terms, this corresponds
to extensive zero-sum games of perfect information. The case when the outcome
of such a game can be determined beforehand, is of particular interest, especially
in view of the implementation of good strategies for computational agents.

1.1.1 GAME MODELS

The most simple and abstract model of a game represents only the actions available
to the players and the utility they derive from the outcome of a play, depending on
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the actions they choose.

Definition 1.1.1 (Game in strategic form). A game in strategic form for n players is
represented by a tuple ((ACTi),-<n, (ui),-<n), where, for each player i < n,

¢ AcT; is a nonempty set of actions, and

& u; 1 X, AcT; - Ris a utility function.

In this perspective, a game has no internal structure. All that players can do is to
choose an action. A strategy of a player in a strategic game is any action available
to him. An outcome of such a game, or simply a play, is a tuple of actions, one for
each player: (ay, ..., an-1) € Xio, AcT;. The utility u; reflects how much the given
outcome is worth to player i.

In game-theoretic literature, utility is often assigned to a set of consequences of
outcomes rather than to the outcomes themselves. Formally, this means to extend
the model by a set C of consequences to which outcomes are mapped via a function
¢ : Xjep AcT; = C, and to define utilities in terms of outcomes: u; : C — R. By
detaching actions from immediate utility, this allows a higher level of abstraction.
In our discussion of Game Logic in Chapter 2 we will refer to a further abstraction
of strategic games, called game forms, in which utility is completely discarded.

Despite its simplicity, the model of a strategic game already displays two essential
ingredients of a game. It captures which decisions the players can take, and, by
specifying their utility, a determination of why they may choose one or another
action.

However, any details about what else players may know about each other are
obscured. In practice, decisions are not encountered by all players once and simul-
taneously. The course of a play is often rather sequential and players may be more
or less aware of events that have previously occurred. These aspects are captured
by games of perfect information in extensive form.

Such a gameisadequately represented asa tree, i.e., an directed connected acyclic
graph, where the nodes are coloured to indicate which player is in turn to move. We
will use a partitioning of the set T" of tree nodes into disjoint subsets T;, one for each
player, to represent this colouring. By a full path in a tree we mean a maximal path
starting from the root. Such a path may be either finite, in which case it terminates
at a leaf, or infinite.

Definition 1.1.2 (Game in extensive form). A game in extensive form for n players
is represented by a tuple (T, (T)icns (ui)kn), where T is a tree, called history, with
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nodes associated to players, and, for each player, the utility function u; associates
to any full path in 7 a real number.

Extensive games are played in turns: At the beginning of a play, we are at the
root of the history 7. Whenever the current node is in T}, player i can choose a
successor from which the play continues. If the current node has no successors, the
play ends, otherwise it goes on infinitely. In either case the utility is determined,
for each player, by the utility of the path formed during the play. In this way, an
outcome of an extensive game is just a full path through the history. In the same
way as in strategic games, we do not distinguish between plays and their outcome.

A strategy for a certain player in an extensive game is a plan that tells him how
to choose at every moment at which he is in turn. In that event, his decision may
depend on the previous history.

Definition 1.1.3 (Strategy). Given an extensive game (T, (T?)i<n» (u,-),-<,,), a strategy
for playeriisafunctionf : T; = T associating to every history node v where player i
moves, some successor in 7. We say that a play v, v, ... of the game is according
to the strategy f, if for every v; € T;, we have vj,, = f(i).

Observe that the notion of utility introduced here allows to model situations of
either conflicting or common interests, or a mix of the two. However, the games
considered in logic and computer science usually focus on the analysis of conflict.
Moreover, in the general setting, only two antagonistic players are involved. For the
remainder of this thesis we will therefore restrict to 2-player games of a simplified
structure.

Definition 1.1.4 (Win-or-lose game). A win-or-lose game is a 2-player game where,
for each play, precisely one of the players has utility 1 and the other one 0. An play
is winning for a player, if his utility for the play is 1.

Henceforth, whenever we refer to a game, we mean a win-or-lose game. Obvi-
ously, in such games, it is sufficient to specify the utility for one player. To simplify
notation, for a pair (f, ) of strategies for the two players in a game, we write f g to
denote the unique play according to the two strategies.

Definition 1.1.5 (Winning strategy). A strategy f for a player in a given game is
winning if he wins each play f"g, for every strategy ¢ of his opponent.

A central issue in the context of purely competitive, win-or-lose games between
two players is whether one of the players can win regardless of the actions of his
opponent. If this is the case, there is a clear concept of a solution to this game.



4 + 1 Background

Definition 1.1.6 (Determinacy). A win-or-lose game is determined if either one or
the other player has a winning strategy.

Throughout this thesis, we will usually work with games given in extensive form.
However, rather than specifying all ingredients explicitly, we will give a less formal
description of the dynamic of the game from which the history tree can be easily
reconstructed. Also, instead of referring to utility functions, we will rather speak
about winning conditions representing the set of infinite paths where a certain player,
usually Player 0, wins. As a general convention for two-player games, we assume
that the player who has to move at a history node with no successors loses.

1.1.2 KRIPKE STRUCTURES

Our concern with decision and interaction relies upon the assumption that, as a
consequence of action, the world is changing. An adequate model for representing
dynamically changing systems is provided by Kripke structures. This prospective
relates the system to a set of states, presenting the possible transitions from one
state to another as being triggered by actions. The particularities of each state are
recorded as atomic propositions. In view of this, Kripke structures are also called
(labelled) transition systems.

Definition 1.1.7 (Kripke structure). A Kripke structure over a set AcT of actions
and a set Prop of atomic propositions is a structure

K= (V, (Ea)aEACT’ (Vp)PEPROP)’

with a domain V of elements called states, binary transition relations E, € V x V
associated to the actions a € AcT, and monadic relations V,, € V, associated to the
atomic propositions p € Prop.

We will sometimes abstract from propositional and action labels and refer to
the graph (V; U{E, | a € Act}) as the graph underlying to K. Conversely, we
say that K is a Kripke structure over this graph. It is appropriate to consider rooted
structures X, u, where all states are reachable from the distinguished state u in
the underlying graph. To refer to the set of successors of a state v via a binary
relation E, we use the notation vE := {w | (v, w) € E }. Unless otherwise stated,
we will assume that the constituents of a Kripke structure are always named as in
this definition.
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In the context of computer science, Kripke structures are used as a fundamental
model for describing the behaviour of reactive systems, involving programs that
maintain an ongoing interaction with the environment, such as communication
protocols or resource schedulers in operating systems. In such a model, the program
continuously performs actions in response to the requests of the environment,
which are themselves represented as actions. Accordingly, reactive systems can be
viewed as two-player extensive game forms. Conversely, if we abstract from the
aspect of utility, extensive games can be naturally described by Kripke structures.

BISIMULATION AND SIMULATION

An issue of central importance regarding Kripke structures in general, and reactive
systems in particular, is whether two systems display the same behaviour. The idea
of behavioural equivalence, is captured by the notion of bisimulation introduced
by Hennessy and Milner [32].

Definition 1.1.8 (Bisimulation). A bisimulation between two Kripke structures

K= (Vx (Ea)aeACT> (Vp)pePRop) and K'= (V,) (E;)LZGACT) (V};)pePRop)

isanon-empty relation Z C V x V' that respects the atomic propositions p € Prop,
in the sense that v € V, if, and only if, v € V/, for all (,v') € Z, and satisfies the
following forth and back conditions.

forth: forall (v,v') € Z, a € AcT, and every w € vE,, there exists a state w’ € vE,
such that (w, w') € Z.

back: for all (v,v') € Z, a € AcT and every w' such that w' € v'E/, there exists a
state w € E, such that (w, w") € Z.

We say that two rooted Kripke structure &, u and K', v’ are bisimilar, and write
IC, u ~ K', o/, if there exists a bisimulation Z between them with (u, u") € Z.

The concept of bisimulation can be easily understood as a game in which two
players, called Challenger and Duplicator, compare the structures by moving two
pebbles, one for each structures. This game is described as follows: at the beginning,
the pebbles are at u and u'. If the atomic type of the pebbled nodes differs, i.e.,
if there is an atomic proposition p satisfied by either u or u’ but not by both,
then Challenger immediately wins. Otherwise, he chooses one of the structures
and moves the pebble to a successor of its current position along some action
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a € Acrt. In turn, Duplicator has to move the pebble in the other structure along
the same action. If an agent gets stuck he loses. Otherwise the game goes on forever.
Duplicator wins, if he never loses.

It is straightforward to show that every winning strategy in such a bisimulation
game can be turned into a bisimulation relation, and vice versa.

Lemma 1.1.9. Duplicator wins the bisimulation game between K, u and IC, u' if, and

only if, K, u ~ K', u'.

A normalised form for the behaviour of a system modelled by a Kripke structure
is given by its unravelling. Intuitively, this is the tree consisting of all paths through
the structure that start at the initial state.

Definition 1.1.10 (Unravelling). The unravelling of a Kripke structure

K= (V, (Ea)aeACT) (VP)PEPROP)

from a node u € V is a Kripke structure T over a tree, so that

o the domain V7 of T is the set of all sequences 7 := Vod; V1dy -+ V,_1a,v, with
v; € Vand g; € acr, such that vy = uand v; € v;_1 E, ;

¢ for every atomic proposition p € Prop, we have voa;via, ... v, 1a,v, € V;T
if, and only if, v, € VI’,C;

o forall actions a, the transition E] contains the pairs (7, mav) in V7 x V7.

Obviously, the natural projection 7, u ~ K, u which sends every sequence
T = VodyVidy ... v,_1a,v, € V7T toits last node v, defines a bisimulation between 7~
and IC, u.

Besides behavioural equivalence, we are sometimes interested in the question
whether a system is able to reproduce the behaviour of another system.

Definition 1.1.11 (Simulation). A simulation of a structure K by a structure K’ is
a non-empty relation Z € K x K’ that respects the atomic propositions p € Prop,
in the sense that v € V,, if, and only if, v € V/, for all (1, ") € Z, and satisfies the
following condition.

forth: forall (v, v') € Z, a € AcT, and every w € vE,, there exists a state w' € vE/,
such that (w, w') € Z.

We say that K/, v’ simulates KC, u and write KC, u < K’, o/, if there is a simulation
from K to K’ that contains (u, u").
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The bisimulation game described above 1.1.8 can easily be adapted to capture
the concept of simulation. It suffices to require the Challenger to always move the
token in /C, so that Duplicator must move in '

1.2 LOGICAL SPECIFICATION FORMALISMS

In this section, we review some general formalisms for reasoning about interactive
systems represented as Kripke structures. Our focus lies on specification logics i.e.,
languages in which we express statements about what the system should do. Among
the various formalism developed for this purpose, we consider representatives
of three main groups: dynamic logics, oriented towards the live behaviour of a
system, temporal logics, representing either an a priori or an a posteriori view
on the system’s execution, and modal logics, designed for reasoning about Kripke
structures in general.

In order to compare logics with regard to their expressive power, we need to
relate formulae of different formalism. Thus, we say that a formula ¢ from a logic £
is equivalent to a formula ¢’ from a possibly different logic £’, if the two formulae
have the same models. Accordingly, we write £ < L', if for every formula ¢ in £
there exist an equivalent formula ¢’ € £L'. Further, we write £ = L ifboth £ < L'
and L' < Land L< L't LS L but L £ L.

For extensive surveys on the matter of temporal and dynamic logics, and a more
gentle introduction to the y-calculus, we refer the reader to [19] and [14].

1.2.1 PREDICATE LOGICS

First-order predicate logic FO provides a frame of reference for any investigation
about logical formalism. Nevertheless, when speaking about Kripke structures, FO
is rather inappropriate for several reasons. On the one hand, the language is too
weak to express properties in which we are naturally interested, e.g., whether from
a given initial state a certain target state is reachable. On the other hand, FO is
too complex from a computational point of view, since its satisfiability problem
is undecidable. Finally, when used to describe behavioural properties of systems
modelled by Kripke structures, the language is over-expressive, in a certain sense,
as it is able to distinguish between bisimilar states.
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Monadic second-order logic MSO, is an extension of first-order logic which allows
quantification over monadic variables ranging over sets of elements rather than
individual elements. For a Kripke structure X, we may thus formulate a property
¢(Z) involving a new propositional predicate Z ¢ Prop and express by 3Z.¢(2)
that ¢ holds in some expansion of K. Intuitively, MSO has the ability to “guess”
propositional predicates in addition to those provided by the structure. This gives
rise to a very powerful language, able to express most of the relevant properties of
Kripke structures.

On the other hand, MSO is characterised by a very tight connection to the theory
of automata, which we will discuss later. Via this connection, Biichi proved that the
monadic theory of one successor S18, i.e., of MSO interpreted over infinite words,
or paths, is decidable [17]. Generalising Biichis automata model, Rabin proved the
analogon of this result for MSO interpreted over the infinite binary tree, showing
that the monadic theory of two successors S2§ is also decidable [61]. Further
extensions of this decidability result to arbitrary trees, due to Le Tourneau [48] and
Shelah [64], and iterated structures, due to Semenov [62] and Walukiewicz [76],
distinguish MSO as a milestone at the frontier of expressiveness and computability.

Throughout this thesis we will also refer to a sublogic of MSO, called monadic
path logic MPL, where the interpretation of monadic variables is restricted to range
not over arbitrary sets, but over infinite paths. When reasoning about sequential
processes, this turns out to be a natural quantification pattern allowing us to express
many interesting properties of Kripke structures in a succinct way.

To cope with the excess of expressiveness of FO and its extensions, we may
restrict ourselves to formulae which respect the notion of behavioural equivalence.

Definition 1.2.1. A formula ¢ of a given logic L is bisimulation-invariant, if it does
not distinguish between bisimilar structures. That is, for every pair I, u ~ K', o/,
we have K, u £ ¢ if, and only if, K', u" = ¢. We denote by £/~ the fragment of £

consisting of all bisimulation-invariant formulae.

Unfortunately, relying on bisimulation-invariant fragments of FO, MPL, or MSO
is not a viable solution. As van Benthem points out in [71], it is already undecidable
whether a given FO-formula is bisimulation invariant or not. For this reason, pred-
icate logics are not directly used as specification languages for systems modelled by
Kripke structures. However, they represent yardsticks for measuring the expressive
power of more specialised formalisms, like those we discuss in the following.
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1.2.2 MODAL AND DYNAMIC LOGICS

Modallogics are languages for reasoning about dynamic aspects of truth. Although
preoccupations with modal logics date back to ancient times, a rigorous semantics
was developed only in the last century reaching its current form with Kripke [46].
Therefore, Kripke structures are inherently connected with modal logics.

Propositional modal logic extends propositional logic with a modal operator ¢.
Modal formulae ¢ are interpreted at states in Kripke structures. Intuitively, Q¢
asserts that from the current state, a state where ¢ holds is directly reachable.
Dually, the expression —{(—¢), denoted as [lg, asserts that, at every successor
state, ¢ is true.

HeENNESSY-MILNER LoGIC

In the original setting, transitions in a Kripke structure reflected whether a state
is accessible from another state or not. Consequently, this model features only
one transition relation, also called reachability relation. However, when modelling
systems that shift from one state into another in response to the occurrence of
certain actions, it is appropriate to associate modalities to individual actions and to
use polymodal logics for reasoning about them. We consider here the polymodal
logic underlying Hennessy and Milners seminal study [32] on the behavioural
equivalence of interactive systems.

Definition 1.2.2 (Syntax of Hennessy-Milner Logic). Given a set AcT of actions

and a set Prop of atomic propositions, Hennessy-Milner logic ML consists of the

formulae constructed according to the following rules:
p=Llpl-¢lovellae

where p € Prop and a € AcT.

To define the meaning of a formula ¢ in a given Kripke structure XC, we describe
its extension [ 9], that s, the set of worlds in C where ¢ holds. To simplify notation,
we may omit the subscript, when clear from the context. Alternatively we will also
refer to the satisfaction relation /C, u £ ¢ defined by u € [¢]«.

Definition 1.2.3 (Semantics of Hennessy-Milner Logic). Given a Kripke structure

K= (V: (Ea)aeACT) (Vp)pGPROP)’



10 + 1 Background

the extension of ML-formulae over Act and Prop is defined inductively as follows:

[[J_]] =
[l = Vs
[=¢] ==V~ [o];

(o1 v @2l = 1] U [pa]s
[{a)el ={v | 3wevE,)we[¢] }.

Dual connectives are introduced as a shorthand:

Ti=—1 @1 A @2 = (=1 V —92); [alg = (a)¢.

When AcT consists only of one action a, we will simply write ¢ and [J instead of
(a) and [a].

Hennessy-Milner Logic provides a logical characterisation of bisimulation over
finitely branching Kripke structures, where for every state v € V and every action
a € Acr, the set vE, is finite.

Theorem 1.2.4 ([32]). For any pair of finitely branching Kripke structures K, u and
KK, u', we have:

Ku~K,u iff {peML|Kuegp}={9peML|K uE¢p}.

According to this, ML-formulae are in particular invariant under bisimulation.
Also, they can be easily translated into FO. The Modal Characterisation Theorem
of van Benthem states that, conversely, every bisimulation-invariant FO-formula
can be translated into ML. In other words, ML provides an effective syntax for
first-order properties that are invariant under bisimulation.

Theorem 1.2.5 ([70]). FO/~= ML : An FO-formula is bisimulation invariant if, and
only if, it is equivalent to an ML-formula.

Since ML corresponds to a fragment of FO, its expressive power does certainly not
suffice to describe relevant properties of reactive systems. Nevertheless, it provides
a robust foundation for highly expressive formalism. Moreover, as pointed out
by Vardi 73] and Grédel [25], the modal quantification pattern guarantees good
algorithmic properties, even when the base logic is extended by more powerful
operators.



1.2 Logical specification formalisms — + 11

ProrosiTioNAL DyNaMIC LoGgicC

Propositional Dynamic Logic was first introduced by Fischer and Ladner in [22]
for reasoning about the dynamic behaviour of nondeterministic programs. Syntac-
tically, this formalism extends Hennessy-Milner Logic by associating modalities to
programs built up from actions and tests.

Definition 1.2.6 (Syntax of PDL). Given a set ProP of atomic propositions and a
set AcT of atomic actions, the expressions of PDL are of two sorts, formulae and
programs, generated respectively by the following grammar:

e=Llpl-¢lovellp
p=alet|pplpuplp’

where p € Prop and a € AcT.

Intuitively, the program construction p;; p, stands for sequential composition:
“execute p; followed by p,”. The nondeterministic choice operator p; U p, means:
“choose nondeterministically p; or p, and execute it” The iteration operator p*
invests the language with a notion of unbounded recursion. It is interpreted as
follows: “execute p any nondeterministically chosen finite number of times (zero or
more)” Finally, the test operator ¢? corresponds to the scenario “check whether ¢
holds. If so, proceed, otherwise fail”

Before proceeding to the formal definition of semantics, let us introduce some
notation for handling binary relations. For the composition of two relations, we
write E; o E, := { (v w) | (3u € vE;) w € uE, }. The reflexive transitive closure of
a relation is E* := Ui, E with E° corresponding to the identity over the relation’s
domain and E*! := Eo E/, for all i.

Definition 1.2.7 (Semantics of PDL). Given a Kripke structure & providing the
meaning of atomic propositions p € Prop and actions a € Act, formulae ¢ and
program expressions p extend to subsets [¢]] € V respectively to binary relations
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[p] € V x V via simultaneous induction, as follows.

[al = Ea
[92] = { (wv) | ve ol
[pip2ll =1l o [p-I
[prup.] = [p1] v [pIi
[p*] =[]

The boolean connectives are interpreted as in ML. Likewise, for the modal operator
we set:

[{pYpll = {v | Gwwevp]) we [lo] }.

As in the case of ML, operators T, A, and [a] are introduced as abbreviations for
the respective dual of 1, v, and (a).

When interpreted over linear-time models, i.e. rooted Kripke structures where
each state has precisely one successor, PDL is very expressive, as the following result
due to Henriksen and Thiagarajan reveals.

Proposition 1.2.8 ([33]). Over linear-time models, PDL = MSO.

Nevertheless, the ability of PDL to express properties of programs has severe
limitations. A relevant issue is related to the notion of ftotal correctness, meaning
that from a given state, every execution sequence of a certain program halts. This
property cannot be expressed in plain PDL, and therefore several extensions have
been suggested. One of these extensions, proposed by Streett [66], adds, for every
program p, a construct Ap with the intended meaning that the program p can be
iterated infinitely often, i.e, that p has a non-halting execution sequence.

Definition 1.2.9 (PDL with looping). APDL extends PDL by adding, for every
program p the operator Ap yielding a formula interpreted, in an appropriate
Kripke structure K, as follows:

[Ap] :={v | there exists an infinite sequence ()<

such that vo = vand v, = vi[[p]], foralli< w}.
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1.2.3 TEMPORAL LOGICS

A different prospective on computational systems modelled by Kripke structures
is given by the framework of temporal logics, founded by the work of Pnueli and
Manna [60, 50]. While modallogics as those introduced earlier refer explicitly to the
execution of programs, temporal logics are geared towards their behaviour in the
flow of time, referring to sequences of states that may occur during a run. According
to how the flow of time is perceived, a distinction is made between linear and
branching time. Linear time corresponds to executions of deterministic programs,
or an a posteriori view on the execution of a nondeterministic or concurrent
program, where each state has a unique successor. In contrast to this, branching
time sees the instants of time partially ordered, corresponding to an a priori view
on the possible executions of a nondeterministic or concurrent program.

LINEAR TIME

The structure underlying the linear-time prospective is isomorphic to the ordering
of naturals (w, <). Every atomic proposition p € Prop is associated to the set N,
of instances of time i at which it is true. In this way, we can view every linear-time
model as an infinite word over the alphabet (Prop) represented by a structure
a= (< (NP)PGPROP)'

To reason about such structures, the syntax of LTL provides, in its basic variant,
temporal operators X¢ and ¢; U @,. Intuitively, X¢ asserts that the formula ¢ will
hold at the next moment of time; ¢; U ¢, states that ¢; holds until, after finitely
many moments, ¢, holds.

Definition 1.2.10 (Syntax of LTL). Given a set Prop of propositions, the formulae
of Linear Temporal Logic LTL are constructed according to the following grammar:

p=Llplovel-¢|Xp[9Ug
where p € Prop.

Observe that, in contrast to ML and PDL, the syntax of LTL does not refer to
actions.

Definition 1.2.11 (Semantics of LTL). Given a linear-time model

a=(w<, (Np)pePRop)’
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we define the truth of LTL-formulae inductively, using the notation «|; for the suffix
of a starting at position 7, i.e., the linear-time model induced ina by {j | i<j< w }:

a1

akEpift 0 Vy

a ¢ iff it is not the case that « = ¢;
aE @ Ve ift akE @ orak @

aEXo iff af; = ¢;

akE @ Ug,iff Fj(al;jE @A (Vi<j)aliE @)

Clearly, LTL-formulae can be translated into FO. That the converse also holdsis a
very deep result showed by Kamp and later generalised by Gabbay, Pnueli, Shelah,
and Stavi.

Theorem 1.2.12 ([41, 23]). Over linear-time models, LTL = FO.

BRANCHING TIME

The structures underlying branching-time logics are of tree-like nature, where each
moment of time may have several successors. The full paths of such a tree are
then linear-time structures, corresponding to possible executions of a program.
Essentially, computation tree logics allow to quantify over these paths and to speak
about them in a way similar to LTL.

Definition 1.2.13 (Syntax of CTL*). Given a set of atomic propositions Prop, the
formulae of the Computation Tree Logic CTL* are of two sorts, state and path
formulae, generated respectively by the following grammar:

p=1|pleve|-¢p|Ey
n=e¢lnvnl-n|XylnUy

where p € Prop.

To define the semantics of branching-time logics in terms of Kripke structures,
we associate to every structure /C, its computation tree, that is, the tree obtained
by unravelling IC and dropping all action labels. For uniformity, we will consider
only Kripke structures where each state has at least one successor. The infinite
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sequence of labels from {°(Prop) seen on a path 7 through such a Kripke structure
then induces a linear-time structure, which we call the trace of 7, denoted by KC, 7.
Intuitively, the formula E# asserts that there exists a path starting at the current
node whose trace models #.

Definition 1.2.14 (Semantics of CTL*). Given a Kripke structure K, the truth
of CTL*-formulae is defined by mutual induction over path and state formulae.
Thereby, path formulae are interpreted over traces of full paths through (the com-
putation tree of ) IC according to the rules for LTL. The quantifier E transforms any
path formula # into a state formula E# with the following extension:

[E#n] := {v | there exists an infinite path 7 = (vo, v;,... ) in K
such thatvo =vand K, m = 5 };

Boolean connectives in state formulae are interpreted as in ML.

Although we can phrase the semantics of CTL* in terms of Kripke structures,
the languages speaks, in fact, about trees, namely the computation trees associated
to the structures under consideration. Since over paths, CTL* corresponds to LTL
which can be translated into FO, by Theorem 1.2.12, and monadic quantification
operates on paths, it is easy to see that CTL* can be translated into monadic path
logic MPL. The following theorem, initially demonstrated by Hafer and Thomas
for binary trees and extended by Moller and Rabinovich over arbitrary trees states
that the converse is true as well, showing that CTL* is expressively complete for
MPL, over the class of tree models, up to bisimulation.

Theorem 1.2.15 ([30, 52]). Over trees, MPL/~= CTL* : An MPL-formula is invariant
under bisimulation over trees if, and only if it is equivalent to a CTL*-formula.

Under the paradigm of temporal logics, LTL and CTL* cannot distinguish be-
tween individual actions. If we wish to compare the expressive power of temporal
and dynamic logics, it is therefore reasonable to restrict our consideration to struc-
tures with only one action. Yet, it turns out that even on such structures, CTL*
cannot formalise properties which, can be expressed, e.g., in PDL.

Proposition 1.2.16 ([77, 78]). CTL* < APDL over Kripke structures with a single
action.
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Proof. In [77], Wolper describes a translation of CTL* into APDL. On the negative
side, the same author shows in [78] that the property asserting that proposition p
holds at every second state of a structure cannot be formalised in CTL*. Already in
PDL, this property can be expressed as [(a; a)*]p.

Another way to see that CTL* is less expressive than APDL is by looking at
linear-time models, where CTL* collapses to LTL, and hence to FO, while already
PDL attains the expressive power of MSO (see Proposition 1.2.8). O

1.2.4 THE MODAL y-CALCULUS

Dynamic and temporal logics can be understood as extensions of Hennessy-Milner
Logicwith different recursion mechanisms. Asacommon feature, recursion in these
settings corresponds in fact to fixed point iteration. Typically in CTL", for instance,
the equivalence

E(pUy) =y v (pAOE(pUy))

allows us to see the extension of E(¢ U y) as a solution Z of the equation

121 = Ty v (9 A O]

A closeranalysis shows that [E(¢ U y)] isactually theleast solution of this equation,
with respect to set inclusion. If we view the expression on the right side of the
equation as an operator Z = [y v (¢ A OZ)]), then the value for Z in which we are
interested, is just the least fixed point of this operator.

In a similar way, we can use the characterisations of the basic iterative construc-
tions of PDL and APDL,

P re=9Vvip)p, and Ap=(p)Ap,

to formulate their semantics in terms of least, respectively greatest fixed points of
the operators induced by the equations

[2] = Tev{(p)Z]. and [Z] = [(p)Z].

Notice thatall operators Z — F(Z) involved in these descriptions are monotone,
in the sense that Z ¢ Z' implies F(Z) € F(Z').



1.2 Logical specification formalisms — + 17

The modal p-calculus L, introduced in its current form by Kozen [44], extends
Hennessy-Milner Logic by incorporating into the language a constructor for build-
ing least fixed points of definable monotone operators. This provides a notion of
recursion which invests the logic with very high expressive power, far beyond that
of CTL* and APDL, as we shall see.

Definition 1.2.17 (Syntax of L,). Given a set PrRoP of atomic propositions, a set
Acr of atomic actions and a set VAR of monadic variables, the formulae of L, are
constructed according to the following grammar:

p=L]p|X|-p|love|{a)g|uXe

where p € Prop, a € Acrt, and X € VAR, and the fixed point rule 4X.¢ applies to
formulae ¢(X) in which the free variable X appears only positively, that is, under
an even number of negations.

In contrast to the modal and temporallogics introduced so far, the language of L,
includes variables. The number of distinct variables appearing in an L,-formula
induces the following syntactic hierarchy.

Definition 1.2.18 (Variable hierarchy of L,,). For any k € N, the k-variable fragment
L,[k] of the u-calculus is the set of formulae y € L, that contain at most k distinct
variables.

Since we conceive the operator u as a quantifier, the notions of variable binding,
free and bound occurrence, and quantifier scope are used in the sense familiar

from predicate logics. A formula in which all occurring variables are bound is
called closed.

Definition 1.2.19 (Semantics of L,). To define the meaning of a formula ¢ € L, in
a Kripke structure

K= (V: (Ea)aEACT) (Ap)pGPROP)’

wedescribeits extension [¢]), referringtoanassignmenty : VAR — V that provides
interpretations of the free variables in ¢. As in the case of Hennessy-Milner Logic,
the constant | corresponds to the empty set, atomic propositions p € Prop extend
to the sets V,, and the extension of free variables X is given by y(X) < V. For the
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propositional and modal operators, we have

[[_‘(P]]x =V [[‘P]]x§
(o1 v @2lly == [o: ], U L2015
[{a)el, :={v | (GwevE)) we o], }.

To understand the semantics of fixed point formulae yX.¢, note that a formula
¢(X) with a propositional variable X defines on every Kripke structure & (with
state set V, and with interpretations y for free variables other than X occurring
in @) an operator ¢* : (V) — £(V) which maps any set T S V to the extension
[[go]]X[X::T] obtained with the assignment y when the value of X is set to T. By
the requirement on ¢ to contain X only positively, this operator is monotone for
every K. From Knaster and Tarski’s classical fixed point theorem [67], it follows
that ¢* has a least fixed point,

Ifp(¢) =TSV : T=[elyxm

Now, we put [uX.¢]l, = 1fp(¢*).

As usual, we introduce the operators T, A, and [a] to abbreviate the duals of L, A,
respectively (a). The operator v is introduced as an abbreviation for the dual of p.
In this way, VX.¢ := -uX.~¢[~X/X] is interpreted as the greatest fixed point of ¢*.
By exploiting the duality between these operators, every L,-formula can be easily
brought into a form where negation does not interfere with the other operators.

Definition 1.2.20 (Negation normal form). An L,-formula is in negation normal
form, if the negation operator appears only in front of atomic propositions.

Definition 1.2.21 (Existential L,). A y-calculus formula is called existential, if its
presentation in negation normal form contains no universal modality [a]¢.

It can be easily verified that the validity of existential formulae is preserved under
simulation: For every pair of structures /C, u < K, u’ and any existential formula

v such that IC, u = y, we have K/, v = y.

Itis often useful to refer to the syntax of formulae in terms of graphs. Considering
presentations in negated normal form, we first define the syntax tree T, of a
formula y € L, inductively, by associating atomic formulae (propositions and their
negations, variables, and the constants L, T) to isolated nodes, unary constructs
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(a)o, [a]e, uX.@, vX.¢ to trees with a single immediate subtree 7, and binary
constructs ¢; V @;, 91 A ¢, to trees with two immediate subtrees 7, and 7,,. If
we now introduce, for every leaf corresponding to a variable occurrence X, a link
to (the unique node which corresponds to) to its binding definition uX.¢ or vX.¢,
we obtain an operational representation of y as a tree with back edges, which we
call its syntax graph G,,. Sometimes it is convenient to eliminate variables from the
representation of a formula by identifying every occurence of a variable with its
binding definition in the syntax tree thus obtaining a contracted syntax graph.

Essentially, syntax trees and graphs reflect the building process of a formula.
Conversely, from a consistent representation, i.e., a binary tree, with or without
back edges, where the leafs are labelled with atoms and the inner nodes with
boolean connectives, modalities, or fixed-point definitions yX, vX, we can easily
reconstruct the corresponding formula.

Let us fix a closed formula y € L, and consider, for any subformula ¢, the graph
Gy, ¢ obtained from the contracted syntax graph of ¢ by choosing ¢ as a root and
discarding all nodes unreachable from ¢. Then, G, ¢ is itself a contracted syntax
graph, corresponding to the formula obtained by replacing recursively every free
occurrence of a variable in ¢ by its binding definition.

Definition 1.2.22 (Closure of an L,-formula). Let y be an L,-formula without free
variables. For each subformula ¢ in y, we define its closure cl,,(¢) as the formula
constructed according to G, ¢ viewed as a syntax graph. By cl(y) we denote the
set of closures of all subformulae in y.

Intuitively, the notion of closure captures the meaning of a subformula within
a closed formula. All formulae in cl(y) are themselves closed. As an immediate
consequence of the above definition, we obtain the following characterisation.

Lemma 1.2.23. The closure cl(y) of an L,-formula v without free variables is the
smallest set of formulae so that y € cl(y) and

(i) if o1 VvV @2 € cl(y) or o1 A @3 € cl(y), then {@1, 92} S cl(y);
(ii) if(a)e € cl(y) or [a]p € cl(y), then ¢ € cl(y);

(iii) if uX.p(X) € cl(y) or vX.p(X) € cl(y), then (uX.9(X)) € cl(y) respec-
tively p(vX.@(X)) € cl(y).

Least and greatest fixed points can also be constructed inductively. Given a
formula vX.y, we define for each ordinal «, the stage X of the gfp-induction of
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y* by X° := V, X* = [y]lyxsxer and X* = Moo XP if a s a limit ordinal.
By monotonicity, the stages of the gfp-induction decrease until a fixed point is
reached. By ordinal induction, one easily proves that this inductively constructed
fixed point coincides with the greatest fixed point. The finite approximations of a
formulavX.¢ are defined by ¢, := Tand ¢,,; = ¢[X/¢,] (the formula obtained by
replacing every occurrence of X in ¢, by ¢,,. Obviously vX.¢ £ ¢, for all n, and on
finite Kripke structures (in fact, even on finitely branching ones) also the converse
holds: If IC, v = ¢, for all n, then also K, v E vX.¢.

SIMULTANEOUS FIXED PoinTs. There is a variant of L, that admits simul-
taneous fixed points of several formulae. This does not increase the expressive
power but allows more transparent formalisations. The mechanism for building
simultaneous fixed-point formulae is the following. Given formulae ¢, ..., ¢, and
variables X, . . ., X,, we can write an equational system S := {X; = ¢1,..., X, = ¢}
and build formulae (uX; : S) and (vX; : S). On every structure K, the sys-
tem S defines an operator S* mapping an n-tuple X = (X,..., X,) of sets of
states to SX(X),..., S€(X) so that, for each i we have: SK(X) := [¢;]%%. As
S is monotone, it has extremal fixed points Ifp(S) = (X¥,..., X}) respectively
gfp(S) = (X7..., X)), and we set [(uX; : )J* = X¥ and [(vX; : )]* = X7

It is known that simultaneous least fixed points can be eliminated in favour of
nested individual fixed points.

Proposition 1.2.24 ([2]). Every formula in L, with simultaneous fixed points can be
translated into an equivalent formula in plain L, without increasing the number of
variables.

The p-calculus displays a series of pleasant model-theoretic properties. Being a
modal logic, L, is invariant under bisimulation, i.e. for every K, u ~ K, u’ and for
any y € L, we have K, u &= v if, and only, if ', u’ & .

As a consequence of bisimulation invariance and because every Kripke structure
is bisimilar to its tree unravelling, the y-calculus enjoys the tree model property,
meaning that every satisfiable formula is satisfiable in a tree.

Another significant feature of L, is its finite model property.

Theorem 1.2.25 ([45]). Every satisfiable L,-formula has a finite model.

Since the unravelling of a finite model is a finitely branching tree, we obtain the
following corollary.
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Corollary 1.2.26. Every satisfiable L,-formula is satisfied in some finitely branching
free.

Obviously, the least and greatest fixed point constructions of L, can be replicated
using monadic second-order quantification, thus, embedding L, into MSO. A
crucial insight into the expressive power of the y-calculus is yield by the Modal
Characterisation Theorem of Janin and Walukiewicz, which identifies L, as the
bisimulation-invariant fragment of MSO.

Theorem 1.2.27 ([38]). MSO/~= L, : An MSO-formula is invariant under bisimu-
lation if, and only if, it is equivalent to a formula of L,.

Since MSO is considered to capture all reasonably desirable properties of Kripke
structures, this theorem indeed states that the y-calculus is, in a broad sense,
expressively complete.

Indeed, all other modal and temporal logics studied throughout this sections
are embeddable into L, but are considerably weaker in terms of expressive power.
An explicit embedding of APDL into L, results from our treatment of Game Logic
in Chapter 2. The relation between CTL* and APDL was already established in
Proposition 1.2.16. In Proposition 2.2.1 we will also give a concrete example of
a property expressible in L, but not in APDL. Consequently, the specification
formalisms discussed in the present section are ordered as follows, according to
their expressiveness.

Proposition 1.2.28. LTL < CTL* <APDL < L.

1.3 MODEL CHECKING AND PARITY GAMES

In the previous sections, we have considered concurrent systems modelled as
games over Kripke structures with winning conditions derived from behavioural
specifications represented by formulae of a certain logic. In this section we argue
that questions regarding the meaning of formulae over Kripke structures can
conversely be phrased (and solved) in terms of games.

Given a Kripke structure X modelling a reactive system, and a specification ¢
in a certain logic £, the associated model-checking problem consists in deciding
whether the system X meets the specification ¢, that is, whether K = ¢. This
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problem can be equivalently formulated in terms of the semantic games of the
logic under consideration. The semantic games associated to L, (and to fixed point
logics in general) are parity games.

1.3.1 PARITY GAMES

Definition 1.3.1 (Parity game). A parity game is represented by a rooted Kripke
structure G, v, with

G =(V, Vo, E (2))i<n),

where V is a set of positions with a designated subset Vi, E € V x V is a transition
relation, and Q = (;);, is alabelling of V with priorities 0, . .., n— 1 determining
the winning condition. We denote the set V' \ V;, by V. The number # of different
priorities is called the index of G.

In a play of G, v, two players, generically called Player 0 and Player 1, move a
token along the transitions of E starting from v, thus forming a path vo, v;,.. ..
Once a position v is reached, Player 0 performs the move if v € V,, otherwise
Player 1. If the current position allows no further transitions, then the player in
turn to move loses. In case this never happens, the play is infinite and the winner
is established by looking at the sequence Q(vy), Q(vy),... If the least priority
appearing infinitely often in this sequence is even, Player 0 wins the play, otherwise
Player 1 wins.

Alternatively, we may think of a parity game G, v, as a game in extensive form,
where the history tree coresponds to the unravelling of G, v, and the history nodes
are assigned to the players according to their last state. Then, the winning condition
for Player 0 is satisfied by a full path in this history if it is finite and its last state
belongs to Player 1, or if is infinite and the least priority appearing infinitely often
on the path is even.

For these games, strategies that do not depend on the entire history, but only on
the current position are particularly relevant.

Definition 1.3.2 (Memoryless strategy). A memoryless strategy for Player 0 in the
parity game G, v, is a function ¢ : V, - V assigning to each position v € Vj a
successor w € VE.
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When viewing G as an extensive game, any such strategy naturally corresponds
to a strategy in the sense of Definition 1.1.3.

The Memoryless Determinacy Theorem of Emerson and Jutla states that parity
games are always determined with memoryless strategies.

Theorem 1.3.3 (Memoryless determinacy [21]). In any parity game, either Player 0
or Player 1 has a memoryless winning strategy.

Every memoryless strategy o induces in G a subgame G, obtained by removing
the transitions (v, w) from v € Vj to w # o(v). Notice that if ¢ is a winning strategy
for a player, this player wins every play on G,.

Since memoryless strategies are small objects and it can be checked efficiently
whether such a strategy is winning, the winner of a parity game can be established
in NP n co-NP. However, the best known deterministic algorithms for solving this
problem have running times that are polynomial with respect to the size of the
game graph, but exponential with respect to the index of the game [40].

1.3.2 MODEL CHECKING GAMES FOR L,

In terms of games, the interpretation of negation is an intricate matter. To avoid
this difficulty, we will henceforth assume wihtout loss that formulae are presented
in negation normal form, where only atomic propositions appear negated.

Given a Kripke structure &, u and a L,-formula y, the model-checking game
G(K, v, u) is a parity game associated to the problem whether I, vy & y. There are
several, essentially equivalent, ways to define this game. In the more transparent
one, positions are pairs (v, ¢) where ¢ is any, not necessarily closed subformula
of y, and it is assumed that every variable is bound at most once by a fixed-point
definition (see, e.g., [8, 65]). However, because we later want to reuse variables, we
resort to a variant more familiar in automata theory which, instead of subformulae,
refers to their closure [20, 47].

The positions in the game G (KC, v, u) are pairs (v, ¢) of states v € K and formulae
¢ € cl(y). The first player, called Verifier, moves from the positions (v, ¢; V ¢,),
(v (a)@), (v, p) with v ¢ p, and (v, =p) with v € p and his opponent, called Falsifier,

moves from every other position. All plays startat (1, ) and can proceed as follows:
¢ no moves are possible from (v, ) where « is atomic or negated atomic;

o from (v, 91 V 9;) or (v, ¢; A @,) available moves lead to (v, ¢;) and (v, ¢,);
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¢ from (v, (a)¢) or (v, [a]g) there are available moves to all positions (w; ¢)
where w is an a-successor of v;

¢ from (v, uX.9(X)) or (v, vX.9(X)) only one move is possible, leading to
(% p(uX.9(X)) respectively (v, (vX.9(X)).

Thus, a play proceeds along the paths in K and in the syntax tree of y, up to the
point where a fixed-point variable is met (a leaf in the syntax tree). There, the play
resumes with the variables binding definition in the second component. We call
this event regeneration of a variable. Observe that before a variable is regenerated,
its binding definition has already been met when the play descended the syntax
tree. We say that the variable is generated at that position.

One technically useful property of fixed point formulae is guardedness. In terms
of games this guarantees that between the binding definition of a variable and its
regeneration we always have at least one modal move.

Definition 1.3.4. An L,-formula vy is guarded if each path in the syntax tree of y
from a fixed point definition AX.¢ to an occurrence of X passes through a modality,

{a)n or [a].

In [47], Kupferman, Vardi, and Wolper give a procedure to transform any L,,-
formula into an equivalent guarded formula. This procedure does not increase the
number of variables and preserves existential formulae.

Proposition 1.3.5. Every existential formula in L,[k] is equivalent to a guarded
existential formula in L,[k].

While repeatedly regenerating variables, it may happen that neither Verifier nor
Falsifier gets stuck. To decide such plays, priorities have to be defined appropriately.
The intuition is that, to establish the truth of a -formula, Verifier should regenerate
it only finitely often whereas v-formulae can be regenerated infinitely often. Of
course the difficulty may be that y- and v-formulae are deeply nested and there
are several fixed-point formulae that are regenerated infinitely often during a play.
But it can be shown that among these, there is always an outermost one, which
determines the winner: if it is a-'v-formula Verifier wins, if it is a y-formula, Falsifier
wins. Hence, the priority labeling assigns even priorities to positions (v, vX.¢) and
odd priorities to positions (v, uX.¢). Further, priorities respect dependencies. If
vY.¢ depends on yX.x then priorities of positions (v, vY.¢) are higher than those
of positions (w, 4X.17). The remaining positions receive priorities that are higher
than those associated with fixed-point formulae.
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Theorem 1.3.6 ([20, 65]). Verifier has a winning strategy in the model checking game
G(K, v, u) from position (u, y) iff IC, u = .

Besides defining the truth of L,-formulae in terms of games, this characterisation
also gives us access to a notion of game-theoretic proof or rejection of the validity
of a formula. To be more precise, for a given structure K and a formula y € L, a
(memoryless) winning strategy for Player 0 in the model checking game G (K, v, u)
can be viewed as a proof of I, v = y in an interactive proof system. Verifier can
convince Falsifier that y holds at u, by choosing according to its strategy whenever
a disjunction or an existential subformula of y is considered. In the same way, a
(memoryless) winning strategy for Player 1 can be seen as a rejection of IC, v = y.

The following property follows from Theorem 1.3.6.

Corollary 1.3.7. Let K, u be a model of a formula v € L, and let 0 be a winning
strategy for Verifier in the associated model-checking game G (KC, y). Then, for every
position (v, ¢) reachable in G, from the initial position (u, y), we have K, v &= cly (¢).

A different way to define model-checking games for L, refers to the closure of
subformulae rather than their occurrence [20, 47]. The games obtained in this way
areequivalentto those introduced here — in fact, they are bisimilar. We may therefore
use this alternative definition where a more semantic viewpoint is appropriate.

We remark that the game theoretic semantics of L, in terms of parity games was
sucessfully generalised to least fixed point extensions of first-order logic and its
fragments, providing new insight beyond the scope of modal logics [8, 28, 26, 6, 9].

1.3.3 EXPRESSING PARITY SEMANTICS IN L,

A crucial feature of the y-calculus is that it can express the notion of winning in its
natural model-checking games.

Theorem 1.3.8. ([21]) For every index n, there is a formula W" € L, such that in
any parity game G, vy with n priorities Player 0 has a winning strategy if, and only if,
g, Vo = Wn.

We develop a variant of the formula W” here. For convenience, let us abbreviate
the formula expressing that Player 0 can ensure that a position where ¢ holds is
reached in one move by

Do = (Vo AOp) v (Vo Alg).
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Further, we write Qs,; for \V/}_.,, Qk. Empty disjunctions, like 0, , are interpreted
as false. For simplicity, let us assume that # is odd.

Definition 1.3.9 (Parity characterisation). The formula W" expressing that Player 0
has a winning strategy in a parity game with » priorities is

W = /lel'VZZ - [/lZn \/(Q, A |>Z,)
i=1

To understand this expression, let us consider the formulae W;(¢) describing
those positions from which Player 0 can ensure that

(i) either he wins while no priority less than i is ever played, or
(i) some position where ¢ holds is being reached.

We obtain, for odd i,

Wi(9) = uZ Wi (9 v (2 A >2)),
and, for even i,

Wi(9) :=VZWiui (9 V (2 A DZ)).

Thus, the above expression for W" is given by W;(L).

1.3.4 THE L, ALTERNATION HIERARCHY

A well-studied measure for the descriptive complexity of L, is the the alternation
depth, that is, the number of (genuine) alternations between least and greatest fixed
points occurring in a formula.

Definition1.3.10 (Alternation hierarchy of L,). The u-calculus alternation hierarchy
is defined as follows:

(i) The first level of the hierarchy, X} = IT};, consists of the formulae in which
no fixed-point operators occur.

(ii) For every higher level, X¥,, is formed by closing X¥ U IT¢' under positive
boolean and modal operators, A, v, (-), and [-], and under the least fixed-

point operator .

(iii) The level IT},, is obtained dually, by closing X% U IT under v instead of p.
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Interestingly, most most temporal and dynamic logics used for describing con-
current systems allow translations into low levels of the L, alternation hierarchy. On
its first level this hierarchy already captures, for instance, PDL as well as CTL, while
their expressive extensions APDL and CTL* do not exceed the second level. Still,
the low levels of this hierarchy do not exhaust the significant properties expressible
inL,.

In [15] Bradfield showed that the alternation hierarchy of the u-calculus is
semantically strict and that the formulae W" are hard instances for the n-th level
of this hierarchy. Variants of this result, relying as well on variants of W", have also
been proved by Lenzi [49] and Arnold [1].

Theorem 1.3.11 ([15, 49]). For any index n, the formula W" is contained on the n-th
level of the y-calculus hierarchy but there is no formula equivalent to W" at level n — 1.
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2 GAME LogGiIc

HILE GAMES OFFER a very powerful and intuitive language for reasoning
W about interaction, this creates, in turn, the exigence to devise appropriate
metalanguages for reasoning about games. An important contribution to this aim
has been brought by Parikh’s Game Logic GL, introduced in [56], a formalism
concerned with the dynamic of games, more specifically, with the evolution of a
player’s power in a game.

In first instance, GL provides a syntax to compose complex games starting from
primitive ones, just in the same way as PDL programs are built up from atomic
actions. This gives rise to game expressions specifying a schedule for two players,
Angel and Demon, according to the following outline. The sequential composition
of two games y;;y, means: play y; first, then y,. The nondeterministic choice
operator y; Uy, lets Angel decide which of the two games y; or y, is to be played.
The iteration operator y* allows to play the game y repeatedly, for a finite number
of times, whereby Angel can decide before each round whether a new round is to
be played. Finally, the test operator (¢?) invokes an independent observer to check
whether ¢ holds; if so, the play just ends, otherwise it breaks and Angel loses.

In extension to these, the formalism introduces an explicit alternation opera-
tor y9, which directs Angel and Demon to play y with interchanged roles. As we
shall see, this notion of dualisation, corresponding to a form of game-theoretic
negation, represents a deep source of expressive power.

Similar to the games on Kripke structures discussed in the previous chapter, in
GL the interpretation of games refers to the states of an external system (the world).
The evolution of this system is determined by the interaction of the two players:
as an outcome of a game played at a given state, the system shifts into a new state.
Accordingly, the semantic model associates to every game the outcomes, in terms of
states, that may arise when the game is played at a given state. However, in contrast
to PDL, where the possible outcomes of executing a program can be described as
a subset of the state set, transitions determined by games have a finer structure.
This is captured by the notion of effectivity functions representing the power of a

29
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O
O O
a b c d
Figure 2.1: An extensive game form with outcomes in {a, b, ¢, d}

player in a game. Given a set V of states, an effectivity function f : V — £(£(V))
describes, for every state v, a collection of subsets of V within which the player can
force the outcome when the game is being played at v. In line with this intuition,
effectivity functions are required to be monotonic in the sense that, if Z € f(v) and
Z < Z' c V,thenalso Z' € f(v). For a formal review on effectivity functions, we
refer the reader to the survey of Vannucci [72] on this topic.

To illustrate the notion of effectivity, let us consider the power of the two players
in the game form depicted in Figure 2.1. Although the first player cannot guarantee
the play to end in any specific state of {a, b, ¢, d}, he can ensure, e.g., that an
outcome in {a, b} is achieved. In detail, the value of his effectivity function at a
state v associated to this game is

fw)={{a b}, {cd},{a,bc} {abd},{acd}{bcd}{abcd}}

Dually, his opponent, can ensure that the play ends in any of the sets {4, c}, {4, d},
{b, ¢}, and {b, d}, or in any superset of these.

Effectivity functions bear a high level of abstraction. Non-determined games, for
instance, can be easily modelled by providing separate effectivity functions for the
two opponents. However, in Game Logic, games are assumed to be determined and
strictly competitive. Therefore, the values f(v) of one player’s effectivity implicitly
define the opponents effectivity f(v) == {Z S V | Z ¢ f(v) }.

In Parikh’s original setting, primitive games are represented by the associated ef-
fectivity function, generalising the notion of transition. Consequently, the intended
models for GL are higher-order transition systems, called neighbourhood models,
with propositional state labels as usual, but effectivity relations over V' x £(V)
rather than transitions over V x V. Statements about these models are constructed
by associating game expressions with modalities. Typically, the statement (y)¢ ex-
presses that, at the current state, Angel has a strategy to play the game y in such a
way that either ¢ is true when the play ends, or the game breaks and Demon fails.
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Some conceptual remarks are in place here. In the classical view of game theory,
the notion of utility, or winning, and the specification of the actions available to the
players are essential to the definition of a game. What we refer to as a game in GL
is, to a large extent, detached from both of these aspects. At the atomic level, games
model only what the players can achieve, not how nor why they should pursuit
a certain outcome. The composition of games, however, gradually adds possible
actions (choose one or the other game to play, reiterate or not) and also a sense of
losing (by reitering a game y* infinitely often, or by failing a test). Finally, when a
game expression y is casted into a propositional statement (y) ¢, a determination of
winning is provided. Thus, game expressions in GL define rules for constructing an
extensive game form over internal positions while the atomic game forms and the
player’s utilities are provided in terms of external states of the world. This interplay
of game-theoretical constituents with concepts from computer science results in a
non-classical notion of great potential. See [57] for an extensive exposition on this
subject.

In the present chapter, we investigate the expressive power of Game Logic
interpreted in Kripke structures. These correspond to neighbourhood models with
one-player atomic games. Alternation between players in complex games can be
induced syntactically, via the dualisation operator. We show that each new level of
syntactic alternations makes the logic stronger, i.e., that the alternation hierarchy of
Game Logic s strict. Our proof technique relies in encoding the winning conditions
for parity games into GL. This further allows us to conclude that Game Logic
intersects nontrivially every finite level of the y-calculus alternation hierarchy.
Finally, it shows that the model checking problem for the py-calculus can be solved
efficiently if, and only if, this is the case for GL.

The results developed in this chapter also raise a new question regarding the
structure of the y-calculus variable hierarchy which will be answered in Chapter 5
together with the open question posed by Parikh in [55], whether Game Logic is
equal in expressive power to the y-calculus.

21 SYNTAX AND SEMANTICS

Syntactically, Game Logic extends the language of PDL by adding a dualisation
operator for complex programs, conceived as games.
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Definition 2.1.1 (Syntax of Game Logic). Starting from a set Prop of atomic
propositions and a set AcT of atomic game actions, the expressions of GL are of
two sorts, formulae and games, generated respectively by the following grammar:

Lipl-plove|{ye
ale|yylyuyly |y

(P:
)}I

where p € Prop and a € AcT.

The meaning of these expressions is defined in terms of neighbourhood mod-
els, i.e., higher-order transition structures that supply descriptions of the player’s
effectivities in atomic games, for each state. In place of effectivity functions
f:V > P(P(V)), we will use a relational encoding F € V x £(V) consist-
ing of the pairs (v, Z) with Z € f(v).

Definition 2.1.2 (Effectivity relation). An effectivity relation over a set V of states
is a relation F € V x £(V) closed under the following monotonicity condition: if
(wZ)eFandZc Z'c V,then (v,Z') € F.

We shall find it useful to think of an effectivity relation F as an operator from
£(V) into itself, mapping any set Z € V to F(Z) :={v | (v, Z) € F }. Notice that,
by monotonicity of the effectivity relation, the associated operator is monotone too.
The natural composition of two operators (F; o F,)(Z) := F;(F,(Z)) translates
back into the relational view as

FroF={(v2) | (vF2)) € Fi }.

Assuming that game atomic forms are determined, it is sufficient to model only
the effectivity of one player explicitely.

Definition 2.1.3 (Neighbourhood model). A neighourhood model over a set Prop
of atomic propositions and a set AcT of atomic actions is a structure

M = (V: (Fu)aGACT’ (Vp)pePROP)

where V is a set of states, F, € V x £(V) are effectivity relations for all a € Acr,
and V,, € A are monadic relations for all p € Prop.

The relations F, are intended to describe the effectivity of Angel in the atomic
game a. As in the case of ordinary transition systems, the sets V,, consist of the
states where p holds. Starting from these, the semantics of GL extends complex
formulae to subsets of states and game expressions to eftectivity functions over V.
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Definition 2.1.4 (Semantics of Game Logic). Given a neighbourhood model M
providing the meaning of primitive propositions p € Prop and actions a € Acr,
formulae ¢ and game expressions y extend to subsets [¢]] € V and effectivity
relations [[y]] € V x (V) via simultaneous induction, as follows.

For game expressions, we set:

[a]l = Fu
[9? ] ={(w2) [veZnl9o]}
[y y21 = [yl o [y21s
[yr vyl =[] v ly2Is
[yl ={(m2) | velfp(X~Zu[yl(X)) }
T={2) | 2) ¢ D]}

The boolean connectives are interpreted as usual; for the modal operator, we set:

el ={v [ el € [yl } = [yICTeD

To see that the definition is sound, observe that the monotonicity of effectivity
relations is preserved along the composition process. In particular, this means that
the operator X — ZU[[y](X) defining the extension of y* is monotone, and, hence,
has a least fixed point. To recover the intuitive understanding of iteration, we can
think of the inductive definition of this fixed point as the limit of the transfinite
sequence:

Attr’(Z2) = Z
Attr'*(Z) == Z U [[y](Attr'(Z)),  for all ordinals i, and
Attr'(Z) = | JAttr'(Z),  for limit ordinals .
i<A

Each inductive stage Attr*!(Z) extends the previous one by adding those states
from which Angel can attract the play y into Attr’(Z) (or the game breaks and
Demon loses). By well-foundedness of the ordinals, it follows that from every
state appearing along this increasing sequence, Angel has a strategy to achieve
an outcome within Z by iterating y finitely often. The set of states at which the
sequence finally stabilises, coincides with the least fixed point of the operator
X ~ Z U [[y](X). By determinacy we can conclude that from every state outside
this fixed point, Demon has a strategy to keep any finite iteration of y outside Z.
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2.2 INTERPRETATION OVER KRIPKE STRUCTURES

When interpreted over neighbourhood models, Game Logic features interaction
already at the elementary level of atomic games. However, as we are concerned with
the expressive power inherent to the language rather than the underlying model,
and because we wish to view Game Logic in the context of established formalisms
for specifying interactive systems, we shall restrict ourself to interpretation of GL
over Kripke structures.

The current understanding of transitions E, as assertions about consequences
of actions (“if action a occurs to the system in state v, then it shifts into some state
w € vE,”), can be comprehended, in terms of games, as assertions about outcomes
of one-player game forms (“when playing game a at state v, the player in turn
can bring about any outcome w € vE,”). Concretely, this corresponds to casting
transition relations E, € V x V as effectivity functions:

F,={(n2)eVxP(V)| (IwevE))weZ}.

Via this translation, Kripke structures can be viewed as a subclass of neighbourhood
models, where atomic games are, in fact, one-player games. All interactive aspects
are, hence, controlled syntactically. Note that in the absence of alternation, i.e.,
when the dualisation operator is not involved, GL on these models is nothing but
PDL. In the presence of alternation, instead, the expressiveness of GL increases
significantly.

In Subection 1.2.2 we have argued that APDL, the extension of PDL by a looping
operator for expressing that a program can be executed infinitely often, is a powerful
specification formalism which subsumes CTL" in expressive power. It turns out that
APDL can be translated into GL but not vice versa.

Proposition 2.2.1. Over Kripke structures, APDL < GL.

Proof. For the positive direction, notice that the GL-expression (y‘jl)*d corresponds
to the looping operator Ay of APDL.

On the negative side, Niwinski pointed out in [53] that the u-calculus for-
mulavX.(a)X A (b)X is not expressible in APDL. Essentially, the formula describes
the models able to simulate the following Kripke structure.

(o)
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In the corresponding simulation game Challenger chooses, in each round, either
action a or b, and Duplicater has to move to a corresponding successor in the model,
infinitely often. At the attempt of describing this game, APDL fails because it can
only capture finitely many alternations. In GL, instead, the property can be easily
described by interleaving iteration and dualisation: {((a® u 69)*)d) 1. O

At this point, the question arises, whether the ability of GL to describe alternation
exhibits similar limitations as APDL. The most promising approach to investigate
this question is offered by the fine-structure of the y-calculus alternation hierarchy.

2.21 TRANSLATING GAME LOGIC INTO THE {-CALCULUS

Since all operations used to define the semantics of GL appear as built-in operations
in L, it is an easy exercise to translate the syntax of GL into L. Thereby, game
expressions yare translated into formulae 7, (Z) with a free fixed-point variable Z, so
that on any Kripke structure K, the operators [y]|(+) and #* coincide. Furthermore,
by repeatedly reusing variables, the image of this translation can be kept within the
two-variable fragment of L.

Proposition 2.2.2 ([58]). Every GL-formula can be translated into an equivalent
formula of the p-calculus using at most two fixed-point variables.

Proof. Let X and Y be two fixed point variables. To translate a formula y € GL
into L, we construct three mappings -*, -, and ¥ inductively over the subexpres-
sions of y.

The operator translations - and -¥ associate to every occurring game expression
7> an L,-formula y*(X) respectively y* (Y') with one free fixed-point variable:

g =0X g =0y
(rup) =y vy (rup)’ =y vyy
(yi392)" = 11X = 73] (yi92)" = [Y =]
(go?)X = goh AX (q)?)Y = goh ANY
()" = [X = -X] (DY =y Y ==Y

(Y)Y =X vy’ () =uXy vyt
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The proposition translation - associates to every GL-formula an L,-sentence:

ph=p
(—g)* = ="
(1 v 92)* =} v ¢
((ne)F =y [X = ¢f]

Then, for every structure K and every subset Z of states, we have for all subex-
pressions y and ¢ of y:

Y12 = 1Y Tz [71(2) = [y Tiz=ry.  and [g]l = [¢"].
In particular, it follows that v € GL and y* are equivalent. O

Notice, that the translation rule for nondeterministic choice introduces two
occurrences of the free variable. While substituting the game modality, these are
both replaced with the same expression, thus leading to a possible exponential
blow-up of obtained L,-sentence. However, this phenomenon can be avoided by
translating into the equational y-calculus rather than its linear variant. Obviously,
for the closure of the translation we obtain a size |cl(y*)| which linearly bounded
in the length of y.

2.2.2 PARITY SEMANTICS FOR GAME LoGIC

Despite its conceptual elegance, the interpretation of GL game expressions in terms
of effectivity functions has a major disadvantage we work on Kripke structures:
these objects are not representable within the system itself. Even if the eftectivity re-
lations for atomic games are interpretable as transitions, the extension of composed
expressions will usually not fit any more into this interpretation. For example, the

extension over the expression a; a¢

over a Kripke structure as in Figure 2.1 does
no not correspond to any transition relation over this system. On the one hand,
this is because transitions represent one-player games while, in complex game ex-
pressions, alternation really matters. On the other hand, effectivity functions may
encompass internal states, that do not correspond to states of the external Kripke
structure over which they are interpreted.

To bridge this gap, we rephrase the semantics of GL in terms of parity games. In

this way, we will be able to refer not only to the interpretation of a GL-formula on a
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given Kripke structure, but also about the game-expressions occurring within this
formula. Moreover, since parity games are themselves Kripke structures, we will be
able to refer not only about the truth value of a sentence but also about its proof
within the same formal system, in similar way as we do for the y-calculus.

At this point we can rely on the games obtained via the translation of GL into L,,.
However, to access the details of these games, it is convenient to review their
construction explicitly.

For better readability, let us agree on a precedence order over GL-operators,
assuming that unary operators bind tighter than binary ones and that sequential
composition ; binds tighter than the choice operator u. Additionally, we define dual
operators as a shorthand:

P1 A @2 = =(=1 V —9,) Ti=-1
(o] *d
Y0y = (y5 uys)e Y =07

To disentangle formulae and games, we transform each game in such a way that
tests apply only to L, T, atomic, or negated atomic propositions as follows:

(91 V 92)7= 912U @7 (=)? = (p?%12) N T?
(1 A @2)? = 12N @o? (P92 = y; 97

Further, we can exploit the following equivalences to put any GL-formula into
a negation normal form where negation applies only to atomic propositions, and
dualisation applies only to atomic games or surrender (L1?).

~(»p = (y*)-¢ 9! = (—p?; 129 U T?
(yis72)* = 9575 ()= ()

The positions of the parity game associated to a GL-formula and a given Kripke
structure will comprise both external states of the system and internal states stem-
ming from the formula.

Definition 2.2.3 (Closure). Given a formula ¢ € GL in negation normal form, we
define its closure cl(y) as the smallest set which contains y and is closed under the
following operations:

(i) taking of subformulae: for each ¢ € cl(y) any subformula 7 of ¢ is also
contained in cl(y);
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(ii) choice: foreach (y; U y2)9 € cl(y) wehave {(y1)¢, (y2)¢} S cl(y) and
likewise for n;

(iii) unrolling: for each (y*)¢ € cl(y) also (y; y*)¢ € cl(y) and likewise for °;
(iv) splitting: for each (yy;y2)¢ € cl(y) also (y1){y2)¢ € cl(y).
Observe that |cl(y)| is linearly bounded by the number of symbols in y.

Now, we are ready now to define the semantic games for Game Logic.

Definition 2.2.4 (Model checking game for GL). To any Kripke structure X, u and
any formula y € GL, we associate a parity game G (K, y, u) with positions

Vi={(ve) : yecd(y)andve V}

Thereof, Player 0 holds all positions where the formula is of the shape

L o1V g, (a?)e (99 (y1Uy2)e or (g,

where a stands for 1, T, or atomic propositions, possibly negated. Additionally, V,
includes

{(up) s veVptu{(w-p) s veV,}

The remaining positions belong to Player 1.
All plays start at position (v, «). The transitions are given as follows.

¢ From positions (v, L), (v T), (v, p), or (v, =p) no moves can be done.

¢ From (v, 91 V ¢2) or (v, @1 A ¢,) two transitions lead to (v, ¢1) and (v, ¢2).

¢ From (v, (a?)¢) there is a transition to (v, ¢), if one of the following holds:
~ aisTorTY
~ aisporp?andace Vy;
— ais=por(-p)?anda ¢ V,.

Otherwise, no moves can be done.
¢ From (v, (y1 U y,)¢) transitions lead to (v, (y1)¢) and (v, (y2)¢).

¢ From (v, (a)¢) there are transitions to each of {(w, ¢) | (v, w) € E,}, for all
a € Acr.

¢ From (v, (y*)@) or (v, (y°)¢) two transitions lead to (v, ¢) and respectively
(o (3 77)9)-
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o From (v, (y1; y2)) there is a transition to (v, (y1)(y2)¢).

In order to determine the priority assignment, we first introduce a measure for
the alternated nesting of iteration in GL-games.

Definition 2.2.5 (Star hierarchy). For GL-games in negation normal form we define
the following star alternation hierarchy:

(i) The first level of the hierarchy, 2§ = IIj, consists of the *- and °-free games.

*
i+1

(ii) For every higher level, 27, is formed by closing X7 U IT} under;,n,uand *.

(iii) The level IT},, is obtained dually, by closing under ° instead of *.

i+1

Only the positions of the form (v, (y*)¢) or (v, (y°)¢) receive significant priority
colourings. Towards this, we look at the least i such that y € X; U I]; and assign
(v (y*)@) to Qy;41 o, respectively, (v, (y°)¢) to Qyi42. All remaining positions are
set to some irrelevant, high priority.

When we refer to the game G(/C, v, u), (y, u) we will usually not mention the
root (v, u) explicitly and write G(IC, y, u), or simply G(KC, y).

Essentially, the parity game obtained in this way for y follows the construction
of the semantic game for the translation of y into L,,. Therefore, the correctness of
the construction follows immediately from the correctness of the translation.

Proposition 2.2.6. A formula y € GL holds in a Kripke structure IC, u if, and only if,
Player 0 has a winning strategy in the game G (IC, v, u).

Notice, that the number of positions in G(KC, v, u) is bounded by O(|A| - |v|).
Since the problem, whether Player 0 has a winning strategy in a parity game is
known to be in NP n Co-NP we can immediately conclude

Corollary 2.2.7. The model checking problem for GL over finite structures is in
NP n Co-NP.

2.3 EXPRESSING PARITY SEMANTICS

In this section we will show that Game Logic is able to express the winning
conditions for parity games. Since these games capture the semantics of GL, this
means that the formalism of GL is strong enough to express its own definition of
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truth via the associated game structure. Moreover, it can also express the truth of
L,-formulae via these games. Intuitively, this indicates that the power of alternation
of Game Logic cannot be lower than that of the y-calculus.

To make this precise, we first need to define our measure of alternation in GL.

Thealternationlevels of the L, hierarchy record the number of nested alternations
between least and greatest fixed point operators. For formulae in negation normal
form, this corresponds to the nesting of * and ° operators within the game modalities.
We can thus extend the star hierarchy over games from Definition 2.2.5 to ahierarchy
over formulae.

Definition 2.3.1 (Alternation hierarchy for GL). The alternation hierarchy of GL
is the sequence (Z;)«, of sets consisting of formulae y in negation normal form,
such that

yeX; iff {y: {(peed(y)}ciull

Next, we construct a GL formula to express the winning condition for Player 0
in a parity game K = (V; Vj, E, Q) with » priorities. In line with our remarks to the
construction of the corresponding formula in the y-calculus (see Definition 1.3.9),
we will compose, for every priority i, a game y; corresponding to a subgame of the
parity game K. Our intention is to tailor y; so that it reflects the effectivity of Angel
to ensure in each play of the parity game K that he either wins, or the play reaches
a priority less than i. Then, y; describes its effectivity in the whole parity game.

Let a be the unique atomic game action corresponding to a move from one game
position to another. Then, Angel’s effectivity in a single game move is described by
the composite game:

f=VetauVial

Assuming » is odd, consider the sequence (y;)1<i<, of GL-games starting with
Yn = (a5 1)" Qun?

and, for any even index i < n,
Vi = (in? L Q5 U )/i+1))o; Q21

while for i < n odd,

Yi = (Qi?;f U Q>i?; )/i+1)*; Q<i?
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Before we proceed, let us see which options the players actually have in a game y;.
First, for a player to hold the star (or circle) means only little choice here, since he
can stop iterating y; only when some priority less then i is seen. This is required
by the guards Q.;? and Q;? d at the exit point of the iteration. But note that, in
that case he is forced to stop iterating, otherwise he loses. For Demon this is stated
explicitly by the condition ; at the entry of the iteration, when i is even. For
Angel instead, this guard needs not to be set as he has to make his choices in such a
way that f is finally being played and it is pointless for him to cheat at that point: if
the current position in X has priority j he will always choose towards reaching the
subgame (£2;% f) in y;. Since all U choices are determined by the value of j, entering
a game y; with i < j would lead Player 0 to fail the test after his next U choice. Thus,
the actual choices take place in the structure, that is, when f is being played.

We are interested in y;. Please note, that the meaning of any formula (y; )¢ does
not depend on ¢, since y; is either finished by surrender or it never ends. Thus we
can safely choose ¢ := 1. Let us denote (y;)L by WZ.

Example. For n = 3 we obtain, by replacing O, with L and omitting the ; operator,

((Ql?f U .Q>1?(.Q22? d(Qz?f U Q>2?(.Q3?f)*.Q<3?)) .Q<2? d) J_>J_
Proposition 2.3.2. For every parity game K, u of index n we have
K.oueW, iff KusW"

Proof. Our intention is to translate the proof of the W” € L, on K, v into a proof
of W? € GL on the same structure, and vice versa. Towards this, we look at the
model checking games resulting from the two formulae G := G(K, W", u), and
respectively, G, = G(IC, W%, u). Herein, the proofs appear as winning strategies.
Thus, we can rephrase our aim in terms of parity games: If Player 0 has a winning
strategy in G then he also has a strategy in G, (and we are able to construct it), and
vice versa.

Let usassume that I, v satisfies W”, i.e., Player 0 has a winning strategy o in K, u.
Hence, he also has a winning strategy 7 in G. Observe that the relevant advices of
7 are all transitions of the type (v, 0Z;) — (w, Z;) where is i the priority of v. In
other words, the strategy 7 of Player 0 in G is uniquely determined by his strategy
cinC, u.

Now, getting back to GL, in the light of the above remarks concerning the freedom
of choice in y;, we can see that for any winning strategy of Player 0in G, the relevant
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choices are structure choices of the type (v, a; §;) — (v, §;) where, for i the priority
of v (assumed odd),

& = <(Qi?;f SEONTH )’i+1)*§~Q<i?§ Yi-15 Yi-25 "'Vl)l-

Let us consider the strategy 7, for Player 0 in G, which works like ¢ (and 7) on
structure choices while preventing him on formula choices (* or N) to lose within
the next two steps.

Clearly, 7, carries precisely the same information as 7. In fact, both strategies
mirror the winning strategy o on K, u. It is easy to verify that the priorities in G
and G, are assigned in a compatible way, such that the set of plays according to these
strategies are essentially the same for both model checking games, consequently,
all wins for Player 0.

By the same token, we can also show conversely, that a winning strategy for
Player 0 in G. can be transferred via projection onto K, u to a winning strategy
in G. This concludes our proof. ]

Since for every number n, the formula W, describing the parity conditions
for a game with » priorities is hard for the n-th level of the y-calculus alternation
hierarchy, the translation of these formulae into GL implies the following interesting
result.

Theorem 2.3.3. No finite level of the y-calculus alternation hierarchy captures the
expressive power of GL.

Moreover, we can conclude that the strictness of the alternation hierarchy for
the y-calculus, formulated Theorem 1.3.11, carries over to Game Logic.

Theorem 2.3.4. The alternation hierarchy of Game Logic is strict.

Proof. Obviously, W is contained in X,. Since the translation of GL-formulae
into L, preserves the alternation level, that is, the number of alternated nestings
of * and ° translates into the same number of nested least and greatest fixed point
operators, and the L, alternation hierarchy is strict, no GL-formula y € X, can
be equivalent to W7. O

Finally, observe that the length of W is at most quadratic in n. Since the model-
checking problem for an L,-formula y of alternation level n in a structure K, u can
be reduced to the problem of establishing whether Player 0 has a winning strategy
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in G(KC, W", u), or equivalently, to the model-checking problem for Game Logic
G(K, v, u) = WZ, we obtain the following connection between the complexity of
GLand L,.

Theorem 2.3.5. Model-checking for the p-calculus can be performed in polynomial
time, if and only if, this is the case for Game Logic.

Although the above results show that we can define classes in GL which are
arbitrarily hard for L,, an indication not to underestimate its expressive power,
the question whether Game Logic attains the full power of L, remains open. A
definitive answer to this question results from our investigation of the L, variable
hierarchy in Chapter 5.

2.4 HIERARCHIES WITHIN THE HU-CALCULUS

Formulations of the parity winning condition in L, have been used by several
authors as a fundamental tool in different contexts. In [21], Emerson and Jutla
proved that parity games are determined by characterising the winning positions
of each player in L. Since these characterisations are complements of each other,
it follows that there are no undetermined positions. Via the correspondence es-
tablished by Gurevich and Harrington [29] between parity games and Rabin tree
automata, this also implies that Rabin automata are closed under complement, thus
yielding a considerable simplification for the key argument in the proof of Rabins
decidability theorem [61] of the MSO-theory of trees. As an even more powerful
result, in [76] Walukiewicz proved that the MSO-theory of iterated structures is
decidable, using a very subtle refinement of this technique (see also [7] for a treat-
ment on this topic). Considering parity games over infinite push-down graphs [75],
Walukiewicz showed that these games are determined with automatic strategies,
by deriving a progress measure from an L, formulation of the parity winning con-
dition. Finally, the witnessing formulae developed in the different proofs of the L,
alternation hierarchy by Arnold, Lenzi, and Bradfield [1, 15, 16, 13, 49] all variants
of this formula.

Interestingly, in each of these contexts, the characterisation of a parity game
with n priorities was written over n variables. However, our formulation of this
property in Game Logic, which is embedded in the two-variable fragment of L,
shows that already two variables are sufficient to express this property.
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Corollary 2.4.1. The set of winning positions for Player 0 in a parity game with n
priorities can be characterised by a u-calculus formula using at most two variables, for
any number n.

Since we believe this matter to be interesting beyond our investigation of Game
Logic, we present here an explicit L,-formulation of the parity condition in a game
with n priorities, over two variables.

Using the notation from Definition 1.3.9 for any n, the sequence of formulae ¢;
fori=n,...,1is constructed inductively as follows:

9i(X) = uY.((QiA DY)V (Qu AX) V(D A 9ia (1))
when 7 is odd and, otherwise,
9i(Y) =vX((2 A DX)V (Qu AY)V (Do A 9111(X))).

Recall that empty disjunctions as (; or (2., are interpreted as false.
The formula ¢, obtained in this way characterises the winning positions of
Player 0 in a party game with n, obviously with not more than two variables.

Example. For n = 3 we get
uX (21 DXV VY (Q, DY V QLX VO, (uX.Q: DX V Q,Y))).

Particularly, this implies that, in terms of alternation, the entire complexity of
the y-calculus is encountered already in the second level of its variable hierarchy.

Corollary 2.4.2. The alternation hierarchy of the two-variable fragment of L,, is strict
and not contained in any finite level of the y-calculus alternation hierarchy.



3 PATH GAMES

ARIKH 'S GAME LogIc considered in the previous chapter provides an in-
P terpretation of modalities by means of games. In the present chapter, we study
a different way of defining quantification in terms of games. Here, instead of tran-
sitions, the target object will be paths resulting from infinitely many interactions
between two players.

In the games underlying to this prospective, the players select, in each move,
a path of arbitrary finite length, rather than just an edge. The outcome of a play
is an infinite path, and the winning condition is given by a formula from MSO,
LTL, or FO. Such games have a long tradition in descriptive set theory (in the
form of Banach-Mazur games) and have recently been shown to have interesting
application for planning in nondeterministic domains. In a first instance, we will
investigate the structure of winning strategies for certain subclasses of path games.

With each formalism defining a winning condition on infinite paths, we then
associate a logic over graphs, defining the winning regions of the associated path
games. We investigate the expressive power of the logics obtained in this way. It
turns out that the winning regions of path games with MSO-winning conditions
are definable in L. Further, if the winning condition is defined in first-order logic
(over paths), then the winning regions are definable in monadic path logic, or, for
a large class of games, even in first-order logic. As a consequence, winning regions
of LTL path games are definable in CTL*.

3.1 ORIGINS

Path games have been studied in descriptive set theory, in the form of Banach-Mazur
games (see [42, Chapter 6] or [43, Chapter 8.H]). In their original variant (see [51,
pp- 113-117], the winning condition is a set W of real numbers; in the first move,
one of the players selects an interval d; on the real line, then his opponent chooses
an interval d, c d,, then the first player selects a further refinement d; c d, and so
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on. The first player wins if the intersection N, d, of all intervals contains a point
of W, otherwise his opponent wins. This game is essentially equivalent to a path
game on the infinite binary tree T2 or the w-branching tree T*. An important issue
in descriptive set theory is determinacy: to characterise the winning conditions W
such that one of the two players has a winning strategy for the associated game.
This is closely related to topological properties of W (see Section 3.3).

In a quite different setting, Pistore and Vardi [59] have used path games for
task planning in nondeterministic domains. In their scenario, the desired infinite
behaviour is specified by formulae in linear temporal logic LTL, and it is assumed
that the outcome of actions may be nondeterministic; hence a plan does not have
only one possible execution path, but an execution tree. Between weak planning
(some possible execution path satisfies the specification) and strong planning (all
possible outcomes are consistent with the specification) there is a spectrum of
intermediate cases such as strong cyclic planning: every possible partial execution
of the plan can be extended to an execution reaching the desired goal. In this
context, planning can be modelled by a game between a friendly player E and a
hostile player A selecting the outcomes of nondeterministic actions. The game is
played on the execution tree of the plan, and the question is whether the friendly
player E has a strategy to ensure that the outcome (a path through the computation
tree) satisfies the given LTL-specification. In contrast to the path games arising in
descriptive set theory, the main interest here are path games with finite alternations
between players. For instance, strong cyclic planning corresponds to a AE®-game
where a single move by A is followed by actions of E. Also the relevant questions
are quite different: Rather than determinacy (which is clear for winning conditions
in LTL) algorithmic issues play the central role. Pistore and Vardi show that the
planning problems in this context can be solved by automata-based methods in
2EXPTIME.

OUTLINE OF THIS CHAPTER. Here we consider path games in a general,
abstract setting, but with emphasis on definability and complexity issues. In Sec-
tion 3.2 we describe path games and discuss their basic structure. In Section 3.3 we
review the classical results on determinacy of Banach-Mazur games. We then study
in Section 3.3.1 path games that are positionally determined, i.e., admit winning
strategies that only depend on the current position, not on the history of the play.
In Section 3.4 we investigate definability issues. We are interested in the question
how the logical complexity of defining a winning condition (a property of infinite
paths) is related to the logical complexity of defining who wins the associated game
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(a property of game graphs). In particular, we will see that the winner of path games
with LTL winning conditions is definable in CTL*.

3.2 PATH GAMES AND THEIR VALUES

Path games are a class of zero-sum infinite two-player games with complete in-
formation, where moves of players consist of selecting and extending finite paths
through a graph. The players will be called Ego and Alter (in short E and A). All
plays are infinite, and there is a utility function u, defining for each play a real
number. The goal of Ego is to maximise the payoft while Alter wants to minimise
it.

A strategy for a player is a function, assigning to every initial segment of a play
a next move. Given a strategy f for Ego and a strategy g for Alter in a game G, we
write f "¢ for the unique play defined by f and g, and u(f "g) for its utility. The values
of a game G, from the point of view of Ego and Alter, respectively, are

e(G) = mfax minu(f’¢g) and a(G) := min mfax u(f’g).
g g

A game is determined if e(G) = a(G). In the case of win-or-lose games, where the
utility of any play is either o or 1, this amounts to saying that one of the two players
has a winning strategy. For two games G and #H we write G < H if e(G) < e(H)
and a(G) < a(H). Finally, G = HifG < Hand H < G.

Let G = (V, Ev) be an arena consisting of a directed graph (V, F) without
terminal nodes, a distinguished start node v, and let u : V* — R be a utility
function that assigns a real number to each infinite path through the graph.

We denote a move where Ego selects a finite path of length > 1 by E and an w-
sequence of such moves by E“; for Alter, we use corresponding notation A and A“.
Hence, for any arena G and utility function u we have the following games.

¢ (EA)“(G, u) and (AE)“(G, u) are the path games with infinite alternation
of finite path moves.

o (EA)*E“(G, u) and A(EA)*E“(G, u), for arbitrary k € N, are the games
ending with an infinite path extension by Ego.

¢ (AE)*A“(G, u) and E(AE)*A“(G, u) are the games ending with an infinite
path extension by Alter.
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All these games together form the collection Path(G, u) of path games. (Obvi-
ously two consecutive finite path moves by the same players correspond to a single
move, so there is no need for prefixes containing EE or AA.)

It turns out that this infinite collection of games collapses to a finite lattice of just
eight different games. This has been observed independently by Pistore and Vardi

[59].

Theorem 3.2.1. For every arena G and every utility function u, we have

E°(G,u) = EAE“(Gu) = AE°(Gu)

Al Al
(EA)*(G,u) = (AE)“(G, u)
Al Al
EA“(Gu) > AEA“(Gu) = A“°(G u)

Further, every path game H € Path(G, u) is equivalent to one of these eight games.

Proof. The comparison relations in the diagram follow by trivial arguments. We
just illustrate them for one case. To show that G > H for G = EAE“(G, u)
and H = (EA)“(G, u), consider first an optimal strategy f of Ego in #, with
e(H) = ming P(f’g). Ego can use this strategy also for G: he just plays as if he
would play G, making an arbitrary move whenever it would be A’s turn in . Any
playin G that is consistent with this strategy, is also a play in H that is consistent with
f, and therefore has utility at least e(#). Hence e(G) > e(#). Second, consider an
optimal strategy g of Alter in G, with a(G) = max; P(f'g). In H = (EA)“(G, u),
Alter answers the first move of E as prescribed by g, and moves arbitrarily in all
further moves. Again, every play that can be produced against this strategy is also
a play of G that is consistent with g, and therefore has utility at most a(G). Hence
a(G) > a(H). In all other cases the arguments are analogous.

To see that any other path game over G is equivalent to one of those displayed,
it suffices to show that

(1) (EA)*E®(G, u) = EAE®(G, u), forall k > 1, and
(2) A(EA)*E“(G, u) = AE®(G, u), for all k > 0.

By duality, we can then infer the following equivalences:
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(3) (AE)*A“(G, u) = AEA®(G, u) forallk > 1,and

(4) E(AE)*A“(G, u) = EA“(G, u) forall k > 0.

The equivalences (1) and (2) follow with similar reasoning as above. Ego can
modify a strategy f for EAE“(G, u) to a strategy for (EA)*E“(G, u). He chooses
the first move according to f and makes arbitrary moves the next k — 1 times; he
then considers the entire A(EA)*!-sequence of moves, which were played after
his first move, as one single move of A in EAE“(G, u) and completes the play again
according to f. The resulting play of (EA)*E“(G, u) is a consistent play with f in
EAE“(G, u). Conversely a strategy of Ego for (EA)*E“ also works if his opponent
lets Ego move for him in all moves after the first one, i.e., in the game EAE“(G, u).
This proves that the e-values of the two games coincide. All other equalities are
treated in a similar way. O

The question arises whether the eight games displayed in the diagram are really
different or whether they can be collapsed further. The answer depends on the game
graph and the utility function, but for each comparison > in the diagram we find
simple cases where it is strict. Indeed, standard winning conditions W < {0, 1}*
(defining the utility function u(7) = 1if 7 € W, and u(mr) = 0 otherwise) show
that the eight games in the diagram are distinct on appropriate game graphs. Let us
consider here the completely connected graph with two nodes o and 1.

If the winning condition requires some initial segment then Ego wins the path
games where he moves first and loses those where Alter moves first. Thus, starting
conditions separate the left half of the diagram from the right one.

Reachability conditions and safety conditions separate games in which only one
player moves, i.e., with prefix E“ or A respectively, from the other ones.

A game with a Biichi condition is won by Ego if he has infinite control and lost
if he only has a finite number of finite moves (prefix ending with A“). Similarly,
Co-Biichi conditions separate the games which are controlled by Ego from some
time onwards (with prefix ending in E“) from the others.

3.3 DETERMINACY

From now on we consider win-or-lose games, with a winning condition given by
a set of plays W. Player E wins the path game if the resulting infinite path belongs
to W, otherwise Player A wins.
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The topological properties of winning conditions W implying that the associated
path games are determined are known from descriptive set theory. We just recall
the basic topological notions and the results. Then, we will proceed to the issue
of memoryless determinacy, i.e. to the question which path games admit winning
strategies that only depend on the current position, not on the history of the play.

Note that path games with only finite alternations between the two players are
trivially determined, for whatever winning condition; hence we restrict attention to
path games with prefix (EA)® or (AE)“, and by duality, it suffices to consider (EA)“.
By unravelling the game graph to a tree, we can embed any game (EA)“(G, W) in
a Banach-Mazur game over the w-branching tree T*. The determinacy of Banach-
Mazur games is closely related to the Baire property, a notion that arose from
topological classifications due to René Baire.

TororoGy. Weconsiderthespace B¢ ofinfinite sequences overaset B, endowed
with the topology whose basic open sets are O(x) := x- B“, forx € B*. Aset L € B®
is open ifitis a union of sets O(x),i.e,if L = W-B® forsome W € B*. Atree T € B*
is a set of finite words that is closed under prefixes. It is easily seen that L ¢ B
is closed (i.e., the complement of an open set) if L is the set of infinite branches of
some tree T' € B*, denoted L = [T]. This topological space is called Cantor space in
case B = {0, 1}, and Baire space in case B = w.

The class of Borel sets is the closure of the open sets under countable union and
complementation. Borel sets form a natural hierarchy of classes 32} for 1 < 77 < w,,
whose first levels are

¥} (orG) : theopen sets
I (orF) : the closed sets
39 (orE,): countable unions of closed sets

II) (orGs): countable intersections of open sets

In general, IT) contains the complements of the 3)-sets, 37, is the class of
countable unions of IT)-sets, and 39 = U,y X for limit ordinals A.

We recall that a set X in a topological space is nowhere dense if its closure does
not contain a non-empty open set. A set is meager if it is a union of countably many
nowhere dense sets and it has the Baire property if its symmetric difference with
some open set is meager. In particular, every Borel set has the Baire property.

We are now ready to formulate the Theorem of Banach and Mazur (see e.g.
[42, 43]). To keep in line with our general notation for path games we write
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(EA)“(T®, W) for the Banach-Mazur game on the w-branching tree with winning
condition W.

Theorem 3.3.1 (Banach-Mazur). (i) Player A has a winning strategy for the game
(EA)“(T®, W) if, and only if, W is meager.
(ii) Player E has a winning strategy for (EA)*(T®, W) if, and only if, there exists a
finite word x € w* such that x - w* N\ W is meager (i.e., W is co-meager in some
basic open set).

As a consequence, it can be shown that for any class I' € (w®) that is closed
under complement and under union with open sets, all games (EA)“(T“, W)
with W e I' are determined if, and only if, all sets in I" have the Baire property.
Since Borel sets have the Baire property, it follows that Banach-Mazur games are
determined for Borel winning conditions. (Via a coding argument, this can also
been easily derived form Martins Theorem, saying that Gale-Stewart games with
Borel winning conditions are determined.)

Standard winning conditions used in applications (in particular the winning
conditions that can be described in S1S, i.e, MSO interpreted over paths) are
contained in very low levels of the Borel hierarchy. Hence all path games of this
form are determined.

3.31 MEMORYLESS DETERMINACY

In general, winning strategies can be very complicated. Asin the case of parity games
considered in the previous chapter, we are particularly interested in memoryless,
or positional strategies which only depend on the current position, not on the
history of the play. On a game graph G = (V, F) a memoryless strategy has the
form f : V — V* assigning to every move v a finite path from v through G.

To start, we present a simple example of a path game, that is determined, but
does not admit a memoryless strategy.

Example. Let G, be the completely connected directed graph with nodes o and 1,
and let the winning condition for Ego be the set of infinite sequences with infinitely
many initial segments that contain more ones than zeros. Clearly, Ego hasa winning
strategy for (EA)“(G, W), but not a memoryless one.

Note that this winning condition is on the IT,-level of the Borel hierarchy. In
fact, this is the lowest level with such an example.
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Proposition 3.3.2. If Ego has a winning strategy for a path game (EA)“ (G, W) with
W e X9, then he also has a memoryless winning strategy.

Proof. Let G = (V, F) be the game graph. Since W is a countable union of closed
sets, we have W = U,.,[T,] where each T, € V* is a tree. Further, let f be any
(non-positional) winning strategy for Ego. We claim that, in fact, Ego can win with
one move.

We construct this move by induction. Let x; be the initial path chosen by Ego
according to f. Let i > 1 and suppose that we have already constructed a finite
path x; ¢ U,<; Ty If x;y € T; for all finite y, then all infinite plays extending x;
remain in W, hence Ego wins with the initial move w = x;. Otherwise choose
some y; such that x;; ¢ T}, and suppose that Alter prolongs the play from x; to
x;yi. Let xi41 = f(x;y;) the result of the next move of Ego, according to his winning
strategy f.

If this process did not terminate, then it would produce an infinite play that is
consistent with f and won by Alter. Since f is a winning strategy for Ego, this is
impossible. Hence there exists some m < w such that x,,,y € T, for all y. Thus, if Ego
moves to X, in his opening move, then he wins, no matter how the play proceeds
afterwards. In particular, Ego wins with a memoryless strategy. O

While many important winning conditions are outside 39, they may well be
Boolean combinations of 39-sets. For instance, this is the case for parity conditions,
Muller conditions, and more generally, S1S-definable winning conditions. In the
classical framework of infinite games on graphs (where moves are along edges
rather than paths) it is well-known that parity games admit memoryless winning
strategies, whereas there are simple games with Muller conditions that require
strategies with some memory. We will see that for path games, the class of winning
conditions admitting positional winning strategies is much larger than for classical
graph games.

Let G = (V,F) be a game graph with a colouring A : V' — C of the nodes
with a finite number of colours. The winning condition is given by an w-regular
set W € C* which is defined by a formula in some appropriate logic over infinite
paths. In the most general case, we have S1S-formulae (i.e., MSO-formulae on
infinite paths with vocabulary {<} U {P, : ¢ € C}) but we will also consider weaker
formalisms like first-order logic or, equivalently, LTL.

MULLER AND PARITY CONDITIONS. As we mentioned before, typical ex-
amples of winning conditions for which strategies require memory on single-step
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games are Muller conditions. Such a condition is specified by a family F < 2€ of
winning sets; a play is winning if the set of colours seen infinitely often belongs
to F.

Proposition 3.3.3. All Muller path games (EA)“(G, F) and (AE)“(G, F) admit
memoryless winning strategies.

Proof. We will write w > v to denote that position w is reachable from position
v. For every position v € V, let C(v) be the set of colours reachable from v, that
is, C(v) :== {A(w) : w > v}. Obviously, C(w) € C(v) whenever w > v. In case
C(w) = C(v) for all w > v, we call v a stable position. Note that from every
u € V some stable position is reachable. Further, if v is stable, then every reachable
position w > v is stable as well.

We claim that Ego has a winning strategy in (EA)“(G, F) iff there is a stable
position v that is reachable from the initial position vy, so that C(v) € F.

To see this, let us assume that there is such a stable position v with C(v) € F.
Then, for every u > v, we choose a path p from u so that, when moving along p,
each colour of C(u) = C(v) is visited at least once, and set f(u) := p. In case vy is
not reachable from v, we assign f(v,) to some path that leads from v, to v. Now f
is a memoryless winning strategy for Ego in (EA)“(G, F), because, after the first
move, no colours other then those in C(v) are seen. Moreover, every colour in C(v)
is visited at each move of Ego, hence, infinitely often.

Conversely, if for every stable position v reachable from v, we have C(v) ¢ F,
we can construct a winning strategy for Alter in a similar way. O

Note that in a finite arena all positions of a strongly connected component that
is terminal, i.e., with no outgoing edges, are stable. Thus, the above characterisation
translates as follows: Ego wins the game iff there is a terminal component whose
set of colours belongs to . Obviously this can be established in linear time w.r.t.
the size of the arena and the description of F.

Corollary 3.3.4. On a finite arena G, path games with a Muller winning condition F
can be solved in time O(|G| - | F|).

The parity condition can be seen as a special case of the Muller condition. Recall
that, given an arena G = (V; F) with positions coloured by a priority function
Q : V - N of finite range, this condition requires that the least priority seen
infinitely often on a play is even. It turns out that path games with parity conditions



54 + 3 Path games

are positionally determined for any game prefix. (By Theorem 3.2.1 we can restrict
attention to the eight prefixes E“, A“, AE®, EA“, EAE®, AEA®, (EA)“,and (AE)“.)

Proposition 3.3.5. Every parity path game y(G, parity) is determined via a memo-
ryless winning strategy.

GENERAL SIS-WINNING CONDITIONS. In the following, we will use parity
gamesasan instrument to investigate path games with winning conditions specified
in the monadic second-order logic of paths, S1S. It is well known that every
S1S-definable class of infinite words can be recognised by a deterministic parity
automaton (see e.g. [27]). For words over the set of colours C, such an automaton
has the form A = (Q C, g, 6, Q2), where Q is a finite set of states, go the initial
state, § : Q x C - Q a deterministic transition function, and Q : Q — N a priority
function. Given an input word, a run of A starts at the first word position in state
qo; if, at the current position v the automaton is in state g, it proceeds to the next
position assuming the state §(g, A(v)). The input is accepted if the least priority of
a state occurring infinitely often in the run is even.

Via a reduction to parity games, we will first show that S1S-games admit finite-
memory (or, automatic) strategies. By refining these, we will then establish strategies
that are independent of the memory state, that is, positional.

Proposition 3.3.6. For any winning condition y € S1S and any game prefix y, the
path games y(G, y) admit finite-memory winning strategies.

Proof. Let A = (Q C, g, §, Q) be an automaton that recognises the set of words
defined by y. Given an arena G = (V, E) with starting position vy, we define the
synchronised product G x A to be the arena with positions V' x Q, edges from
(v, q) to (v, q") whenever (v, V") € E and (g, A(v)) = ¢', and designated starting
position (vo, o). We will use two sets of colours for G x A: one inherited from
G, A(v, ) == A(v), and the other one inherited from A, Q(v, q) = Q(q). When
referring to a specific colouring we write, respectively, G x A [, and G x A [q.
Between the games on G and G x A we can observe a strong relationship.

(i) For every prefix y, a play starting from position (v, qp) is winning in
y(G x ATy, v) if, and only if, it is winning in (G x AT g, parity).

(ii) The arenas G, vo and G x A[), (vo, qo) are bisimilar.

The first assertion follows from the meaning of the automaton 4, and entails a
strategical equivalence between the two games: Any winning strategy for a certain
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playerin y(GxA[ g, parity) isalso a winning strategy for that playerin y(Gx.A), v)
and vice versa. By Proposition 3.3.5, there always exists a memoryless winning
strategy for the former game and, hence, for the latter one as well.

The second statement holds because A is deterministic. It implies that every
winning strategy for a path game y(G, y) starting from position v, is also a winning
strategy for the game y(G x A, y) starting from (vo, qo ). Conversely, every winning
strategy f for the latter game induces a winning strategy f’ for the former one,
namely f'(v,s) := f((v q), s) where ¢' := 8(qo, s) is the state reached by the
automaton after processing the word s. Since f can be chosen to be positional, we
obtain a winning strategy f’ on y(G, y) that does not depend on the entire history,
but only on a finite memory, namely the set of states Q. O

Note that the finite-memory strategy f’ constructed above does not yet need to
be positional, since a position v in G has several copies (v, q) in G x A at which
the prescriptions of f may differ. In order to obtain a state-independent winning
strategy for (G, y) we will unify, for each node v € V, the prescriptions f (v, q) for
those position (v, q) which are reachable in a play of according to f.

Theorem 3.3.7. For any winning condition y € S1S, the games (EA)“(G, y) and
(AE)“(G, v) admit memoryless winning strategies.

Proof. Letusassume that Ego wins the game (EA)“ (G, y) starting from position vy.
We will base our argumentation on the game (EA)“(G x A, y), where Ego has a
memoryless winning strategy f.

For any v € V, we denote by Qs(v) the set of states g so that the position (v, )
can be reached from position (vo, qo) in a play according to f:

Qs(v) = {0(qos 5) : s prolongs f (v, qo) and leads to v}.

Let {q1, 4, ..., gs} be an enumeration of Q¢(v), in which the initial state g, is
taken first, in case it belongs to Qs (v). We construct a path associated to v along the
following steps. First, set p; := f(v, q1);for 1 <i < n,let(v/, q') be the node reached
after playing the path p; - p, - -+ - p;-y from position (v, g;) and set p; == (v, q').
Finally, let f'(v) be the concatenation of py, py, ..., pu.

Now, consider a play on (EA)“(G x A, ) in which Ego chooses the path f'(v)
at any node (v,q) € V x Q. This way, the play will start with f(qo, vo). Further,
at any position (v, q) at which Ego moves, the prescription f'(v) contains some
segment of the form (v/, ¢") - f(v', ¢'). In other words, every move of Ego has some
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Figure 3.1: Merging strategies at node v

“good part” which would also have been produced by f at the position (v/, ¢’). But
this means that the play cannot be distinguished, post-hoc, from a play where Ego
always moved according to the strategy f while all the “bad parts” were produced by
Alter. Accordingly, Ego wins every play of (EA)“(G x A, ) starting from (g, vo).

This proves that f” isa memoryless strategy for Ego in the game (EA)“(Gx A, v).
Since the values do not depend on the second component, f induces a memoryless
strategy for Ego in (EA)“(G, y).

The same construction works for the case (AE)“(G, y), if we take instead of

Qs (v) the set Q(v) := {6(qo, 5) : sis a path from v, to v}. ]

The above proof relies upon the fact that the players always take turns. If we
consider games where the players alternate only finitely many times, the situation
changes. Intuitively, a winning strategy of the solitaire player eventually forms
an infinite path which may not be broken apart into finite pieces to serve as a
memoryless strategy.

Proposition 3.3.8. For any prefix y with finitely many alternations between the
players, there are arenas G and winning conditions y € S1S so that no memoryless
strategy is winning in the game y(G, /).

Proof. Consider, for instance, the arena G, from Example 3.3.1 and a winning
condition y € S1S that requires the number of zeroes occurring in a play to be odd.
When starting from position 1, Ego obviously has winning strategies for each of
the games E“(G, ), AE“(G, v), and EAE“(G, ), but no memoryless ones.  []

Nevertheless, these games are positionally determined for one of the players.
Indeed, ifa player wins a game y(G, v) finally controlled by his opponent, he always
has a memoryless winning strategy. This is trivial when y € {E“, A“, AE“, EA“};
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for the remaining cases EAE® and AEA® a memoryless strategy can be constructed
as in the proof of Theorem 3.3.7.

Finally we consider winning conditions that do not depend on initial segments.
We say that y is a future-formula, if, for any w-word 7 and any finite words x and
y, we have x £ yif, and only if, ym = .

Theorem 3.3.9. For any winning condition y € S1S specified by a future-formula and
every prefix y, the games y(G, y) admit a memoryless winning strategies.

Proof. The core of our argument consists in showing that, given a solitaire game
E“(G, y), Ego has a uniform positional winning strategy that works for all starting
positions in his winning region.

We again consider the game E“(G x A[g, parity) (see item (i) in the proof of
Theorem 3.3.7). When playing solitaire, path games do not differ from single-step
games, and it is well known that parity games admit winning strategies that are
uniform on the entire winning region. Let f be such a strategy. We use f to define a
memoryless strategy ' for 3 (G, ) as follows. Starting from any winning position
(vo» o) in E°(G x A, parity), let (v, gn)u<wo be the unique play according to f.
There are two cases. If the play visits only finitely many different positions, we have
(vi» qi) = (v}, gj) for some i, j and set f'(vo) = vo, vi,..., Vi f'(Vi) = Vigr, ..., V5
(overwriting f'(vo) if v; = v). Otherwise, there are infinitely many positions (v;, g;)
where v; is fresh, in the sense that v; # v; for all i < j. In that case, we assign to
each fresh position v; the path f'(v;) = vj,1,..., vk which leads to the next fresh
position vy in the play. Next, for every node v where f" is still undefined but from
which a position v € dom(f”) is reachable in G, we choose a path t from v to v/
and set f'(v) := t. After this, if dom(f’) does not yet contain the entire winning
set W of Ego, we take a new starting position (v, qo) € W with vy € V' \ dom(f"),
and proceed as above, until f’ is defined everywhere.

We claim that f’ isa winning strategy. Consider any play 7’ that starts ata winning
position v for Ego in E“(G, y) and that is consistent with f’. By the construction of
f' there exists a play 77 in the arena G x A, consistent with f, such that the projection
of 7 to G differs from 7’ only by an initial segment. Now 7 is a winning for Ego
in E*(G x A, parity) and therefore also for 3“(G x A[), y) (by item (1) in the
proof of Theorem 3.3.7). By item (2), and since y is a future condition this implies
that 7" is winning for Ego in the game E“(G, v).

The case AE® follows now immediately since Ego wins AE“(G, ) if all positions
vreachable from v, are in his winning region. For the case EAE®, let g be a winning
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strategy for Ego. If g(v,) leads to a position v from which v, is again reachable,
then f’ (constructed above for E“(G, ) is a winning strategy also for EAE“(G, y).
Otherwise, we may change f’ for the initial position by f'(vo) := g(vo) to obtain a
memoryless winning strategy. The other cases follow by duality. O

3.4 DEFINABILITY

We now study the question in what logics (MSO, y-calculus, FO, CTL*,. .. ) winning
positions of path games with w-regular winning conditions can be defined. Given
any formula ¢ from a logic on infinite paths (like S1S or LTL) and a quantifier
prefix y for path games, we define the game formula y.¢, to be evaluated over game
graphs, with the meaning that

GEvy.¢ iff Player E wins the path game y(G, ¢).

Note that the operation ¢ ~ y.¢ mapsa formula over infinite paths to a formula over
graphs. Given a logic L over infinite paths, and a prefix y, let y.L := {y.¢ : ¢ € L}.
As usual we write L < L' to denote that every formula in the logic L is equivalent
to some formula from the logic L'.

Our main definability result can be stated as follows.

Theorem 3.4.1. For any game prefix y,
(i) y.S1IS< Ly
(i) y.LTL =y.FO < CTL*

Obviously, the properties expressed by formulae y.¢ are invariant under bisim-
ulation. This has two relevant consequences:

(a) We can restrict attention to trees (obtained for instance by unravelling the
given game graph from the start node).

(b) Itsufhices to show that, ontrees, y. S1S < MSO,and y. FO < MPL where MPL
is monadic path logic, i.e., monadic second-order logic where second-order
quantification is restricted to infinite paths.

The first observation follows directly from the Modal Characterisation Theo-
rem 1.2.27 of Janin and Walukiewicz that every bisimulation-invariant class of trees
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that is MSO-definable is also definable in the modal y-calculus. The second obser-
vation is a direct consequence of the Characterisation Theorem 1.2.15 of CTL* in
terms of MPL due to Hafer and Thomas [30] and Moller and Rabinovich [52].

Proposition 3.4.2. On trees, (EA)“. S1S < MSO and (AE)“. S1S < MSO.

Proof. Let x < y denote that y is reachable from x. A strategy for Player E in a
game (EA)“(T, W) onatree T'= (V, F) is a partial function f : V — V, such that
w < f(w) for every wj it is winning if every infinite path through T containing
f(€), vy, f(31): y2 f(2) ..., where f(y;) < yu for all i, satisfies W. An equivalent
description can be given in terms of the set X = f(V). A set X € V defines a
winning strategy for Player E in the game (EA)“(T, W) if

(i) (VxeX)Vy(x<y—> (Fze X)(y<2))
(ii) every path hitting X infinitely often is in W (i.e., it is winning for Player E)
(iii) X is non-empty.
Clearly these conditions are expressible in MSO. For the game (AE)“(G, W) we
only have to replace (3) by the condition that the start node vis containedin X. [

Proposition 3.4.3. Let y be a game prefix with a bounded number of alternations
between E and A. Then y. S1S < MSO and y. FO < MPL.

Proof. Every move is represented by a path quantification; by relativising the
formula ¢ that defines the winning condition to the infinite path produced by the
players, we obtain an MSO-formula expressing that Player E has a winning strategy
for the game given by y and ¢. If ¢ a first-order formula over paths, then the entire
formula remains in MPL. ]

The most interesting case concerns winning conditions defined in first-order
logic (or equivalently, LTL). In our proof, we will use a normal form for first-order
logic on infinite paths (with <) that has been established by Thomas [68]. Recall
that a first-order formula (%) is bounded if it only contains bounded quantifiers
of form (3y < x;) or (Vy < x;).

Proposition 3.4.4 ([68]). On infinite paths, every first-order formula is equivalent to
a formula of the form

\/(Hx(Vy > x)p; AVy(3z > y)Si)

1

where ¢; and 9; are bounded.
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Theorem 3.4.5. On trees, (EA)“. FO < FO and (AE)“. FO < FO.

Proof. Let y = Vi(Hx(Vy > x)p; AVy(3z > y)9,-) be a first-order formula on
infinite paths describing a winning condition. We claim that, on trees, (EA)“y is
equivalent to the first-order formula

Y= ) (W2 > p)(3ps 2 p2) V y” where
i€l

y P = (A< p)(Vy. x <y <p)gi A (Vy < p2)(3z.y <2< p3) i

Let T = (V; E) and suppose first that Alter has a winning strategy for the game
(EA)“(T, v). We prove that T' = —y*. To see this we have to define an appropriate
Skolem function g : p; = p, such that forall p; > p, andallie ]

T & -y (p, pa p3)-

Fixany p; which we can consider as the first move of Ego in the game (EA)“(T, v)
and any play P (i.e., any infinite path through T) that prolongs this move and that
is consistent with Alter’s winning strategy. Since Alter wins, we have that P E —.
Hence there exists some J € I such that

PE AVx(3y = x)-¢; A /\ Fy(Vz > y)-9;

ie] iel-J

To put it differently, there exist

¢ foreveryi € Jandeverya € Pawitnessh;(a) € PsuchthatP £ —¢;(a, h;(a)),
and

¢ foreveryie I —Jan element b; such that P = (Vz > b;)-9;(b;, 2).

Now set
p2i=max({h;(a) :a<p,iejtu{b:iel-]J}).

For any p; we now obviously have that T' = —n//,.(b) (p1, P2 P3)-

For the converse, let f : V' — V be a winning strategy for Ego in the game
(EA)“(T, v). Weclaim that T = y*. Toward a contradiction, suppose that T £ —y*.
Hence there exists a Skolem function g : V' — V assigning to each p; an appropriate
p2 2 pisuchthat T = _%(b) (p1, p2, p3) forall p; > p, and all i € I. We can view g as
a strategy for Alter in the game (EA)“(T, y). If Ego plays according to f and Alter
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plays according to g, then the resulting infinite play f'g = q142qs ... satisfies ¢
(because f is a winning strategy). Hence there exists some i € I such that

fgEIx(Vy > x)p; AVy(3z > y)I.

Let a be a witness for x so that f'g £ (Vy > a)¢;(a, y). Choose the minimal
odd k, such that a < g, and set p; := qx. Then gii1 = g(qx) = g(p1) = pa. Since
f'g E Vy(3z > y)9i(y z), we have, in particular, for every b < p, a witness h(b) > b
on f g such that f "¢ = 9;(b, h(b)). Choose p; = max{h(b) : b < p,} It follows that
fgE 1//1@ (p1, P2, p3)- Since 1//,@ is bounded, its evaluation on T is equivalent to its
evaluation on f "g. Hence we have shown that there exists p; such thatfor p, = g(p;),
given by the Skolem function g, we can find a p5 with T = ¢ (p1, pa, p3). But this
contradicts the assumption that g is an appropriate Skolem function for —y*.

We have shown that whenever Ego has a winning strategy for (EA)“(T, v) then
T E y* and whenever Alter hasa winning strategy, then T' = —y*. By contraposition
and determinacy, the reverse implications also hold. For games of form (AE)“(T, v)
the arguments are analogous. 0
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4 ENTANGLEMENT

HROUGHOUT THIS CHAPTER, we develop a new parameter for the com-
Tplexity of finite directed graphs which measures to what extent the cycles of
the graph are intertwined. This measure, called entanglement, is defined by way
of a game that is somewhat similar in spirit to the robber-and-cops games used
to describe tree width, directed tree width, and hypertree width. Nevertheless on
many classes of graphs, there are significant differences between entanglement and
the various incarnations of tree width.

We show that entanglement is intimately connected to the computational and
descriptive complexity of the modal y-calculus. One one hand, the number of fixed
point variables needed to describe a finite graph up to bisimulation is captured by
its entanglement. This will play a crucial role in the next chapter, where we prove
that the variable hierarchy of the y-calculus is strict.

In addition to this, we show that parity games of bounded entanglement can
be solved in polynomial time. Specifically, we establish that the complexity of
solving a parity game can be parametrised in terms of the minimal entanglement
of subgames induced by a winning strategy.

4.1 DEFINING BISIMULATION AND SIMULATION

TYPES OF FINITE STRUCTURES

We are concerned with formulae that describe finite Kripke structures, more pre-
cisely, the bisimulation-invariant properties at a given state. In particular, we are
interested in existential properties preserved under simulation.

Definition 4.1.1. Let X be a Kripke structure with a designated state u. A formula
v € L, describes the bisimulation type of K, u if, for any structure K', we have
Kiu evyift K, u~K', u'. Likewise, we say that y describes the simulation type
of IC, u if, for any Kripke structure ', we have XK', v’ £ v ift I, u S K/ u'.

63
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A straightforward approach to describing a finite structure up to bisimulation
consists in forming a system of simultaneous fixed points associated to the individ-
ual states. Given a finite structure I = (V, (Es)aeacr> (V) pepror)> the atomic type
of any node v € V is described by the formula

a=NANpnr N\ -p

peProp peProp

veVy véVy

Let Sbe the system defining, for everynode v € V,a proposition X, via the equation

Xy=a, A N\ ( N @X,Alal( V XW)).
acAct (vw)eE, (vww)eE,

It can be easily seen that on any Kripke structure X', the greatest solution of
this system maps each variable X, to the set {v' € V' | I, v ~ K, v }. Hence, the
bisimulation type of IC, u is described by vX, : S.

If we restrict the definitions of X, in S to their existential part,

Xy=a,A N\ ()X,
aeAct

(ww)eEq

the greatest solution of the obtained system maps every variable X, to the set
{veV"| K,v <K',V }and thusvX, : S describes the simulation type of K, u.
In general, however, this approach uses much more variables than needed. Any
acyclic finite structure can be described already in basic modal logic. Typically,
this is achieved by a formula whose syntax follows the finite tree obtained by
unravelling the structure. We may proceed similarly to describe structures with
cycles in the y-calculus. Syntactically, L,-formulae are trees with back edges; each
reference to a fixed-point variable semantically instantiates its binding definition,
which occurred previously in the syntax tree. This allows us to describe any Kripke
structure over a tree with back edges by associating greatest fixed-point variables
to each node with incoming back edges. We obtain a defining formula following
the tree edges, as in the acyclic case, additionally referencing for every back edge
the fixed-point variable associated to its target. For instance, the simulation type of
the structure from Figure 4.1 at state 0 is described by vX.({a)X A (b)(b}(a)X).
Likewise, it is possible to characterise any finite structure K by describing a tree
with back edges bisimilar to K. Such a tree can be obtained, for example, by partially
performing an unravelling of K as in Definition 1.1.10, but with the difference that,
whenever a node that occurred previously on the current path is reached, a back
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CO/—\

> 1 > 2

Figure 4.1: A simple structure with cycles, (a-transitions plain, b-transitions thicker)

° 7\

Figure 4.2: Viewing a structure as a tree with back edges

edge to this occurrence is added instead of creating a new copy. (Later on, we will
formally introduce the notion of unravelling by generalising this procedure.) For
the simulation type of the structure from Figure 4.2, we thus obtain the formula:

vX.((b)yY.((b)(a)X A{a)(a)Y) A (a)(a)X).

Notice, however, that a given structure may have several structurally different
trees with back edges as bisimilar companions, leading to syntactically different
descriptions. In particular, since we introduce variables for every note entered by
a back edge, the number of variables involved in those descriptions may differ, as
illustrated by the formulae obtained for the two bisimilar structures in Figure 4.3:

VXABYWY(BY((@)X A (@)Y AVZ{a)Z)
= ()(bYVX.((a)(BY(B)X A (a)(B)X A (@)X).

0 —=>=1

0—/>1E>2f> o—>1—>@<//
AN

Figure 4.3: Bisimilar companions with different cyclic structure
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To understand this phenomenon, we set out for an investigation of the cyclic
structure of graphs taking into account their unravelling as finite trees with back
edges. Towards this, we introduce a structural parameter for the complexity of
finite directed graphs which measures to what extent the cycles of the graph
are intertwined. The definition of this measure, called entanglement, is given in
terms game similar in spirit to the robber and cops games used to describe tree
width, directed tree width, and hypertree width [63, 39, 24]. Nevertheless, there are
significant differences between entanglement and the various incarnations of tree
width.

As we will show, the entanglement of a finite Kripke structure provides an
upper bound for the number of fixed point variables needed to describe it up to
bisimulation. In Chapter 5, we will further prove that this bound is tight, in a fairly
general sense.

4.2 THE ENTANGLEMENT GAME: CATCHING THE

THIEF

LetG = (V, E) be a finite directed graph with a designated root u. The entanglement
of G, u, denoted ent(G, u), is defined by way of a game, played by a thief against k
detectives on G according to the following rules. At the beginning, the thiefis at the
given initial position u of G and the detectives are outside the graph. In any round,
the detectives may either stay where they are, or place one of them on the current
position v of the thief. The thief, in turn, has to move to a successor w of v that is
not occupied by any detective. If no such position exists, the thief is caught and
the detectives have won. Note that the thief sees the move of the detectives before
he decides on his own move, and that he is forced to leave his current position,
regardless whether the detectives move or not.

Definition 4.2.1. The entanglement of G, u is the minimal number k € N such
that k detectives have a strategy to catch the thief on G starting from position u.

Notice that if, in a graph G, we consider two nodes u, 1’ from which all other
nodes are reachable, then ent(G, 1) = ent(G, u’"). When we deal with graphs where
all nodes are reachable from some root, we may simply write ent(G) instead of
ent(G, u), for any root u.
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The entanglement is an interesting measure on directed graphs. To deal with
undirected graphs, we view undirected edges {u, v} as pairs (u, v) and (v, u) of
directed edges. In the following a graph is always meant to be directed.

To get a feeling for this measure we collect a few simple observations concerning
the entanglement of certain familiar graphs. The proofs are simple and left to the
reader.

Proposition 4.2.2. Let G be a finite directed graph.
(i) ent(G) = 0 if, and only if, G is acyclic.
(ii) If G is the graph of a unary function, then ent(G) = 1.
(ili) If G an undirected tree, then ent(G) < 2.
(iv) If G is the fully connected directed graph with n nodes, then ent(G) = n.

Let C, denote the directed cycle with # nodes. Given two graphs G = (V, E) and
G' = (V', E') their asynchronous product is the graph G x G’ = (V x V', F) where

F={(u/,w):[(wmv) e EAu' =V ]v[u=vA@W'"v)eE ]}

Note, that T,,, := C,, x C, is the (m x n)-torus or, to put it differently, the graph
obtained from the directed (m + 1) x (n + 1)-grid by identifying the left and right
border and the upper and lower border.

Proposition 4.2.3. (i) Foreveryn, ent(T,,) = n.

(i) Forevery m # n, ent(T,,,) = min(m, n) + 1.

Proof. On T,,,a group of n detectives can catch the thief by placing themselves on
a diagonal, thus blocking every row and every column of the torus. On the other
side, it is obvious that the thief can escape against n — 1 detectives.

On T, withm < n,mdetectives are needed to block every row, and an additional
detective forces the thief to leave any column after at most n moves, so that he finally
must run into a detective. Again, it is obvious that the thief escapes if there are less
than m + 1 detectives.

0
The following proposition characterises the graphs with entanglement one.

Proposition 4.2.4. The entanglement of a directed graph is one, if and only if, the
graph is not acyclic, and in every strongly connected component, there is a node whose
removal makes the component acyclic.
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Proof. On any graph with this property, one detective catches the thief by placing
himself on the critical node in the current strongly connected component when
the thief passes there. The thief will have to return to this node or leave the current
component. Eventually she will be caught in a terminal component.

Conversely if there is a strongly connected component without such a critical
node, then the thief may always proceed from his current position towards an
unguarded cycle and thus escape forever.

O

Corollary 4.2.5. For k = 0 and k = 1, the problem whether a given graph has
entanglement k is NLOGSPACE-complete.

The definition of entanglement is reminiscent of the characterisation of tree
width via robber and cops games introduced by Seymour and Thomas in [63], and
especially of directed tree width as defined by Johnson, Robertson, Seymour, and
Thomas [39]. However, we will see that entanglement is a quite different, and for
some purposes more accurate, measure than directed tree width. This becomes
particularly apparent on trees with back edges which also play an important role in
our analysis of the variable hierarchy of the modal y-calculus. It is easy to see that
the directed tree width of any tree with back edges is one. However, we will see that
the entanglement of trees with back edges can be arbitrarily large.

For undirected graphs, the precise relationship between tree width and entan-
glement is not known.

To obtain some insight, we can use the following sufficient criterion for the
existence of a winning strategy for k detectives.

Lemma 4.2.6. Let G = (V,E) be a game graph. If for some k € N, there exists a
partial labelling i : V' — [k] under which every strongly connected subgraph C € G
contains a vertex u with a unique label in C, i.e. i(u) # i(v) for all v € C, then we
have ent(G) < k.

Proof. We interpret the labelling i as a memoryless strategy for the detectives as
follows: whenever the thief reaches a position v € dom(i) in a play on G, detective
i(v) is placed at this position v, if i(v) is defined. Otherwise no detective moves.
Towards a contradiction, suppose that although the detectives follow this strat-
egy, the thief can form an infinite path without meeting any detective. Let now C
be the set of positions seen infinitely often on this path. Clearly, C induces in G a
strongly connected subgraph. Let u € C be a node whose label i(v) is unique in C.
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According to the memoryless strategy described by i, the detective i(x) must have
been posted at u all the time since the play stabilised in C. On the other hand, every
position in C, in particular u, must have been re-visited infinitely often. But this
contradicts our assumption that the thief is not captured. O

Proposition 4.2.7. Forevery n, the undirected (n x n)-grid has entanglement at most
3n.

Proof. Consider the labelling i : [1n] x [n] — [3n] obtained by first assigning the
values 0, ..., n to the horizontal median of the grid, i.e., i(, ) := jforall j € [n].
For the two 5 x n grids obtained when removing the positions already labelled,
we proceed independently and assign the values n,..., n + 5 to their respective
medians, and so on, in step k applying the procedure to the still unlabelled domain
consisting of 2F many % x % disconnected grids. It is easy to verify that the labelling
obtained this way satisfies the criterion of Lemma 4.2.6. ]

Proposition 4.2.8. For any finite undirected graph G of tree width k, we have that
ent(G) < (k+1)-log|G]|.

Proof. By definition, every graph G = (V; E) of tree width k can be decomposed as
atree T labelled with subsets of at most k + 1 elements of V, called blocks, such that
(1) every edge {u, v} € E is included in some block and (2) for any element v € V
the set of blocks which contain v is connected.

In every subtree S of such a decomposition tree, there exists a node s, we may
call it the center of S, which balances S in the sense that the two subtreesin S \ {s}
carry almost the same number of vertices in their blocks (differences up to k are
admissible). Consider now the following memoryless detective strategy. First, all
vertices in the centre s of the decomposition tree receive indices 0, . . ., k. Then, we
repeat the process independently for the two subtrees disconnect by the removal of
s and assign to the vertices in their respective centres indices k + 1, ..., 2k + 2. The
process ends when all vertices of G are labelled. In this way, at most (k+ 1) log | V|
detective indices are assigned. Since the blocks of a tree decomposition separate the
graph, every strongly connected component of G will contain at least one unique
label. This shows that the constructed labelling indeed represents a memoryless
strategy for at most (k + 1) log | V| detectives.

O
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4.2.1 TREES WITH BACK EDGES AND FINITE
UNRAVELLINGS

Let 7 = (V, E) be a directed tree. We write < for the associated partial order on 7.
Note that < is just the reflexive, transitive closure of E.

Definition 4.2.9 (Tree with back edges). A directed graph T = (V, F) is a tree with
back edges if there is a partition F = EUB of the edges into tree edges and back edges
such that (V, E) is indeed a directed tree, and whenever (1, v) € B, then v <g u.

The following observation shows that up to the choice of the root, the decom-
position into tree edges and back edges is unique.

Lemma 4.2.10. Let T = (V, F) be a tree with back edges and v € V. Then there exists
at most one decomposition F = E U B into tree edges and back edges such that (V, E)
is a tree with root v.

Definition 4.2.11 (Feedback). Let 7 = (V, E, B) be a tree with back edges. The
feedback of a node v of T is the number of ancestors of v that are reachable by a
back-edge from a descendant of v. The feedback of 7, denoted fb(T') is the maximal
feedback of nodes on G. More formally,

tb(T) :ma‘1/x|{ue Vidw(u =g v=<gwA(wu)eB)}.

We call a back-edge (w, u), and likewise its target u, active at a node v in T, if
u=<gv=<gw.

Note that the feedback of 7" may depend on how the edges are decomposed into
tree edges and back edges, i.e., on the choice of the root. Consider, for instance the
left graph from Figure 4.3. If node 0 is taken as the root, then the feedback is 3;
instead, if we take node 1 as the root, then the feedback is 2.

Lemma 4.2.12. Let T = (V;, E, B) be a tree with back edges of feedback k. Then
there exists a partial labellingi : V ~ {0,..., k — 1} assigning to every target u of a
back-edge an index i(u) in such a way that no two nodes u, u’ that are active at the
same node v have the same index.

Proof. The values of this labelling are set while traversing the tree in breadth-first
order. Notice that every node u with an incoming back edge is active at itself. As T
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has feedback k, there can be at most k — 1 other nodes active at u. All of these are
ancestors of u, hence their index is already defined. There is at least one index which
we can assign to u so that no conflict with the other currently active nodes arises.

O

Lemma 4.2.13. The entanglement of a tree with back edges is at most its feedback:

ent(7") < fb(T).

Proof. Suppose that f{b(7") = k. By Lemma 4.2.12 there is a labelling i of the targets
of the back edges in 7 by numbers 0, ..., k — 1 assigning different values to any
two nodes u, u’ that are active at the same node v. This labelling induces the
following strategy for the k detectives: at every node v reached by the thief, send
detective number i(v) to that position or, if the value is undefined, do nothing. By
induction over the stages of the play, we can now show that this strategy maintains
the following invariant: at every node v occurring in a play on 7, all active nodes
u # v are occupied and, if the current node is itself active, a detective is on the
way. To see this, let us trace the evolution of the set Z € T of nodes occupied by a
detective. In the beginning of the play, Z is empty. A node v can be included into Z
if it is visited by the thief and active with regard to itself. At this point, our strategy
appoints detective i(v) to move to v. Since, by construction of the labelling, the
designated detective i(v) must come from a currently inactive position and, hence,
all currently active positions except v remain in Z. But if every node which becomes
active is added to Z and no active node is ever given up, the thief can never move
along a back-edge, so that after a finite number of steps he reaches a leaf of the tree
and loses. But this means that we have a winning strategy for k detectives, hence
ent(7) <k.

L

According to Definition 1.1.10, every graph G can be unravelled from any node v
to a tree 7, whose nodes are the paths in G from v. Clearly 7, is infinite unless G
is finite and no cycle in G is reachable from v. A finite unravelling of a (finite) graph
G is defined in a similar way, but rather than an infinite tree, it produces a finite
tree with back edges. To construct a finite unravelling we proceed as in the usual
unravelling process with the following modification: whenever we have a path
VoV ... vy in G with corresponding node v = vyv; ... v, in the unravelling, and a
successor w of v, that coincides with v; (for any i < n), then we may, instead of
creating the new node vw (with a tree edge from v to vw) put a back-edge from v to
its ancestor vy . .. v;. Clearly this process is nondeterministic. In this way, any finite
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graph can be unravelled, in many different ways, to a finite tree with back edges.
Observe that different finite unravellings of a graph may have different feedback
and different entanglement.

Obviously, the entanglement of a graph is bounded by the entanglement of its
finite unravellings. Indeed, a winning strategy for k detectives on a finite unravelling
of G immediately translates to a winning strategy on G.

Proposition 4.2.14. The entanglement of a graph is the minimal feedback (and the
minimal entanglement) of its finite unravellings:

ent(G, u) = min{tb(7T") : T is a finite unravelling of G, u}
= min{ent(7") : T is a finite unravelling of G, u}.

Proof. For any finite unravelling 7 of a graph G, u, we have
ent(G, u) <ent(7) < b(T).

It remains to show that for any graph G with a designated node u, there exists some
finite unravelling 7" from u with fb(7") < ent(G, u).

To prove this, we view winning strategies for the detectives as descriptions of
finite unravellings. A strategy for k detectives tells us, for any finite path nv of the
thief whether a detective should be posted at the current node v, and if so, which
one. Such a strategy can be represented by a partial function ¢ mapping finite
pathsin G to {0, ..., k — 1}. On the other hand, during the process of unravelling
a graph to a (finite) tree with back edges, we need to decide, for every successor v
of the current node, whether to create a new copy of v or to return to a previously
visited one, if any is available. To put this notion on a formal ground, we define an
unravelling function for a rooted graph G, u as a partial function p between finite
paths from u through G, mapping any path vy, . .., v,_y, v, from vy = uinits domain
to a strict prefix vo, vy, +++, vj_; such that vi_; = v,. Such a function gives rise to an
unravelling of G in the following way: we start at the root and follow finite paths
through G. Whenever the current path 7 can be prolonged by a position v and the
value of p at 7v is undefined, a fresh copy of v corresponding to 7w is created as a
successor of 71. In particular, this always happens if v was not yet visited. Otherwise,
if p(mv) is defined, then the current path 7 is bent back to its prefix p(7) which
also corresponds to a copy of v. Formally, the unravelling of G, u driven by p is the
tree with back edges 7~ defined as follows:
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o the domain of T is the smallest set T' which contains u =: v, and for each
path 7 € T, it also contains all prolongations zv in G at which p is undefined;

o the tree edge partition is
ET = { (VO) e V1 Vos oo Vel VT‘) € T x T | (Vr—l’ VT’) € Eg };

¢ forall paths 7 := vy, ..., v,_; € T where p(7wv) is defined, the back-relation
B” contains the pair (7, p(nv)) if (v,-,, v) € E9.

We are now ready to prove that every winning strategy g for the k detectives
on G, u corresponds to an unravelling function p for G, u that controls a finite
unravelling with feedback k.

Note that the strategy g gives rise to a k-tuple (go,...,gk1) of functions
mapping every initial segment 7 of a possible play according to g to a k-tuple
(go(7), ..., g-1(m) ) where each g;() is a prefix of 7 recording the state of the
play (i.e., the current path of the thief) at the last move of detective i.

Now, for every path 7 and possible prolongation by v, we check whether, after
playing 7, there is any detective posted at v. If this is the case, i.e, when, for some i,
the end node of g;(7) is v, we set p(mv) := 7;. Otherwise we leave the value of p
undefined at 7, v. It is not hard to check that, if g is a winning strategy for the
detectives, the associated unravelling is finite and has feedback k.

O

4.3 DESCRIPTIVE COMPLEXITY

In this section we start investigating the connection between the entanglement of
a Kripke structure and the L,-formulae defining it. First, observe that the feedback
of the syntax graph of a formula ¢ in L, is not greater than the number of variables
occurring in ¢.

The entanglement of a Kripke structure X = ( V, (Ea)aeacr> (V) pepror ) is the
entanglement of the underlying graph (V, E) where E = U ecacr Eo. We now show
that every Kripke structure of entanglement k can be described, up to bisimulation,
in the y-calculus using only k fixed-point variables.

Proposition 4.3.1. Let K be a finite Kripke structure with ent(KC) = k. Then, for
any node u of K, there exist formulae in L,[k] that describe the bisimulation type,
respectively the simulation type of KC, u.
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Proof. According to Proposition 4.2.14, the system K can be unravelled from any
node u to a finite tree 7 with back edges, with root u and feedback k. Clearly
T, u ~ K, u. Hence, it is sufficient to prove the proposition for 7, u. Assume that
for every action a € Acr, the transitions in 7 are partitioned into tree edges and
back edges E, U B,.

Leti: T = {0, ..., k—1}bethepartiallabellingof 7 defined in Lemma 4.2.12.On
the basis of this labelling, we construct a sequence of formulae (v, ),er over fixed-
point variables Xy, . . ., Xj_; while traversing the nodes of 7 in reverse breadth-first
order. For every action a € Acr, the transitions in 7 are partitioned into tree edges
and back edges E, U B,.

To describe a state v € T and the relationship with its successors, let

gy =a, A N ( A @ywn N (@) Xiw

acAct \ (vw)eE, (»w)eB,

/\[a]( V owyv V Xi(w)))’

(vw)€eE, (v,w)€eB,

where a, expresses the atomic type of v:

a=ANpnr N\ -p

peProrp pePror

veVy véVy

If v has an incoming back-edge, we set v, := vXj(,) . ¢,; otherwise, we let v, := ¢,.

Note that since we proceed from the leaves of 7 to the root, this process is
well-defined, and that in v, the variables Xj,y occur free, for any node z # v that is
active at v. In particular, all variables in the formula y,,, corresponding to the root u
of T, are bound.

We claim that I, v &= v, ift K, v ~ T, u. First, we show that 7, u E y,, and
hence IC, v E vy, for any K, v ~ T, u. To see this, we prove that Verifier has a
winning strategy for the associated model-checking game.

Note that, since y, has only greatest fixed points, any infinite play of the model-
checking game is won by Verifier. It thus suffices to show that from any position of
form (v, ¢,), Verifier has a strategy to make sure that the play proceeds to a next
position of form (w, ¢,,), unless Falsifier moves to position (v, &, ) and then loses
in the next move. But by the construction of the formula, it is obvious that Verifier
can play so that any position at which he moves is of one of the following three

types.
(i) (v, (a)y,,), where (v, w) € E,: then, Verifier moves to position (w, ,,).
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(i) (v (a)Xicw)), where (v, w) € B,: in this case, he moves to (w, Xi(w)).

(i) (W V(nz)er, ¥z V V(n2)eB, Xi(z)) for some edge (v, w) € E, U B,: in this case,
Verifier selects the appropriate disjunct with z = w and moves accordingly
either to (w, y,) or to (W, Xjwy)-

In all cases the play will proceed to (w, ¢,,). Hence, Falsifier can force a play to be
finite only by moving to a position (v, a,), where he loses. Otherwise the resulting
play is infinite and thus always won by Verifier.

For the converse, suppose that K, v 4 T, u. Since T is finite, the non-bisimilarity
it witnessed at a finite stage. That is, there is a basic modal formula separating C, v
from 7T, u, and Falsifier can force the model-checking game for y,, on K, vin finitely
many moves to a position of form (w, a,,) such that w and w’ have distinct atomic
types. This proves that /C, v ¥ y,.

By the same argument, we obtain a description of the simulation type of X, u
using formulae ¢, restricted to their existential part:

o= ay A\ ( N @ywn N\ (a)Xiow )

acAct \ (vw)eE, (v,w)eB,

As the entanglement of a Kripke structure regards only the underlying graph,
one can easily find examples of high entanglement that can be described with
very few variables. For instance, in a Kripke structure over a strongly connected
finite graph with no atomic propositions and only a single action a, all states are
bisimilar, and can be described by vX.({(a) X A[a]X), regardless of the entanglement
of the underlying graph. Nevertheless, in the following chapter we shall see that
we can establish a strong relationship between the notion of entanglement and the
descriptive complexity of L, under fairly general assumptions.

4.4 COMPUTATIONAL COMPLEXITY

An intriguing open problem related to the y-calculus regards the computational
complexity of its model checking problem, or equivalently, the problem to establish
the winner in a parity game.

Parity games were introduced in Section 1.3 as path-forming games played
between two players on labelled graphs G = (V, Vo, E, (Q2)i<y,). In this place, it is
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convenient to think of the priority partition as a function Q : V' — [n], mapping
a position v € V; to the priority i. Recall that these games are determined with
memoryless strategies. Any memoryless strategy o induces a subgraph G, of the
original game graph. If o is a winning strategy for a player, he wins every play on G,,.
Since these subgames are small objects and it can be checked efficiently whether a
player wins every play on a given graph, the winner of a finite parity game can be
determined in NP n co-NP. In general, the best known deterministic algorithms
to decide the winner of a parity game have running times that are polynomial with
respect to the size of the game graph, but exponential with respect to the number
of different priorities occurring in the game [40]. However, for game graphs of
bounded tree width, Obdrzalek has showed in [54], that the problem can be solved
in polynomial time with respect to the the size of the graph, independently of the
number of priorities.

In the remainder of this chapter we will show that the entanglement of a parity
game graph is a pivotal parameter for its computational complexity. To maintain
the relationship between games and algorithms conceptually close, we base our
analysis on alternating machines (for a comprehensive introduction on alternating
computation, see e.g. [4]).

4.41 ALTERNATING CYCLE DETECTION

Many algorithmic issues in graph theory are related to the problem of cycle de-
tection, typically, to determine whether a given graph contains a cycle satisfying
certain properties. When alternation comes into play, that is, when we consider
paths formed interactively, the questions become particularly interesting but often
rather complex, too. In this framework, we will study the entanglement of a graph
as a measure of how much memory is needed to determine whether a path formed
on-the-fly enters a cycle.

As a basis for later development, let us first consider a procedure for deciding
whether k detectives are sufficient to capture the thief on a given graph. The
following algorithm represents a straightforward implementation of the game as
an alternating algorithm, where the role of the thief is played by the existential
player while the detectives are controlled by the universal player.

procedure Entanglement(G, vo, k)
input graph G = (V; E), initial position v, candidate k < | V|
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I accept iff ent(G, vo) < k
v i=vo, (di)ie[k] = L5 /I current position of thief and detectives
do
existentially guess i € [k] U {pass}  / appoint detective i or pass
if i # pass then d; :=v I/ guard current node
if vE \ d = @ then accept
else universally choose v € vE;
repeat

Since this algorithm requires space only to store the current positions of the
thief and the k detectives, it runs in alternating space O((k + 1) log | V'|) which
corresponds to deterministic polynomial time.

Lemma 4.4.1. The problem of deciding, for a fixed parameter k, whether a given graph
G has ent(G) < k can be solved in polynomial time with respect to the size of G.

Notice that, if we regard the parameter k as part of the input, the algorithm
yields an ExpTIME upper bound for the complexity of deciding the entanglement
of a graph. At the present time, we do not know whether this bound is strict; even,
hardness for NP does not seem obvious. To settle the precise complexity of the
problem remains subject to further research.

4.4.2 PARITY GAMES

Similar to the thief and detective game, the dynamics of a parity game consists in
forming a path through a graph. However, while in the former game the detectives
can influence the forming process only indirectly, by obstructing ways of return,
in a parity game both players determine directly how the path is prolonged in their
turn. Besides this dynamic aspect, also the objectives of players are quite different at
a first sight. While the detectives aim at turning the play back to a guarded position,
each player of a parity game tries to achieve that the least priority seen infinitely
often on the path is of a certain parity.

The key insight which brings the two games to a common ground is the Mem-
oryless Determinacy Theorem for parity games: whichever player has a winning
strategy inagame G = (V, Vy, E, 2) from a given initial position, also has a memo-
ryless one. This means, that either player may commit, for each reachable position
v € V which he controls, to precisely one successor o(v) € vE and henceforth
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follows this commitment in every play of G without losing any chance to win. It
follows that, whenever a play returns to a previously visited position v, the winner
can be established by looking at the least priority seen since the first occurrence
of v. Therefore can view parity games on finite game graphs as path forming games
of finite duration where the objective is to reach a cycle with minimal priority of a
certain parity.

In light of this, we obtain an immediate method to determine the winner of a
parity game by simulating the players’ moves while maintaining the history of visited
positions in order to detect whether a cycle was reached and to retrace the occurring
priorities. To store the full history, an implementation of this method requires
space O(|V|log|V]) in the worst case; since the procedure uses alternation to
simulate the single game moves, this situates us in Aspace(O(|V|log |V])), or
Drime(| V]OUVD),

What makes this approach highly impractical is its extensive representation of
the play’s history. In fact, the power of alternation is limited to the formation of
the path, while the history is surveyed in a deterministic way. We can significantly
improve this by interleaving thief and detective games with parity games in such a
way that the formation of cycles in history is surveyed interactively.

4.43 INTERLEAVING DIFFERENT GAMES

Intuitively, we may think of a parity game as an affair between three agents, Player o
and 1, and a referee who wishes to establish which of the two indeed wins the
game. In our approach, the referee memorises the entire history of the game. But
as we have seen, the occurrence of a cycle in a path-forming game on a graph G
can already be detected by storing at most ent(G) many positions. Hence, if we
could provide the referee with the power of sufficiently many detectives, this would
reduce the space requirement. The crux of the matter is how to fit such a three-player
setting into the two-player model of alternating computation.

Our proposal to overcome this difficulty is to let one of the players act as a
referee who challenges the other player in the parity game, but in the same time
controls the detectives in an overlying thief and detective game which regards the
interactively formed path as if it would be formed by the thief alone.

Formally, thisleadstoanewgame. Foragamegraph G = (V, V,, E, 2),aPlayeri €
{0, 1}, and a number k, the superdetective game G[i, k] is played between the
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Superdetective controlling k detectives and the positions of V;, and the Challenger
in hold of the positions in V;_;. Starting from an initial position position vy, in any
move the Superdetective may place one of the k detectives on the current position v,
or leave them in place. If the current position v belongs to V;_;, Challenger has to
move to some position w € vE, otherwise the Superdetective moves. (Ifa player gets
stuck, he immediately loses.) The play ends if a position w occupied by a detective
is reached and the Superdetective wins if, and only if, the least priority seen since
the detective was placed there is even, for i = 0 respectively odd, for i = 1.

The following lemma states that parity games can be reduced to Superdetective
games with an appropriate number of detectives.

Lemma 4.4.2. (i) If Player i has a winning strategy for the parity game G, then
the Superdetective wins the superdetective game G[i, k] with k = ent(G).

(ii) If for some k € N, the Superdetective wins the game G|i, k), then Player i has a
winning strategy for the parity game G.

Proof. Let 0 be a memoryless winning strategy of Player i for the game G and let
G, be the subgame of G induced by this strategy. Then, the least priority seen on
any cycle of G, is favourable to Player i. This remains true for any cycle formed in
G[i, k] where Player i acting as a Superdetective follows the same strategy 0. On the
other hand, obviously ent(G,) < ent(G) = k, which means that the Superdetective
also has a strategy to place the k detectives so that every path through G, will finally
meet a guarded position v and hence form a cycle, witnessing that he wins.

For the converse, assume otherwise that Player 1 — 7 has a memoryless winning
strategy 7 in the parity game G. But then he could follow this strategy when acting as
a Challenger in the G[i, k], so that the play would actually remain in G, [, k] where
no cycle is favourable to Player i. Hence, regardless of the number k of detectives,
the Superdetective i cannot win, in contradiction to our assumption.

O

Note that computing the winner of a superdetective game G[i, k] requires al-
ternating space (2k + 1) log | V|. Indeed, one just plays the game recording the
current position of the thief and the current position of each detective, along with
the minimal priority that has been seen since he was last posted.

procedure Superdetective(G, vy, j, k)
input parity game G = (V, Vo, E, Q), initial position vy € V, Player j, k detectives
Il accept ift Superdetective has a winning strategy in G[j, k] with k detectives
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Vi= v /I current position
(di)iexy =1 /l positions guarded by detectives
(hi)iefxy =1 /l most significant priorities
repeat

ifj = 0 then

existentially guess i € [k] U {pass} / appoint detective i or pass
else

universally choose i € [k] U {pass} / other player’s detective
if i # pass then

di=v;h; = Q) /l guard current node
v := Move(G, v) // simulate a game step
forall i € [k] do / update history
h; == min(h;, Q(v))
repeat
until (v = d; for some i) /I cycle detected

if (j = 0 and h; is even) or (j = 1 and h; is odd) then accept
else reject

We are now ready to prove that parity games of bounded entanglement can be
solved in polynomial time. In fact we establish a more specific result, taking into
account the minimal entanglement of subgames induced by a winning strategy.

Theorem 4.4.3. The winner of a parity game G = (V, Vo, E, Q) can be determined
in AsPACE(O(klog | V|)), where k is the minimum entanglement of a subgame G,
induced by a memoryless winning strategy o in G.

Proof. We first describe the procedure informally, in the form of a game. Given
a parity game G = (V; V, E, Q) and an initial position vy, each player i selects a
number k; and claims that he has a winning strategy from v, such thatent(G,) < k;.
The smaller of the two numbers ko, k; is then chosen to verify that Superdetective
wins the game G[i, k;]. If this is the case the procedure accepts the claim of Player i,
otherwise Player (1 — 1) is declared the winner.

Here is a more formal description of the procedure:

procedure SolveParity(G, v)

input parity game G = (V; Vo, E, ), initial position v e V
I accept iff Player o wins the game

existentially guess ko < | V|

universally choose k; < | V|
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if kg < ky then
if Superdetective(G, v, 0, ko) then accept
else reject

else
if Superdetective(G, v, 1, k; ) then reject
else accept

endif

We claim that Player 0 has a winning strategy in a parity game G, v if, and only
if, the alternating procedure ParitySolve(G, v) accepts.

To see this, assume that Player 0 has a memoryless winning strategy o from v.
Then, the guess ko := ent(G,) leads to acceptance. Indeed, for k; > ko, Player o wins
the superdetective game G0, ko] by using the strategy o as a parity player together
with the detective strategy for G,. On the other hand, for k; < ko, the procedure
accepts as well, since Player 1 cannot win the superdetective game G[1, k; ] without
having a winning strategy for the parity game.

The converse follows by symmetric arguments exchanging the roles of the two

players. ]

Corollary 4.4.4. Parity games of bounded entanglement can be solved in polynomial
time.



*

4 Entanglement



5 THE y-CALCULUS VARIABLE
HIERARCHY

HE {-CALCULUS extends basic modal logic by adding monadic variables

bound by least and greatest fixed points of definable operators. As we have
seen, this provides a notion of recursion which invests the logic with very high
expressive power.

On the other hand, the variables also import a considerable conceptual complex-
ity. The alternation depth of L,-formulae is a well-studied measure of conceptual
complexity. Since the hierarchy induced by this measure is semantically strict, this
notion of syntactic complexity of a formula is reflected in its semantic complexity.

Interestingly, most of the formalisms commonly used for process description
allow translations into low levels of the L, alternation hierarchy. On its first level this
hierarchy already captures, for instance, PDL as well as CTL, while their expressive
extensions APDL and CTL* do not exceed the second level. Still, the low levels of
this hierarchy do not exhaust the significant properties expressible in L,. As stated
in Theorem 1.3.11, e.g., the formula W" stating that the first player has a winning
strategy in parity games of index n.

By reusing fixed point variables several times it is possible to write many L,-
formulae, even with highly nested fixed-point definitions, using only very few
variables. This is actually the case for GL which subsumes the aforementioned
formalisms, APDL and CTL*, but also contains formulae describing the winning
position of a parity game.

In this context, the question arises, whether a higher number of variables is
indeed necessary, or, in other words, whether the number of variables of a formula
is reflected as a measure of its semantic complexity.

In the previous chapter we have analysed the descriptive complexity of formulae
defining the simulation types of finite Kripke structures showing that the number of
variables needed to describe such structures up to bisimulation, or up to simulation,
is captured by their entanglement. In the present chapter we will prove that the
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variable hierarchy of the y-calculus is indeed strict, by first showing that this
number of variables is indeed required, if we allow only existential modalities.
Then, we prove an existential preservation theorem for the family of L,-formulae
over at most k variables that define simulation types of finite strongly connected
structures. Since hard formulae for the level k of the existential hierarchy belong to
this family, this leads us to the strictness of the hierarchy in the general case.

5.1 THE EXISTENTIAL HIERARCHY

As we have seen in the previous section, the entanglement of a graph provides an
upper bound for the number of variables required to describe any Kripke structure
over this graph. However, the descriptive complexity does not depend only on the
underlying graph, butalso on the labelling of transitions and states with actions and
atomic propositions. For instance, the simulation type of any strongly connected
Kripke structure over a language with only one action and no atomic properties is
described by the formula-vX.(a) X, regardless of the entanglement of the underlying
graph.

In the sequel of this article we show that, with a particular labelling of edges,
the structural complexity of a graph, in terms of entanglement, is reflected in the
descriptive complexity of its simulation type measured by the number of variables
needed to describe it in the y-calculus.

Definition 5.1.1. A Kripke structure K is deterministic if every state v € V has at
most one a-successor, for all actions a € Acrs; it is co-deterministic if every state
has at most one a-predecessor, for all actions a. Further, we say that a structure
is singular with respect to simulation, if there are no two states v # w such that
IC,v < K, w. A finite structure rigid, if it is deterministic, co-deterministic, and
singular with respect to simulation.

Lemma 5.1.2. Every connected finite graph can be labelled in such a way that the
resulting Kripke structure is rigid.

Proof. Given a finite graph G = (V; E), the Kripke structure which assigns to
every edge (v, w) € Ea distinct action label is obviously rigid. Formally, this yields
a structure over a set of actions Act := E, with state domain V' and singleton
transition relations E,,, := {(v, w)}, for all (v, w) € E. O
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According to Proposition 4.3.1, the simulation type of any structure with en-
tanglement k can be described by an existential formula in L, [k]. In this section
we prove that, if the structure is rigid, no existential formula from L, [k — 1] can
describe its simulation type. This establishes that the variable hierarchy of is strict
for the existential fragment of L.

For a simple example of a rigid Kripke structure with entanglement k, consider
the complete graph over k vertices labelled as in the previous lemma.

Our argument pivots around the model-checking game G(KC, ) associated to
a Kripke structure X, u and a formula y defining its simulation type. Obviously,
Verifier has a winning strategy in this game. In general, we may understand the
subgame G, induced by a (memoryless) winning strategy o of Verifier in G(IC, y)
as a proof for K, u = y. We will argue that, on the one hand, if K is rigid, the
entanglement of such a proof cannot be lower than the entanglement of X itself.
On the other hand, we will show that this proof is already contained in the syntax
graph of y, and hence its entanglement is at least as high as the number of variables
used in y.

5.1.1 DEFINITE FORMULAE

The rigidity of a structure ensures that the simulation types of its states do not
overlap. This allows us to narrow the gap between the semantics and the syntax of
formulae ¥ describing the simulation type of a rigid structure /C, u. Concretely, we
show that the proof of K, u v, i.e., the subgame induced by a winning strategy in
the associated model-checking game, can be embedded into the syntax graph of .

Definition 5.1.3. We call a formula y definite on a Kripke structure K, if for every
subformula 7 € cl(y), there exists precisely one state v such that /C, v = 7.

The notion is meaningful only over structures without propositional symbols.
Notice that, it we consider rigid structures under this proviso, the formulae con-
structed in Proposition 4.3.1 as a description of their simulation type are indeed
definite.

Lemmas.1.4. Let K be a rigid Kripke structure with a designated state u. Then, every
existential formula v € L, defining the simulation type of K, u can be transformed,
without increasing the number of variables, into an equivalent existential formula y'
that is definite on KC.
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Proof. First, we dispose of the subformulae of y that do not hold at any node of K.
Let ¢/ be the formula obtained from y by replacing every such subformula with L.
Then, v is still true on K and, being existential, on all models of y. On the other
hand, y' obviously implies y so that we have y' = y.

Further, we successively eliminate all subformulae true at more than one node.
Assume that for some # € cl(y) we have K, v; = yand K, v, =  with v; # v, and
let y' be the formula obtained from y by replacing # with T.

Clearly, y implies y. To prove the converse, we will construct for every tree an
extension that satisfies 7 at all nodes while preserving the validity of y. Notice that
every extension of a tree 7 is similar to 7. Consequently, existential formulae are
preserved under extensions.

Let 7 be a tree with edges labelled by Act. We establish a matching correspon-
dence between the nodes of 7 and /X in the following way. For any node x € T,
consider the sequence of actions on the path from the root to x. In /C, there is at
most one node w reachable from the designated root u via this sequence of actions,
since the structure is deterministic. We set matchy(x) = w, if the sequence is
indeed executable in /C, otherwise we leave the value undefined. Now let 7' be the
extension of 7 obtained by adding at every node x the unravelling 7. of K from
the node w := v; if matchy(x) # v; and w := v, otherwise.

Claim. For any tree T, the constructed extension T has the following properties:
(1) FT ey then T .
(i) IfT" e ythenT E y.

(i) Every subtree of 7" rooted at a node x € T extends an unravelling 7, of
IC, w, where 7 holds. Since 7 is existential and thus preserved under extensions, it
follows that also 7, the subtree of 7" rooted at x, is a model of #. Moreover, if g,,
is a winning strategy for Verifier in G(TX, 1), it will also be a winning strategy in
G(T ).

By means of this, we can extend any winning strategy o of Verifier in G(7T, y")
to a strategy in G(7, y) as follows. At every position (x, ¢) wherex € Tand ¢ # 1
choose according to 0. As Falsifier cannot move in the tree, the play will stay on
nodes of 7 unless a position (x, #7) is reached. When this occurs, Verifier drops
o and proceeds with the strategy o,, which is winning in G(7,%, 1) and thus in
G(T/, n). In that way, every play of G(T”, v) is won by Verifier which means that
T Ey.
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(ii) Assuming that 7" = y, let Z be a simulation relation witnessing that 1, u <
T'. Then, the relation

7' ={(vx)€Z| xeTandv=matchy(x)}

is a simulation from /C, u to 7.

Obviously, Z' relates u with the root of 7. Since Z is a simulation, for any
(vx) € Z', a € Acr, and every a-successor u of v there exists an a-successor y
of x such that (1, y) € Z. Clearly, matchy/(y) = u, so we just need to show that
y € T. Let us assume, towards a contradiction, that y is a new node, y € T" \ T.
Then, in K there is a node w # matchr(x) with a-successor u/, so that y ~ u/'.
On the other hand, (1, y) € Z, hence u < y. As K is singular with respect to
simulation, this means that u and u" are actually the same node. But then this node
would have two different a-predecessors, w and v, in contradiction to the fact that
IC is co-deterministic. Hence, Z’ witnesses the simulation /' < 7. This proves the
second part of our claim and we can conclude that y' = y.

Notice that whenever the subformulae (a) T and 5 v T occur, they are also
removed as they hold at more than one node; if the atom T appears as a conjunct
we can safely drop it.

With this rewriting, y will eventually consist only of subformulae satisfied at
precisely one node of K. L]

In particular, definiteness implies that every fixed-point definition holds at
precisely one state. Accordingly, for any winning strategy ¢ in this game, the
projection (v, ¢) + ¢ induces an embedding of G, (K, v) into the syntax graph S,,.

Corollary 5.1.5. Let y be an existential formula that is definite on a rigid structure
K and assume K, u & y. Then, for any winning strategy o for Verifier in the game
G (K, v) the induced subgame G,(KC, v), is embeddable into the syntax graph of y.

5.1.2 CAST STRUCTURE

Up to now, we have seen that, in our specific setting, any formula describing a
structure contains a proof of its validity on that structure. In the next step we argue
that, moreover, this proof essentially contains (a bisimilar copy of) the structure in
question.
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Observe that a model-checking game does not necessarily explore the entire
structure on which it is played. For example, if we are interested in the property
uX.({(a)X v (b) T) expressing that a b-transition is reachable in the model, a winning
strategy for Verifier would just display an a-path ending with a b-transition. To
capture the part of a model explored by a winning strategy, we introduce the notion
of structure cast by a strategy.

Definition 5.1.6. Given a Kripke structure K, and an existential L,-formula y
such that IC, u E y, let 0 be a winning strategy for Verifier in the model-checking
game G (K, v), inducing the subgame G,. The cast of o, is the Kripke structure
G, = (V, (E,)aeacr) Over a subset V of vertices from G, consisting of the root
(u, ¥) and the target (w, 1) of every possible move (v, {(a)n) — (w ) in G,.
Between two of these vertices (v, ¢), (w; #7) we allow an E,-transition if in G, there
is a path from (v ¢) to a predecessor (v (a)#) of (w, 17) which avoids V.

Model-checking games are constructed out of a Kripke structure and a formula.
By casting a winning strategy we perform a reverse operation, where we set out
from a specific game, or a proof, and extract the relevant structural component. In
line with this intuition, the following lemma points out that every model-checking
game for an existential formula contains a model of the formula.

Lemmas5.1.7. Let y be an existential L,-formula and let K, u be a model of y. Then,
for any winning strategy o of Verifier in the model-checking game G := G(IC, y), the
cast of G, at state (u, y) is also a model of y.

Proof. 'We show that Verifier wins the model-checking game G’ := G(G,, v) for y
on the cast structure starting from position ((u, v), v). Towards this, we perform
a generic play of G’ while replicating, on the side, a play of G according to the
Verifier strategy o. Thereby we transfer every move of Falsifier from G’ to G and,
conversely, every move of Verifier back to G’ so that the parallel plays maintain the
following invariant in each turn: whenever the current position in G’ is ((v, @), f8),
the current position in G is (v, f3).

This is done in the following way. At the starting position, the proposed invari-
ant obviously holds. If Falsifier moves in the main game G’ from some position
((v a), g1 A1) to ((v, @), 17;), we move in the secondary game G from the current
position (v, 11 A 172) to (v, ;). If Verifier is in turn to move in the main game G’ at
a disjunction, e.g., ((v, a), 111 V 12), the current position in the secondary game G
is (v, 111 V 172). In this case we first execute the move in G to (v, ;) according to ¢
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and then choose ((, ), #;) in G'. Similarly, when the current position in the main
gameis ((v, ), (a)f), and, hence, (v, (a)8) in the secondary game, we first perform
in G the move (w, f) indicated by ¢ and then choose ((w, §), f) in G".

It can be easily checked that the choices transferred between the games are always
available. Particularly, in the case of modal moves, this follows from the definition of
the cast structure. Hence, Verifier can always move in G’ if he can move in G. Since
o is a winning strategy for the latter game, a play can end only at positions (v, T) in
which case the play of G’ also reaches a terminal position ((w; 8), T), where Verifier
wins. Otherwise, both plays are infinite and the sequences of formulae they visit are
the same; accordingly, thanks to his winning strategy in G, Verifier simultaneously

wins G'. ]

For the case of formulae describing the simulation type of a Kripke structure, the
cast of a winning strategy must, hence, be similar to the structure itself. Moreover,
for structures that are singular with respect to simulation, this relation has natural
witnesses.

Lemmas.1.8. Givena S-singular structure IC, u, let y € L, be an existential formula
describing its simulation type, and let o be a winning strategy for Verifier in G (K, v).
Then, there exists a simulation from K, u to Go, (u, ) such that, Z € { (v, (v ¢) ) |
K.vEg}

Proof. According to Lemma 5.1.7, we have Gy, (4, ) & y. As y describes the
simulation type of &C, u, this implies that I, u < Gy, (u, ¥). Among the simulations
witnessing this, let Z be minimal (with respect to set inclusion). Then, for any pair
(v (W @) € Z, we have K,v < G,, (W, ¢). On the other hand, we also have
G, (W, 9) < K, w, since G, is a model checking game and the modal moves follow
the transitions of £C. Thus, we obtain &, v < K, w and, by our assumption that
is <-singular, it follows that v = w. ]

It is not hard to show that a relation Z of the above kind is, in fact, a bisimulation
between K’ and the structure induced by its range in G,.

5.1.3 THE SEPARATION THEOREM

As alast step towards proving that simulation-type descriptions are hard formulae
for the existential variable hierarchy, we show that the entanglement of the structure
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is bounded by the number of variables of any existential formula describing its
simulation type.

Lemma 5.1.9. Let K be a S-singular structure with a distinguished node u. If there
exists an existential formulay € L,[k] that is definite on KC and describes the simulation

type of K, u, then ent(K) < k.

Proof. According to Lemma 1.3.4, we may assume that y is guarded. Let y, ... y,
be the fixed-point subformulae in vy, ie., y; = AY.9; with A € {y,v} and Y €
{Xo, ..., Xi-1},and let cl(y;) be the closure of y; in y. Recall that by the definiteness
of y, there is a unique node v; with IC, v; = cl(y;). Recall further that y; depends on
V;, if in the syntax graph S, (which is a tree with back edges), the node v; is active
at v, i.e., there is a descendent Y of y; with a back-edge to ;.

Consider a winningstrategy o for Verifier in the model checking game associated
to /C, u  y. By Corollary 5.1.5, the induced subgame G, is embedded in the syntax
graph S, via the projection (v, ¢) ~ ¢. On the other hand, its cast simulates £, u.
We fix a simulation Z from &, u to G, (1, ¥) as in Lemma 5.1.8.

On the basis of this, we define a strategy for k detectives in the entanglement
game on K starting at u. To each state v of K reached by the thief in a play against
this strategy, we will associate a position (v, ¢) in G, such that (v, (1; ¢)) € Z.

The initial state u is associated to position (u, ¥). Suppose that, in a round of
the play, the thief sits at some position v in K which is associated to (v ¢) in G,.
Each free variable X; in ¢ is defined at a fixed-point subformula y;, € {y1,..., ¥}
and, by definiteness, there exists precisely one state v,,; in K where the closure
cl(y;,) holds. The strategy of the detectives is to move those detectives j < k to v
for which v;, = v. If now the thief, in turn, moves from v to some successor w not
occupied by any detective, we associate with w a successor (w, 9) of (v, ¢) in G,
such that (w, (w; 9)) € Z, and proceed to the next round. Lemma 5.1.8 guarantees
that a suitable successor (w, 9) always exists in G,. Accordingly, in G, there is a
path from (v, ¢) leading to (w, 9) via positions of the form (v, ¢"). This establishes
a correspondence between plays of the entanglement game on K, u and paths in
G, and furthermore, their projections to paths in S,,.

We shall prove that the strategy defined in this way is winning for the detectives.
Towards a contradiction, assume that the thief can form an infinite path 7 from
u through X when playing against this strategy. We look at the associated path 7’
through G, and at its projection 7"’ to a path through the syntax graph S,,. Since
m, and hence 7" is infinite, some fixed-point definition y; must be regenerated



5.1 The existential hierarchy —+ 91

infinitely often on 7”. We want to show that this cannot happen.

Indeed, suppose that at node (v, ¢) the fixed-point formula y; is regenerated.
This means that there is a variable X; such that y;, = y; and v;, = v. Since v is
guarded, X; must be free in ¢. By definiteness, any next regeneration of y; must also
take place at v. But, at the moment when the thief moves from v to w, detective j is
at v and stays there until, on the corresponding path 7" a new fixed point formula
e with the same variable X; is opened, and a node v # v is reached where cl(y,)
holds. Before this has happened, the thief cannot move back to v.

Thus, in order to have a further regeneration of y; the path 7" must go through
the following steps:

1. From y; the path proceeds to a fixed point definition v, = AY.¢,, with a
different variable Y # X; so that y,, depends on v; (i.e., y; is active at y,,);

2. from there the path must reach a definition y, = AXjg,, so that in the
corresponding path on /C, the detective j is lured away from v;

3. then the path must regenerate Y to y,,, and
4. proceed from v, to X; where it can finally regenerate v;.

Hence, we have seen that between any two regenerations of ¥; on 7" we must
have a regeneration of a formula v, that depends on y;. As a consequence, all fixed
point formulae are regenerated only finitely often on 7”. O

At this point we are ready to state our separation theorem.

Theorem 5.1.10. Let G be a finite directed graph of entanglement k such that every
node of G is reachable from u. Then, there exists a Kripke structure K over G so that
the simulation type of K, u can be described by an existential formula in L,[k], but
not by any existential formula in L[k — 1].

Proof. According to Lemma 5.1.2, it is possible to assign transition labels to the
edges of G so that the resulting Kripke structure X is rigid; no atomic atomic
predicates are set.

Since ent(K) = k, an existential formula y € L,[k] describing the simulation
type of K, u can be constructed, according to Proposition 4.3.1.

Towards a contradiction, assume that there is an existential formula y € L,[k—1]
defining the simulation type of X, u. According to Lemma 5.1.4, we can assume
without loss of generality, that v is definite. But then, by Lemma 5.1.9 it would
follow that ent(K) < k- 1. O
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As a conclusion, this shows that every existential formula describing the simula-
tion type of a k-entangled rigid structure requires at least k variables. However, this
does not yet exclude the existence of equivalent L,-formula over fewer variables
but with universal modalities.

5.2 AN EXISTENTIAL PRESERVATION THEOREM

The key argument in our proof of the hierarchy theorem consists in the following
preservation property, which implies that the formulae we used to separate the
hierarchiclevels of the existential fragment also witness the strictness of the variable
hierarchy in the case of the full y-calculus.

Theorem 5.2.1. Let KC be a finite Kripke structure over a strongly connected graph.
Then every formula v € L,[k] that defines the simulation type of a state IC, u is
equivalent to an existential formula y' € L,[k].

To show that universal modalities can be safely eliminated from any formula y
of the considered kind, we take a detour and first show that they can be eliminated
from the formula expressing that some node at which y holds is reachable. To refer
to this formula, we use a shorthand borrowed from temporal logics:

Fy=uXyv \ (@)X
acAct
Lemma 5.2.5 in the second part of this section then states that from any formula
equivalent to Fy, an existential formula equivalent to y can be recovered without
increasing the number of variables.

Lemmas.2.2. Let K be a finite strongly connected structure with a distinguished state
u and let y* be a formula defining the simulation type of KC, u. Then, every formula
y = FyX can be transformed, without increasing the number of variables, into an
equivalent formula y" with the following properties:

(i) no universal modalities occur in y';
(i) y'is of shape Fy, where y contains no y-operators;
(iii) every formula ¢ € cl(y") holds at some state of K.

Proof. (i) Given an L,-formula y, we say that a subformula {a)¢ starting with a
diamond is vital, if cl,(¢) implies Fy™. Dually, a subformula [a]¢ starting with a
box is vital, if the negation —cl, (¢) implies Fy/*.
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ELIMINATING VITAL BOXES. Fory = FyX, let y’ be the formula obtained by
replacing any occurrence of a vital box-subformula [a]¢ with T. Then, y obviously
implies x’. For the converse, let us consider a tree model 7 of y'. If, at all its
nodes, 7, v E [a]cl,(¢) holds, then T & y. Else, there exists a node v € T with
T, v & {(a)~cl,(¢). But, since [a]¢ is vital, this means that 7", v and hence 7 verifies
Fy. Either way, we obtain 7  y and hence y = .

ELIMINATING NON-VITAL MODALITIES. Byiterating the above elimination
step a finite number of times, we obtain a formula y = FyX without vital box-
subformulae. Let now x’ be the formula obtained from y by substituting simul-
taneously all remaining (i.e., non-vital) box-subformulae with 1 and all non-vital
diamond-subformulae with T.

We will first show that the obtained formula y’ implies y. Let 7 be a tree model
of " and, for every non-vital subformula (a)¢ of y, let 7, be a tree model of
cl,(¢) A —=FyX. Using the latter models, we construct an extension 7" of T by
introducing for every node v € T and every non-vital subformula (a)¢ of x, a fresh
copy of 7, to which we connect v via an a-edge.

Since ' contains no box-subformulae, it is preserved under extensions. Conse-
quently 7" & x" and Verifier has a winning strategy o in the model-checking game
G(T',x"). Also, for every tree 7T, Verifier has a winning strategy o, in the game
G(Ty cly(9)). We can combine these strategies, to obtain a winning strategy for
Verifier in the game G(77, x) as follows. Move according to ¢ unless a position
with a non-vital subformula of y is met; up to that point, the play cannot leave T,
otherwise, since Fy/X is falsified at any node w € T’ \ T, any vital subformula {a)¢
would fail at w. Moreover, no subformula [a]¢ can occur, as it would correspond
to a L position in G(T7, y'). Consequently, o leads the play to a position (v, (a)¢)
where v € T and (a)¢ is non-vital. At that event, let the Verifier choose the a-
successor at the root of 7, and proceed with his memoryless winning strategy o,
for the remaining game. In this way, Verifier finally wins any play of G(77, x).
Notice that, for all nodes w € T’ \ T, we have 77, w i FyX, and hence T verifies
Fy® (or, equivalently, y) if, and only if, 7~ does. Hence, we have the following chain
of implications, showing that y implies y:

TeyY = TeyY = Ty = Tey

For the converse, consider a tree model 7™ E y and, for every (non-vital) subfor-
mula [a]g of y, a tree model T_¢ = —=cl,(¢) A =Fy*. As in the previous step, we
construct an extension 7" of 7 by connecting every node v € T via an a-edge to
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a fresh copy of T_¢, for every subformula [a]g of y. Since y = Fy* is preserved
under extensions, 7 is still a model of y. Let 0 be a winning strategy for Verifier in
the model-checking game G(T”, y). We will show that ¢ is also a winning strategy
for Verifier in G(T, x').

Notice that, in G(77, y) Falsifier has a winning strategy from every position
(v, [a]g) with v € T, by moving to the a-successor of v at the root of 7_¢. Conse-
quently, any play according to Verifier’s strategy o will avoid such positions. Besides
this, at every position (v, (a)¢) where v € T and (a)¢ is a vital subformula of y, the
strategy o will appoint a successor position (w, ¢) with w € T, otherwise, since any
a-successor w' € T' \ T falsifies Fy*, ¢ would fail too. Summarising, every play
of G(T", x) according to o, will avoid universal modalities and meet only nodes
v € T, unless a position a non-vital subformula (a)¢ occurs. But under these condi-
tions, we can replicate every play of G(7”, y) according to o asa play of G(T, '): in
case a non-vital subformula (a)¢ of y is met in the former game, Verifier immedi-
ately wins G(T, '), since the non-vital diamond-subformulae have been replaced
by T. Otherwise, the outcome of the play is the same for both games and Verifier
wins as well.

This concludes the proof that y = y'.

(ii) By the above result, we can assume without loss that y = Fy® contains no box-
modalities. For n being the number of states in /C, let y be the formula obtained by
replacing every occurrence of a least fixed-point subformula pX.¢ in y by its n-th
approximant ¢”. Then, by definition of the y-operator, ¥ implies y and thus Fy
implies Fy, which is equivalent to y. Conversely, since K, u E y and K has # states,
we have KC, u I y. As y is preserved under simulation, this means that y* implies
y. Accordingly FyX, which is equivalent to y, implies Fy. Hence, y = Fy.

Note that the transformation of y into Fy does not increase the number of
variables, as we can pick any of the variables already occurring in y to expand the
F-notation.

(iii) By the previous argument, we can assume that y is of shape Fy where ¢ contains
no boxes, i.e, y = uX.y v V,(a)X. Clearly, y itself holds at every node of K and
therefore, for every transition a occurring in /C, there is a node v € V where (a)y;,
and thus cl,({a)X), holds. Hence, any subformula ¢ of y, with K, v i cl, (¢) for all
v, must actually be a subformula of y. Let ¢’ be the formula obtained by replacing
every such occurrence ¢ in y with 1. On the one hand, ¢’ then obviously implies .
On the other hand, as K, u £ Fy, there must exists a node v of K where y holds.
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At that node we also have IC, v = ¥’ and, because y is preserved under simulation,
this means that ¥ implies y’. But then Fy implies Fy’ and, by Fy = FyX, it
follows that Fy implies Fy/'. L]

RADICAL FORMULAE AND CRISP MODELS. Before we proceed towards
proving the Preservation Theorem, we will introduce some notions which will be
useful in the proof of Lemma 5.2.5

Given a formula y € L, we call a subformula ¢ radical, if it appears directly
under a modal quantifier in y. We refer to the closure of radicals in y by

clo(y) = {y} u{g e d(y) [{a)g € c(y) or
[a]e € cl(y) for somea € AcT }.

Radical formulae are the first to be met when a play of the model-checking
game reaches a new node of the Kripke structure. For this reason, we need to care
for game positions carrying radical formulae when merging strategies of different
games.

Let K, u be a model of y € L, and ¢ a winning strategy for Verifier in G(IC, y).
For any node v € V, we define the strategic type of v in K, u under o as follows:

tpf(v) ={pedy(y) | position (v, ) is reachable in G, (I, y) }.

Inarbitrary games, the type ofanode can be rather complex. However, for existential
formulae, Verifier has full control over the moves in the Kripke structure. In the
ideal case, he can foresee for every node, a single radical formula to be proved there.

Given a Kripke structure K, u and a formula y, we say that a Verifier strategy
o in the model-checking game G(KC, ) is crisp, if the strategic type tpX (v) of any
v € V consists of not more than one radical. Accordingly, we call a model K, u
of y crisp (under o), if Verifier has a crisp winning strategy o in the associated
model-checking game.

The subsequent lemmas, that can be easily proved, provide us with sharp tools
for manipulating models of existential formulae.

Lemmas.2.3. Given a structure K, u every existential formulay € L, with K, u = v
also has a tree model T bisimilar to KC, u which is crisp. Moreover, if K is finitely
branching, then T can be chosen so as well.

Lemmas.2.4. Let T be a crisp tree model of a formula y € L, under a strategy o and
let x € T be a node with strategic type tp? (x) = {¢}. Then, for every crisp tree model



96 + 5 The u-Calculus Variable Hierarchy

S of ¢, the tree T [x/S] E v, obtained by replacing the subtree of T rooted at x with
S, is still a crisp model of y.

We are now ready for the final step, the elimination of the F-operator.

Lemmas.2.5. Let K be a finite strongly connected structure with a state u and let y*
describe the simulation type of IC, u. Then, every formula y € L, so that Fy = Fy*
can be transformed, without increasing the number of variables, into a formula y'
without universal modalities, so that y' = y.

Proof. According to Lemma 5.2.2, we can assume that ¥ contains no universal
modalities or least fixed point operators and that (the closure of) every subformula
is true at some node in K.

We will first show that for any node v in C, there is a subformula ¢ of y whose
closure cl, (¢) implies ¥C. Actually, we always find a radical formula with this
property.

Towards a contradiction, let us assume that ¢* is not implied by any radical
subformula of y. This means that every ¢ € clo(y) hasatree model 7, which falsifies
K. According to Corollary 1.2.26, we can choose T, to be a finitely branching tree
that falsifies already an approximant of ¥/ to some finite stage m,,. Observe that
this approximant (yX)[v/v™] is a modal formula. Let us denote its modal depth
by n,. Further, let us fixa number n which is greater than any n,, for ¢ € cly(y) and
co-prime to every number up to the size of the domain V.

By Lemma 5.2.3, we can assume without loss of generality that each 7, is a crisp
model of g, this being witnessed by a crisp winning strategy for Verifier in the game
G(Tys ¢). In particular, 7y, is a crisp model of y. Let oy, be a crisp winning strategy
for Verifier in the model-checking game G (7, v).

With aid of these, we construct a sequence of trees (7;)o<i<w» together with crisp
Verifier strategies o; witnessing that 7; & . To start, we set 7 := T, and 0y := 0y,.
In every step i > 0, the tree 7T;; is obtained from 7; by performing the following
manipulations at depth n(i + 1). For each subtree of 7; rooted at a node x of this
depth, we check whether T;, x = /. If this is not the case, the subtree remains
unchanged. Else, we look at the strategic type of x under o;. If the type is empty,
we simply cut all successors of x. Otherwise, tpzl?(x) consists of a single radical
formula ¢, and we replace the subtree 7;, x with 7. According to Lemma 5.2.4, the
resulting tree 7;,; is a model of y, and the composition of the strategy o; with the
crisp strategies o, on the newly appended subtrees 7, yields a crisp Verifier strategy
0i41 for the model-checking game G (7,1, ).
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By construction, each of the trees 7; is finitely branching and the sequence
(T7)o<i<w converges in the prefix topology of finitely branching trees (see [36]). Let
T be the limit of this sequence. Since no p-operators occur in y, its model class is
topologically closed on finitely branching trees, according to [36]. Consequently,
T, is still a model of y. By our hypothesis, v implies Fy™. Thus, at some depth d in
T anode x with T, x = ¥/ appears. Since K is strongly connected, v must lie on
acycle in K. Hence, for k < | V| being the length of such a cycle, there exist nodes
ywith T, y £ X at every depth d + jk. However, our construction eliminated all
subtrees carrying the similarity type of v at depths multiple of . Since n was chosen
to be co-prime to any integer up to | V|, it follows that 7, cannot satisfy y. This
is a contradiction which invalidates our assumption that y/X is not implied by any
¢ € clo(y).

Hence, for every node v € V, there exists a formula ¢, € cly(y) implying y~.
We can show that the converse also holds, if v is maximal with respect to the
preorder <, in the sense that for every w with v < w we have w < v. Recall that,
by Lemma 5.2.2 (iii), the formula ¢, must be verified at some node w in K. Since
¢, is existential and thus preserved under extension, it follows that y* implies ¢,,
which further implies ¥, But this means that v < w and, by maximality of v, that
wand v are bisimilar. Hence, K, v F ¢, and consequently y;- = ¢,.

This concludes the proof for the case when u is maximal in & with respect to
<. Otherwise, we could not guarantee, of course, that ¢, = ¥X. But in that case, a
formulaequivalent to yX canbe recovered from cly () without great difficulty. []

5.3 THE HIERARCHY THEOREM

Up to now we have showed how to construct, for every level k of the variable
hierarchy, existential formulae which are not equivalent to any existential formula
from a lower hierarchical level. However, this left open the question whether there
exist equivalent formulae in L,[k — 1] which use universal quantification. Due to
our Preservation Theorem, we are now able to assert that this cannot be the case.

Theorem 5.3.1. For every k, there exist formulae y € L,[k] that are not equivalent to
any formula in L, [k — 1].

Proof. Consider a rigid strongly connected Kripke structure K of entanglement k
andlety® € L, beaformula describing the simulation type of K, u for some state u.
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Towards a contradiction, assume that there exists a formula y € L, [k — 1] equiv-
alent to y*. Since y defines the simulation type of K, a finite strongly connected
structure, we can apply Theorem 5.2.1 to conclude that there also exists a formula
' € L,[k — 1] using only existential modalities which is equivalent to y*. But this
contradicts the separation theorem s5.1.10 for the existential fragment. ]

5.3.1 SEPARATING FORMULAE WITH TWO MODALITIES

The results of the previous sections provide us with a generic technique to construct
witnesses for the L,-variable hierarchy. The first examples for the strictness of the
existential hierarchy, which turn out to be valid witnesses for the unrestricted case
too, have been presented in [11]. They rely on rigid k-cliques where every action is
labelled differently, leading to formulae over a vocabulary with k* modalities.

To show that already over a fixed vocabulary, the variable hierarchy remains
strict. we construct rigid Kripke structures over only two modalities leading to
formulae that are strict at each level of the variable hierarchy.

Definition 5.3.2. For every k > 0,let C* := (V] E,, E,) be the Kripke structure with
state set V = [k] x [k] and transition relations

E.={(Gj)Gj-1))]i>0j>0}
u{((G0),(-1Lk-1))|i>0}and
Ey:={((j),((i+j)modk (j—1) modk)) |0<ij<k}

Let us first verify that these structures C* indeed fulfil the premises formulated
in the proof of the separation theorem s5.1.10.

Lemma 5.3.3. For every k, the structure Ck = (VE, E) satisfies the following
conditions:

(i) ent(C*) = k;
(ii) [C is deterministic and co-deterministic;
(ili) XC is singular with respect to simulation.
Proof. To prove the first issue, we use our characterisation of entanglement in terms

of games, and show that the thief has a winning strategy in any game on C* with
less than k detectives, but he loses when they come in k or more.
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Figure 5.1: The Kripke structure C? (a-transitions thicker, b-transitions plain)

T
(0,0) =— (0, 1) ==—(0,2)

T

(1,2) (1,0)

T

(2,0) =—(2,1) ==—(2,2)

We will refer to the rows of the state set C; := {i,j | 0 <j < k } as islands. Each
island induces a cycle, and every two islands are connected by an edge, so that they
form a k-clique. Intuitively, if there are less than k cops, at every moment at least one
of the islands must be unguarded and the thief can always navigate from his current
position to that island without bumping into a detective by pursuing the following
strategy: Whenever the current island 7 is unguarded and, moreover, no detective
is on his way to the current position, proceed on i. In the event that a detective is
sent to the current position, at least one island j must be left unguarded. Since the
current island was previously unguarded, the path from the current position to the
safe island j is still free. Hence, set out on this path and follow it until the island j is
reached. Upon arrival, j will still be an unguarded island so that the strategy can be
reiterated.

In case k or more detectives are available, they can distribute to the different
islands, e.g., by following the thief to any position (i, 0) he reaches during the play.
Then the robber must move to a fresh island after most k— 1 steps. But after k times,
there are no unguarded islands left, so the thief loses.

It is easily seen that X is deterministic and co-deterministic.

To verify that it is also singular with respect to <, observe first that the the nodes
of C¥ are aligned on the finite r-path from (k — 1, k = 1) to (0,0) in descending
lexicographic order. Clearly, (k — 1, k — 1) cannot be simulated by any other node.
Let us assume that we have a simulation u < v between distinct nodes. Since
C* is strongly connected, there exists a unique path from u to (k — 1,k — 1). The
sequence of actions seen on this path can also be executed starting from v since
u < v. By determinism of C¥ the node w reached via this sequence is uniquely
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determined. However, since the simulation relation propagates along actions, it
follows that (k — 1, k — 1) < w which implies (k — 1, k — 1) = w, in contradiction
to the co-determinacy of C. OJ

According to this, the structures C* can be used as witnesses in the proof of the
separation theorem 5.1.10 yielding strict formulae for each level k of the existential
variable hierarchy. Since C¥ is strongly connected, the Existential Preservation
Theorem 5.2.1, establishes that these formulae actually witness the strictness of the
variable hierarchy of the y-calculus, already over a language with two modalities
only.

Corollarys.3.4. Forevery integer k, there are bimodal existential formulae y* € L, [k]
that are not equivalent to any formula in L, [k — 1].

We explicitly construct witnessing formulae describing the simulation type of
C*,(0,0), as in the proof of proof of Proposition 4.3.1. Towards this, we build
a sequence of formulae (;;)o<;j<k Over the fixed-point variables X, ..., X;_; by
induction on j, setting for all i simultaneously ¢;, = X; and for every j > 0:

@ij = <a)(Pi,j71 A <b>§0i+j,j—1-
Then, we define the system S of rules
Xo = (b)pon1 and X; == (a) @i 161 A (b)@;,1 for 0 <i<k.

The formula vX,.S obtained as a description for the simulation type of C at state
(0.0) is strict for the level k of the variable hierarchy.
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SYMBOL INDEX

MSO

MPL
L]~

actions, 4

atomic propositions, 4

transition, 4

proposition, 4

bisimilar, 5

similar, 6

first-order logic, 7

monadic second-order
logic, 8

monadic path logic, 8

bisimulation-invariant
fragment, 8

Hennessy-Milner Logic, 9

extension, 9

satisfaction, 9

next, 13

until, 13

Linear Temporal Logic, 13

Computation Tree Logic, 14

p-calculus, 17

k-variable fragment, 17

syntax tree, 18

syntax graph, 19

closure, 19

finite approximant, 20
priority, 22

induced subgame, 23

L, parity characterisation, 26
sequential composition, 29
choice, 29

iteration, 29

dualisation, 29

Game Logic, 32
GL-translation, 35

dual choice, 37

dual iteration, 37

parity characterisation, 41
infinite branches of T, 50
colour restriction, 54
Path game logic, 58
entanglement, 66

cycle, 67

feedback, 70

cast of 0, 88
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APDL, 12
p-calculus, 17

action, 4
active node, 70

Baire space, 50
bisimulation, 5

— invariant formula, 8
bisimulation type, 63

Cantor space, 50

cast, 88

closure, 19, 37

Computation Tree Logic, 14

dualisation, 29

effectivity
— function, 29
— relation, 32
entanglement, 66
existential, 18
extension, 9

feedback, 70
finite approximant, 20
finite model property, 20

first-order logic, 7
formula
— bounded, 59
— definite, 85
— future, 57
— radical, 95
— vital, 92
full path, 2

game
— Banach-Mazur, 45
— determined, 4
— extensive form, 2
— parity, 22
— strategic form, 2
— superdetective, 79
— win-or-lose, 3

game form, 2

Game Logic, 31

guarded, 24

Hennessy-Milner logic, 9
hierarchy
— GL alternation , 40
— L, alternation, 26
— star, 39
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Kripke structure, 4
— rooted, 4

Linear Temporal Logic, 13

monadic path logic, 8
monadic second-order logic, 8

negation normal form, 18
neighbourhood model, 32

path game, 48
PDL, 11

reactive system, 5

set
— Borel, 50
— closed, 50
— meager, 50
— nowhere dense, 50
— open, 50
simulation, 6
simulation type, 63
state, 4

strategic type, 95
strategy, 3
— memoryless, 22
— winning, 3
structure
— co-deterministic, 84
— deterministic, 84
— rigid, 84
— singular, 84
synchronised product, 54
syntax graph, 19
syntax tree, 18

tree model property, 20
tree with back edges, 70

unravelling, 6
— driven by, 72
— finite, 71
— function, 72
utility, 2

winning condition, 4



19. Mai 1972
1978 — 1986
1986 — 1990
Juni 1990
1991
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