
Definability and

Model Checking:

The Role of Orders and

Compositionality

Von der Fakultät für Mathematik, Informatik und

Naturwissenschaften der RWTH Aachen University

zur Erlangung des akademischen Grades eines Dok-

tors derNaturwissenschaften genehmigteDissertation

vorgelegt von

Diplom-Informatiker

Tobias Ganzow

aus

Seesen

Berichter: Univ.-Prof. Dr. Erich Grädel

Dr. habil. Luc Segoufin

Tag der mündlichen Prüfung: 22. Februar 2011

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

abstract

Finite model theory and descriptive complexity theory are concerned with

assessing the expressive power of logics over finite models and with relating

the descriptive resources needed for defining a class of structures to the

computational complexity of the corresponding decision problem. In recent

years, also the model theory and computational handling (e.g. of the model

checking problem) of finitely representable infinite structures have gained

much interest.

In the first part of this thesis we study how the expressive power of

logics over finite structures is affected by the presence of orders. We will first

review the concept of order-invariant definability where we allow formulae

to use an additional order-relation that is not present in a given structure in

such a way that the truth of the formula in the structure does not depend on

the actual interpretation of the order relation, and show that, in the context

of monadic second-order logic, order-invariance yields more expressive

power than adding modulo-counting quantifiers.

Second, we investigate structures with weaker forms of orderings,

namely locally ordered graphs, in which only the neighbourhoods of the

vertices are linearly ordered. Using recent results on reachability algorithms

by Reingold, we are able to show that the transitive closure of the edge re-

lation in such graphs is definable in deterministic transitive closure logic

(DTC) in a two-sorted setting, and this observation is the key to linking

the descriptive power of DTC with counting to the computational power of

logspace-bounded Turing machines.

The second part of the thesis is concerned with techniques for model

checking weak monadic second-order logic (WMSO) on the class of so-

iii

called inductive structures that allow for a finite representation via systems

of equations, and which includes structures relevant for verification pur-

poses such as the infinite binary tree, infinite lists, etc. Our new approach

presents an algorithmic alternative to automata-theoretic methods, which

exhibit certain drawbacks, and is based on a purely logical decomposition

technique using the defining equations. Further, the deployed techniques

can be extended to obtain a model checking algorithm for the extension of

WMSO by an unbounding quantifier, and thus establish the decidability of

its model checking problem on the class of inductive structures.

iv

zusammenfassung

Die Grenzen der Audrucksstärke von Logiken auszuloten und Zusammen-

hänge zwischen den für die Definition bestimmter Eigenschaften von Struk-

turen benötigten deskriptiven Mitteln und der Komplexität der entsprechen-

den Entscheidungsprobleme zu finden, sind zentrale Aspekte der Endlichen

Modelltheorie und Deskriptiven Komplexitätstheorie. Vor allem in den letz-

ten Jahren ist zunehmend auch die Modelltheorie und die algorithmische

Handhabbarkeit von endlich repräsentierbaren unendlichen Strukturen in

den Fokus der Forschung gerückt.

Im ersten Teil der Dissertation wird untersucht, wie sich das Vorhan-

densein von Ordnungen in einer Struktur auf die Ausdrucksstärke von

Logiken auswirkt, und zunächst das Konzept der sogenannten ordnungs-

invarianten Definierbarkeit motiviert. Hierbei darf in einer Formel eine

Ordnungsrelation verwendet werden, die nicht Bestandteil der Struktur ist,

allerdings darf das Auswertungsergebnis der Formel innerhalb einer Struk-

tur nicht von einer bestimmten (linearen) Ordnung der Elemente abhängen.

Wir können zeigen, dass ordnungsinvariante monadische Logik zweiter

Stufe (MSO) echt ausdrucksstärker ist als die Erweiterung von MSO um

Modulo-Zählquantoren.

Anschließend untersuchen wir schwächere Arten von Ordnungen am

Beispiel von lokal geordneten ungerichteten Graphen, in denen nur die

Nachbarschaften von Knoten linear geordnet sind. Für diese Klasse können

wir unter Ausnutzung eines vor wenigen Jahren von Reingold präsentierten

Erreichbarkeitsalgorithmus zeigen, dass die transitive Hülle der Kantenrelati-

on durch eine DTC-Formel definierbar ist, wenn die Graphen als zweisortige

Struktur vorliegen. Aus diesem Resultat folgt schließlich, dass die Ausdrucks-

v

stärke von DTC mit Zählquantoren genau mit der Platzkomplexitätsklasse

Logspace zusammenfällt.

Der zweite Teil der Arbeit widmet sich dem Auswertungsproblem von

WMSO auf einer Klasse von unendlichen Strukturen, den induktiven Struk-
turen, die durch endliche Gleichungssysteme repräsentiert werden können

und somit häufig bei Verifikationsproblemen anzutreffende Strukturen wie

z.B. den unendlichen Binärbaum oder unendliche Listen umfassen. Im Ge-

gensatz zu automatentheoretischen Methoden, die mit gewissen Nachteilen

verbunden sind, wird ein Algorithmus entwickelt, der auf der Dekompositi-

onsmethode beruht und damit direkt auf Formelebene arbeitet. Weiterhin

wird gezeigt, wie sich der Ansatz erweitern lässt, um einen Algorithmus für

das Auswertungsproblem von WMSO mit dem Unbeschränktheitsquantor

auf induktiven Strukturen zu erhalten und somit dessen Entscheidbarkeit

zu zeigen.

vi

contents

1 Introduction ◆ 1

2 Preliminaries ◆ 9

2.1 Structures ◆ 9

2.2 Logics ◆ 10

2.3 Interpretations ◆ 15

2.4 Descriptive Complexity Theory ◆ 17

2.5 Games ◆ 17

I Order Invariance and Local Orderings ◆ 21

3 Order-Invariance vs. Counting in MSO ◆ 23

3.1 Counting MSO ◆ 24

3.2 The Ehrenfeucht-Fraïssé method for CMSO ◆ 26

3.3 CMSO on disjoint unions of structures ◆ 31

3.4 The Separating Example ◆ 34

3.5 Conclusion ◆ 44

4 Local Orderings ◆ 47

4.1 Locally Ordered Graphs ◆ 48

4.2 Reingold’s Algorithm ◆ 51

4.3 Defining Reachability in DTC ◆ 58

4.4 Canonisation of locally ordered undirected graphs ◆ 67

4.5 Discussion ◆ 72

vii

Contents

II Compositional Model Checking ◆ 75

5 Compositional Model Checking of Weak MSO ◆ 77

5.1 Inductive Structures ◆ 78

5.2 Formulae with Restricted Variables ◆ 82

5.3 Decomposing Formulae ◆ 86

5.4 Model Checking Game for WMSO ◆ 96

5.5 Unbounding Quantifier ◆ 111

5.6 Conclusion ◆ 115

Bibliography ◆ 117

Index ◆ 123

viii

list of figures

3.1 Grid with distinguished horizontal and vertical edges, a

definable diagonal-edge relation ◆ 34

3.2 A cliquey (k, ℓ)-grid ◆ 36

3.3 A horizontally coloured cliquey (3, 5)-grid ◆ 36

3.4 Spoiler’s set move ◆ 40

3.5 Equivalence relation induced by Spoiler’s move—the grid

falls into ≤ 2k classes ◆ 40

3.6 Duplicator’s response yielding equivalent matching parts ◆ 41

4.1 A non-rigid one-way locally ordered graph ◆ 50

4.2 p-Powering ◆ 55

4.3 Construction of an edge in the zig-zag product ◆ 55

4.4 Transformation of a graphG into the regular graphGreg ◆ 59

4.5 Ordering of the connected components ◆ 70

5.1 Inductive definition of the infinite binary tree T2 ≅ S1(D1) ◆ 81

5.2 Inductive definition of the infinite list of lists ◆ 81

5.3 Subgame G∃(φ,m) for checking whether Am ⊧ ∃Xφ(X) ◆ 100

5.4 Subgame G∃1(φ,m) for checking whether Am ⊧ ∃xφ(x) ◆ 104

ix

list of algorithms

4.1 RotH (i , (v , a0 . . . a i−1), a i) ◆ 62

5.1 splitk(φ) ◆ 84

5.2 TNF(φ) ◆ 89

5.3 decomp(φ,m) ◆ 91

5.4 ENNF(φ) ◆ 108

xi

1 introduction

Assessing the potential and limits of the expressive power of logics is a central

problem in finite model theory, and a wide range of methods and tools has

been developed to conduct this task. The results we obtain in the first part

of the thesis rely on Ehrenfeucht-Fraïssé games, which are a standard tool

for proving limits of expressive power, and on the relationship between

logical expressiveness and computational complexity, which is studied in

descriptive complexity theory.

In 1974, Fagin lay the grounds of descriptive complexity theory by prov-

ing a connection between the computational resources needed for deciding

a property of structures and the logical resources needed for describing this

property [Fag74]. In particular, he proved that a property of graphs (e.g.

3-colourability) is decidable in non-deterministic polynomial time if and

only if the class of graphs exhibiting this property can be defined by a sen-

tence of existential second-order logic. This lead to the notion of capturing
a complexity class, i.e., in modern terms, Fagin’s result states that existential

second-order logic captures NP. Analogously, it was shown that similar

correspondences can be obtained for various other logics. For example,

least fixed-point logic captures Ptime on ordered structures, known as the

Immerman-Vardi Theorem [Imm86, Var82], and transitive closure logic

(TC) and deterministic transitive closure logic (DTC) capture NLogspace

and Logspace, respectively, on ordered structures [Imm87, Imm88]. But

the latter results expose a serious blemish: the characterisation only holds

on ordered structures.
In fact, characterisations of complexity classes on unordered structures

are extremely scarce which is partly due to the particular weakness of many

1

1 Introduction

logics with respect to defining properties that involve counting on unordered

structures. As of today, a very prominent open problem in descriptive

complexity theory is to find a logic capturing Ptime on all finite structures
if there is such a logic at all. Solving this problem in either way would have

direct implications for the infamous question whether P equals NP, or at

least show possible new routes to its answer.

In contrast to Turing machines that always work on the representation

of a structure as a word, a formula is evaluated on a given structure as-is.

Hence, themachine can possiblymake use of a linear order that is necessarily

induced by the representation of the structure as an (ordered) word, as long

as its output does not depend on a particular representation, whereas the

logic does not enjoy this advantage. This motivated the definition of order-
invariance in the realm of logics: We call a formula order-invariant on a class

of structures if, for any structure in this class, the formula either holds for

all possible orderings of the universe of the structure or if it does not hold

for any possible ordering.

Denoting the set of order-invariant τ-formulae of a logicL byL[τ]<-inv,
we obtain that LFP<-inv captures Ptime, DTC<-inv captures Logspace, and

TC<-inv captures NLogspace on the class of all finite structures. However,

while it is not difficult to design formulae that are order-invariant by con-

struction, already the decision problem whether a first-order formula is

order-invariant on the rather restricted class of strings is undecidable as

shown by Benedikt and Segoufin [BS05]. Hence, although we will speak of

order-invariant logics in the following, it is important to keep in mind that

they lack an effective syntax which is a very important property of a reason-

able logic and usually taken for granted. In particular, this aspect renders

the above characterisations of the complexity classes rather unsatisfactory.

With respect to definability, the question arises as to how much expres-

sive power the order-invariant logic gains over the plain logic. If a logic

has the interpolation property on a class of structures, it is, in particular,

closed under order-invariant sentences in the following sense. Assume that a

formula φ ∈ L[τ ∪̇ {<}] is order-invariant. Then

φ ⊧ (“<′ is a linear order”→ φ[< / <′]) =: φ′ ∈ L[τ ∪̇ {<′}]

for any logic L that is capable of axiomatising linear orders. Hence, there

exists an interpolant χ over the common vocabulary τ such that φ ⊧ χ and

2

χ ⊧ φ′, and if φ order-invariantly defines a classK of τ-structures, thenK is

already defined by the τ-sentence χ (see [EF99]). Since first-order logic has
the interpolation property on the class of all (finite and infinite) structures,
it is closed under order-invariant sentences, i.e. order-invariant FO collapses

to plain FO. However, in the finite, this is no longer the case. Gurevich

showed that the class of Boolean algebras with an even number of atoms is

order-invariantly FO definable, but not definable in plain FO. This implies

that, in the finite, first-order logic is neither closed under order-invariant

sentences, nor does it have the interpolation property. Otto later presented a

further separating example involving a class of special graphs with attached

Boolean algebras on which connectedness (of the graph component) is

order-invariantly FO definable, but not even definable in infinitary logic

with counting quantifiers [Ott00].

In both cases, the considered structures contain a Boolean algebra,

and hence the classes have unbounded tree width. In contrast, Benedikt

and Segoufin pursued the investigation of order-invariant FO on classes

of bounded tree width, and show that order-invariant FO collapses to

FO on strings and trees using algebraic characterisation theorems for FO-

definable string and tree languages [BS09]. Furthermore, they show that

order-invariant FO is at most as expressive as MSO on graphs of bounded

degree or tree width. It would be desirable to obtain such an upper bound

on the expressiveness in the general case, and it is conceivable that all order-

invariantly FO definable queries are actually definable in plain MSO. In fact,

all known queries separating order-invariant FO from plain FO are MSO de-

finable. However, since they rely on quite different properties of the structure,

it is questionable whether it is possible to devise a direct translation.

In Chapter 3, we focus on order-invariant MSO and counting MSO

(CMSO), the extension of MSO by quantifiers that can specify the size of

definable sets modulo fixed integers. We introduce an Ehrenfeucht-Fraïssé

game characterising the expressive power of CMSO which will be the main

tool in proving that order-invariant MSO is strictly more expressive than

counting MSO on graphs, which confirms a long-standing open conjecture

by Courcelle [Cou96, Conjecture 7.3].

A further question is whether we can capture complexity classes, if not

on unordered structures, then at least on classes of structures that feature

only weak forms of orderings. In particular this question was studied in the

3

1 Introduction

mid 1990’s for Logspace complexity classes and locally ordered graphs. A

one-way (or two-way) locally ordered graph is equipped with one (or two)

relations that induce, for each vertex, a linear order on its neighbours. In a

one-way locally ordered graph, a ternary relation induces a linear order on

the successors of each vertex, i.e. on the neighbours reachable from the vertex

via outgoing edges, and in a two-way locally ordered graph, a second relation

analogously induces linear orders on the predecessors of vertices. Etessami

and Immerman proved that transitive closure logic with counting (TC+C)

captures NLogspace on two-way locally ordered graphs [EI95b, EI00]. In

general, TC+C is still too weak to define a linear order on the entire graph,

but it is possible to define a canonical isomorphic copy of the graph on

the number sort that comes with the counting extension. That is, a locally

ordered graph provides strictly less structure than a linearly ordered graph,

but this can be compensated by extending the logic.

In Chapter 4, we combine this approach with a recent result from

complexity theory demonstrating the fruitful connections between the disci-

plines. The deterministic space complexity of the reachability problem in

undirected graphs was a longstanding open problem in complexity theory.

For directed graphs, reachability is known to beNLogspace-complete which

implies, by Savitch’s Theorem, that the problem is in Dspace(O(log2 n)).
For undirected graphs, the problem was known to be complete for the rather

artificial class SymLogspace (symmetric Logspace), which is, in fact, de-

fined in terms of the problem. While the problem was believed to be in

Logspace, it was not until 2005 that Reingold came up with a proof of

this conjecture using a sophisticated argument involving expander graphs

[Rei05]. Whereas other algorithms (e.g. Savitch’s) need logarithmic mem-

ory per iteration or phase, and hence would only meet a logarithmic space

requirement if the number of phases could always be reduced to a constant,

the novel approach leads to an algorithm that only needs a constant amount

of additional memory per phase.

By formalising Reingold’s algorithm, we obtain a DTC formula defin-

ing the transitive closure of a locally ordered undirected graph with an

auxiliary linearly ordered number sort. Combining this formula with the

techniques used by Etessami and Immerman showing that TC+C captures

NLogspace on two-way locally ordered graphs, we can prove ourmain result

that DTC+C captures Logspace on undirected locally ordered graphs.

4

In Part II of the thesis, we shift our focus from finite structures to

classes of structures that are, in general, infinite but still finitely representable.

Those comprise well-known classes such as constraint databases or automatic

structures—in this thesis, we study the class of structures representable via

finite systems of equations, called inductive structures, and, in particular,

we present a compositional method for model checking weak monadic

second-order logic (WMSO) on this class.

The investigation of compositional model checking techniques started

in the late 1950’s with the work of Feferman and Vaught [FV59] on first-

order theories of structures that are obtained as generalised products of a

possibly infinite, indexed family of structures. In particular, they showed

how to reduce the first-order theory of a generalised product to the FO

theory of the factors and the MSO theory of the index set. Towards this,

they detailed an effective translation of FO formulae speaking about the

generalised product to a sequence of formulae speaking about the factor

structures and an MSO formula with access to predicates that encode, for

each formula of the mentioned sequence, in which factors it is satisfied.

Around the same time, Büchi, Elgot and Trakhtenbrot independently es-

tablished the connection between finite automata andweakmonadic second-

order logic [Büc60, Elg61, Tra61], where second-order quantifiers range over

finite subsets of the universe. Decidability of the unrestrictedMSO theory of

(ω, <), also known as themonadic theory of one successor (S1S), was proved
by Büchi [Büc62] shortly afterwards. Later Rabin [Rab69] proved the de-

cidability of the MSO theory of the binary tree, i.e. of themonadic theory
of two successors (S2S). The latter proof uses a translation of formulae into

tree-automata that accept a tree-encoding of a structure if and only if it is a

model of the respective formula. Since an interpretation of a structure in the

binary tree yields a reduction of its MSO theory to S2S, and hence implies

decidability, Rabin’s Theorem became one of the most celebrated theorems

in theoretical computer science.

It was only later, in 1975, that Shelah proved the decidability of theMSO

theory of (ω, <) and other countable linear orders in his seminal paper

[She75] using purely logical methods and, in particular, the composition

of monadic theories. However, this method received little attention among

computer scientists until it was presented in a more accessible survey paper

by Thomas [Tho97]. Furthermore, the original proof is based on a recursive

5

1 Introduction

computation of the theory involving the enumeration of all types of a given

quantifier rank, and thus cannot be used as a basis for practical algorithms.

Consequently, the existing implementations of (weak) MSO model

checking tools are mainly based on automata-theoretic techniques. Despite

its importance for obtaining elegant theoretical results, Rabin’s Theorem is

challenging for practical purposes. The construction of an automaton that is

equivalent to the formula involves a complementation for each quantifier

alternation and negation in the formula, and the complementation of Rabin

tree automata presents several difficulties: The algorithm is difficult to un-

derstand and implement, and the number of states grows exponentially. The

situation is better for weakMSO, where complementation of the constructed

automata, though still yielding an exponential blow-up, is easier than in the

unrestricted case. Admittedly, since the complexity of (even the weak) MSO

theory of (ω, <) is already non-elementary, no technique whatsoever can

perform equally well on all input instances.

The focus on weak MSO is based on two arguments. First, WMSO

subsumes widely used temporal logics such as LTL and CTL which makes

it a reasonably expressive logic. Furthermore, many problems arising in

software or hardware verification where the domain of interest is often finite

but not a priori bounded in size allow for a natural formalisation in weak

MSO. Second, Shelah’s composition method could not be generalised to

MSO on the binary tree so far. In fact, the question about a composition-

based proof of the decidability of S2S is a major open problem, and has a

close relationship to the challenge of understanding the algebraic structure

of regular tree languages.

The best known tool for model-checking WMSO is MONA [HJJ+95,

EKM98] which has been used to verify both hardware [BK95] and pointer

manipulating programs [JJKS97]. It is a mature tool, but being based on

automata, it only works on linear orders and trees such that more complex

structures must first be encoded, which can decrease MONA’s performance

considerably up to the point where it becomes unusable even for simple

formulae.

In contrast, the approach we are presenting in Chapter 5 works directly

on the much broader class of inductive structures which comprises classical

structures such as (ω, <) and the infinite binary tree as well as practically

relevant structures such as doubly-linked lists or lists of lists. Not having to

6

interpret these structures in the binary tree makes the approach much more

versatile and avoids inflating the formulae.

Our technique for decomposing the formulae yields decompositions

that are similar to the reduction sequences described by Courcelle [Cou90]

and Makowsky [Mak04], which follow the original idea of Feferman and

Vaught. Whereas Courcelle shows how to obtain a reduction sequence for

disjoint unions of structures without any connections between the compo-

nents, andMakowsky exemplifies a construction for ordered sums of disjoint

structures, we follow a different approach which matches our more general

definition of inductive structures.

We continue to show how to combine the decompositions with the

equations defining the inductive structure to obtain a model checking game.

Such games have a long tradition and provide a particularly intuitive view

on the semantics of a logical formalism. They are played by two opponents,

called Verifier and Falsifier, and Verifier tries to prove that the formula is

satisfied whereas Falsifier tries to disprove this.

For first-order or weak monadic second-order model checking, reach-

ability games suffice. Positions consist of a formula (taken from the set of

subformulae of the formula to be checked) and an interpretation of its free

variables. Hence, the size of the game graph is determined by the product of

the size of the structure and the size of the formula, i.e. it is finite if and only

if the structure is finite. However, regardless of the structure, all possible

plays are finite since the length of a play is bounded by the length of the

formula.

The model checking game we present is, roughly speaking, obtained as

the product graph of the subformulae and decompositions of formulae with

initial unravellings of the inductive structure on which the formula is to be

evaluated. In contrast to the naïvemodel checking game forWMSO sketched

above, we obtain a game with a finite arena, and the players’ objectives are to

reach terminal positions that are winning for them. However, since the game

graph contains loops now, and running through a loop infinitely often is

always bad for one of the players, we actually use a Büchi winning condition.

Still, winning regions in Büchi games can be efficiently computed [GTW02].

Further, it is worth noting that, although the decomposition technique is

not tied to WMSO but also works for MSO formulae, the game crucially

relies on the limitation that set quantifiers only range over finite sets.

7

1 Introduction

Finally, we demonstrate the versatility and potential of this game-based

approach by showing how it can be modified to allow for model checking

WMSO extended with an unbounding quantifier (WMSO+U) introduced by

Bojańczyk [Boj04]. This establishes the decidability on inductive structures,

i.e. in particular on the binary tree. Previously, decidability of WMSO+U

has only been shown on labellings of (ω, <) [Boj09].

Acknowledgements

First of all, I would like to thank my supervisor Erich Grädel for giving me

the opportunity to pursue my research interests, for providing the needed

freedom, and his profound advice. Furthermore, I am very grateful to Luc

Segoufin for his prompt readiness to commit himself to the task of acting as

the co-examiner of this thesis.

I am very indebted to Sasha Rubin and Łukasz Kaiser formany inspiring

discussions not only about cliquey grids and decomposing formulae, as well

as Diana Fischer, Bernd Puchala, and Roman Rabinovich who were keen

enough to agree to proofread a draft of this thesis and helped me improving

the presentation. Many thanks also to the rest of my colleagues—Alex,

Arnaud, Christof, Daniel, Dietmar, Frank, Henrik, Ingo, Jan, Jörg, Kari,

Marcus, Martin, Michael H., Michael U., Michaela, Namit, Nico, Philipp,

Stefan R., Stefan W., Vince, and Wladimir—who populated the MGI & i7

floor from early in the morning until late at night at times and who made

my time at the institute very enjoyable.

Last but not least, I would like to express my deep gratitude to my

family, and especially to my wife Astrid, for their continuing love, support,

and encouragement.

8

2 preliminaries

We assume some basic familiarity with mathematical logic and algorithmic

model theory, and will only briefly introduce the basic notions and concepts

mainly for fixing the notation. For further details and introductory texts we

refer the reader to [EF99, EFT94, Lib04].

We letN denote the set of non-negative integers, and letN+ ∶= N−{0}.
The initial subset {0, . . . , n − 1} of N will be denoted by [n]0, and we let

[n] ∶= {1, . . . , n} denote the initial subset of N+. Given a non-empty finite

set M = {m1 , . . . ,mk}⊆finN+, let lcm(M) ∶= lcm(m1 , . . . ,mk) denote the

least common multiple of all elements in M; for convenience, we define

lcm(∅) = 1. For finite sets X and Y as well asM as before, we abbreviate that

∣X∣ ≡ ∣Y ∣ (mod m) for all m ∈ M using the shorthand ∣X∣ ≡ ∣Y ∣ (mod M).

2.1 Structures

Given a finite vocabulary or signature τ = {R1 , . . . , Rm , f1 , . . . , fn} of rela-
tion symbols R i and function symbols f i with associated arities ar(R i)

and ar(f i), respectively, a τ-structure A = (A, (RA
i)i∈[m] , (fAi)i∈[n]) is

determined by a non-empty set A called the universe of the structure

and relations RA
i ⊆ Aar(R i) and functions fAi ∶ Aar(f i) → A interpret-

ing the corresponding symbols in τ. A structure over a vocabulary that

does not contain any function symbols is called relational. In a relational

structure A, every subset U ⊂ A of its universe induces the substructure

A ∩U := (U , (RA
i ∩U ar(R i))i∈[m]).

The class of all (finite) structures over a vocabulary τ is denoted by

Str(fin)[τ]. The index may be omitted if it is clear from the context that only

9

2 Preliminaries

finite structures are considered. If τ contains a binary relation symbol <, we

denote by Ord[τ] the class of linearly ordered τ-structures. For a fixed vo-

cabulary τ, we callK ⊆ Str[τ] amodel class if it is closed under isomorphism.

A class of structures without a common vocabulary is called a domain, e.g.
the domain of finite structures, the domain of finite graphs, the domain of

finite words, and so on. Given a domainD and a vocabulary τ, we denote by
D[τ] the class of τ-structures inD. Throughout the whole thesis, we restrict

our attention to relational structures and sometimes allow constants (0-ary

functions). The first part focuses on finite structures, whereas the structures

investigated in the second part are, in general, infinite.

In Chapter 4, we investigate logics in the framework of many-sorted

structures, and in particular on special two-sorted structures, so we

narrow the definition to this specific case. Given a vocabulary τ =
{R1 , . . . , Rm , f1 , . . . , fn}, a two-sorted τ-structure A consists of two disjoint

universes, A1 and A2, called the first sort and the second sort, respectively.

Each relation symbol R has an associated arity ar(R) = (r1 , r2) such that R
is interpreted as RA ⊆ Ar1

1 × Ar2
2 . Each function symbol f also has an arity

ar(f) = (r1 , r2) and a type tp(f) ∈ {1, 2} depending on whether the result

is an element from the second or the first sort, i.e. fA ∶ Ar1
1 × Ar2

2 → Atp(f).

2.2 Logics

We provide an overview of the syntax and semantics of those logics used and

studied in the following chapters such as first-order logic and its transitive

closure extensions, as well as second-order logics and counting extensions.

2.2.1 First-Order Logic

The set of terms over a vocabulary τ contains the constant symbols from τ,
all variables from the countable set of variables Var, and if t1 , . . . , tar(f) are
τ-terms, then f t1 . . . tar(f) is a τ-term for all function symbols f ∈ τ. The set

of first-order formulae over τ, FO[τ], is obtained by closing the set of atomic

formulae built from relation symbols in τ and the equality predicate applied

to τ-terms under Boolean connectives such as ¬,∧,∨ and existential and

universal quantification over individual (first-order) variables. Variables not

occurring inside the scope of a quantifier are called free, and bound otherwise.
A formula without free variables is called a sentence. A τ-interpretation is

10

2.2 Logics

given by a τ-structure A together with a variable assignment β ∶ Var → A,
and yields an interpretation of τ-terms by elements of the structure via

⟦x⟧A,β := β(x)
⟦c⟧A,β := cA

⟦ f t1 , . . . , tar(f)⟧A,β := fA(⟦t1⟧A,β
, . . . , ⟦tar(f)⟧A,β) .

Furthermore, a τ-interpretation (A, β) is called a model of an FO[τ] for-
mula φ if β ∶ free(φ) → A is an assignment of all free variables andA, β ⊧ φ
according to the following semantics.

A, β ⊧ t1 = t2 iff ⟦t1⟧A,β = ⟦t2⟧A,β

A, β ⊧ Rt1 , . . . , tar(R) iff (⟦t1⟧A,β
, . . . , ⟦tar(R)⟧A,β) ∈ RA

A, β ⊧ ¬φ iff not A, β ⊧ φ
A, β ⊧ φ ∧ ψ iff A, β ⊧ φ and A, β ⊧ ψ
A, β ⊧ φ ∨ ψ iff A, β ⊧ φ or A, β ⊧ ψ
A, β ⊧ ∃xφ(x) iff there ex. a ∈ A s.th. A, β[x ↦ a] ⊧ φ(x)
A, β ⊧ ∀xφ(x) iff for all a ∈ A: A, β[x ↦ a] ⊧ φ(x) .

By β[x ↦ a] we denote the function obtained from β by either overriding

the assignment of the variable x or extending β by mapping x to a. In

Chapter 5, we also allow the use of the propositional constants ⊺ denoting

true and � denoting false with the obvious semantics that A ⊧ ⊺ and A /⊧ �

for all structures A. We write φ(x) to denote that the free variables of the
formula are among x1 , . . . , xn , and instead of A, β ⊧ φ(x), we also write

A ⊧ φ(a) or A, a ⊧ φ(x) if a i = β(x i) for all i. Furthermore, we denote

by φA with free(φ) = {x1 , . . . , xn} the set {(a1 , . . . , an) ∶ A ⊧ φ(a)}.

2.2.2 Second-Order Logic

Second-Order logic, SO, is obtained by allowing the same formula building

rules as for first-order logic, but also allow the use of second-order variables

representing relations of arbitrary arity and quantification over second-order

variables. Since SO is a very powerful logic which is algorithmically hardly

manageable, there are some common restricted fragments. We focus on

monadic second-order logic, MSO, where quantification is restricted to unary

11

2 Preliminaries

relation variables, i.e. to sets. The semantics is obtained from the semantics

of FO by adding the following two rules.

A, β ⊧ ∃Xφ(X) iff there ex. U ⊆ A such that A, β[X ↦ U] ⊧ φ(X)
A, β ⊧ ∀Xφ(X) iff for all U ⊆ A, A, β[X ↦ U] ⊧ φ(X) .

Furthermore, we will investigate weak monadic second-order logic,
WMSO, which has the same syntax as MSO, but the semantics is altered

such as to treat quantifiers as ranging over finite sets only, i.e. A ⊧ ∃Xφ(X)
if and only if A ⊧ φ(U) for some finite set U ⊆ A, and A ⊧ ∀Xφ(X) if and
only if A ⊧ φ(U) for all finite sets U ⊆ A.

2.2.3 Transitive Closure Logics

The transitive closure logic TC extends FO by an operator defining the

transitive closure of definable relations, which is, in general, not possible

in plain first-order logic. The syntax of FO is extended by the following

formation rule

if φ(x , y, z) is a (2k + l)-ary formula in TC,

then [tcx y φ(x , y, z)](u, v) is also a formula in TC.

The tuple z serves as parameters, and the tc-operator binds the variables

in x and y such that the free variables of the formula are those in {u, v , z}.
Towards the definition of the semantics, for a binary relation R, let

TC(R) := {(a, b) ∶ for some n ∈ N there ex. a0 , a1 , . . . , an such that

a = a0, an = b, and (a i , a i+1) ∈ R for all 0 ≤ i < n} .

Then A ⊧ [tcx y φ(x , y, c)](a, b) if (a, b) ∈ TC({(u, v) ∶ A ⊧ φ(u, v , c)}).
Disregarding the parameter tuple z, the formula φ defines a 2k-ary re-

lation, i.e. a binary “edge” relation on k-tuples of elements of A, and

[tcx ,y φ(x , y)] defines the transitive closure of this relation. Hence, intu-
itively, A ⊧ [tcx ,y φ(x , y)](a, b) if there exists a path of φ-edges between a
and b.

In Chapter 4, we investigate a variant called deterministic transitive
closure logic, DTC, where the formula [dtcx ,y φ(x , y, z)](u, v) defines the

12

2.2 Logics

transitive closure over the deterministic part of the relation defined by φ.
Given a binary relation R, its deterministic part Rdet is defined as

Rdet = {(a, b) ∈ R ∶ for all c such that (a, c) ∈ R, b = c} ,

i.e. we only keep those edges which are unique outgoing edges of a ver-

tex. Hence, A ⊧ [dtcx y φ(x , y, c)](a, b) if (a, b) ∈ TC(Rdet) where

R := {(u, v) ∶ A ⊧ φ(u, v , c)}, and since the deterministic part of a relation

is FO-definable, the formula [dtcx ,y φ(x , y, z)](u, v) ∈ DTC can be trans-

lated into the equivalent TC formula [tcx ,y φ(x , y, z) ∧ ∀y′(φ(x , y′ , z) →
y = y′)](u, v).

Restricting the arity of the defining formulae, we obtain the syntactic

fragments TC
k
and DTC

k
for all k > 0, in particular, in TC

k
it is only

possible to define transitive closures of 2k-ary relations, and indeed Grohe

showed that these fragments form an infinite hierarchy in the sense that, for

every k, there are queries definable in TC
k+1

that are not definable in TC
k

[Gro96].

On linearly ordered structures, all basic arithmetic operations such

as addition, multiplication, exponentiation are DTC-definable. We present

definitions for those operations that are used later in Chapter 4.

S(x , y) ≡ x < y ∧ ¬∃z(x < z ∧ z < y)
x + y = z ≡ [dtcaba′b′ Saa′ ∧ Sbb′](0, x , y, z)
x − y = z ≡ [dtcaba′b′ Sa′a ∧ Sb′b](x , y, z, 0)
x ⋅ y = z ≡ [dtcaba′b′ Saa′ ∧ b′ = b + x](0, 0, y, z)
⌊x/y⌋ = z ≡ ∃x′(y ⋅ z = x′ ∧ 0 ≤ x − x′ < y)

x y = z ≡ [dtcaba′b′ Saa′ ∧ b′ = b ⋅ x](0, 1, y, z)
l = ⌈log x⌉ ≡ 2

l ≥ x ∧ 2
l−1 < x .

Since all definitions are ultimately based on the successor relation,

it is straightforward to extend them to the range of k-tuples of variables
representing numbers between 0 and nk−1, where n is the size of the universe
of the structure, by replacing S(x , y) by the following definition saying that

the tuple ι′ is the lexicographical successor of the tuple ι:

13

2 Preliminaries

Sk(ι, ι′) = ⋁
ℓ<k
(

ℓ−1
⋀
j=1
(ι j = ι′j) ∧ ι′ℓ = ιℓ + 1 ∧

k
⋀
j=ℓ+1
(ι j = n − 1 ∧ ι′j = 0)) .

2.2.4 Logics and Two-Sorted Structures

In logics expressing properties of two-sorted structures, variables are typed

in the sense that individual (first-order) variables either range over the first

or the second sort universe, and second-order variables have an associated

arity (r1 , r2), analogously to relation symbols, fixing their range to Ar1
1 × Ar2

2 .

To make the distinction for individual variables explicit, we will consider

formulae built over disjoint sets of individual first-sort and second-sort

variables, using letters u, v , x , y, . . . for first-sort variables and Greek letters

α, β, . . . , µ, ν, . . . for second-sort variables. A formula φ(x , µ), where x is
a tuple of r first-sort variables and µ is a tuple of s second-sort variables,
consequently defines an (r1 , r2)-ary relation R ⊆ Ar1

1 × Ar2
2 .

2.2.5 Counting extensions

The logics we have considered so far lack the ability to count the numbers of

elements of arbitrarily large definable sets in general. This can, to different

extents, be overcome by adding suitable counting constructs. One such

extension which is investigated in Chapter 3 is the extension of monadic

second-order logic by new quantifiers that can specify the size of definable

sets modulo fixed integers. Another more powerful extension is obtained

by introducing counting terms #x . φ(x) defining the number of elements

satisfying φ. To allow for a sensible interpretation of such counting terms,

this extension is usually studied on particular two-sorted structures where

the first sort is the actual structure of interest and the second sort is a lin-

early ordered set of at least the same size. Then every element α of the

second sort represents the number k = ∣{β ∶ β < α}∣, which yields a natural

interpretation of counting terms by elements of the second sort.

In particular, we associate with a τ-structure A = (A, R1 , . . . , Rn) the

canonical two-sorted τ ∪ {<}-structure A∗ = (A, R1 , . . . , Rn) ⊍ (NA, <)

where NA ∶= {0, . . . , ∣A∣}, and < is the usual linear order on the natural

numbers restricted to NA. In these special cases, we will frequently refer to

the first sort as the vertex sort, and to the second sort as the number sort.

14

2.3 Interpretations

2.2.6 Queries and Expressive Power

We have discussed that a model class is an isomorphism-closed class of

τ-structures. Given a τ-sentence φ of some logic L, we denote by Mod(φ)
the model class of all τ-structures satisfying φ. Furthermore, a τ-formula

with k free variables defines a k-ary global relation or query

Q ∶ Str[τ] → {(a1 , . . . , ak) ∶ A ⊧ φ(a)} =: φA
.

If φ is a sentence, we obtain a 0-ary or Boolean querymapping each structure

to the empty set ∅ (or false) or to the set containing the empty tuple {◻} (or

true) such that Mod(φ) = {A ∈ Str[τ] ∶ Q(A) = {◻}}. A prominent exam-

ple occurring frequently in this thesis is the Boolean query even selecting

structures over a universe with an even number of elements. The notions of

queries or classes of models allows to compare the expressive power of logics

by specifying that a logic L′ is at least as expressive as L, denoted L ⊆ L′, if,
for every sentence φ ∈ L[τ], there exists a sentence φ′ ∈ L′[τ] such that φ
and φ′ define the same query, i.e. Mod(φ) =Mod(φ′).

Further, a logic L gives rise to an equivalence relation on τ-structures
by virtue of

A ≡L B ∶⇐⇒ A ∈Mod(φ) iffB ∈Mod(φ) for all φ ∈ L[τ] .

pointing out that no sentence of the logic can possibly distinguish structure

A from B. Especially in Chapter 3, we will study these equivalences and

tools for deriving them in more detail.

2.3 Interpretations

Interpretations are a powerful tool for establishing decidability or undecid-

ability of theories but also for obtaining definability results.

Definition 2.1. LetL be a logic, let σ and τ be relational signatures, and let n
be a positive integer. An n-dimensional L(σ , τ)-interpretation I consists of

the following:

(1) a formula δ(x1 , . . . , xn) ∈ L[σ], called the domain formula,
(2) a formula ε(x1 , . . . , xn , y1 , . . . , yn) ∈ L[σ], defining equality of repre-

senting elements

15

2 Preliminaries

(3) formulae φR(x 1 , . . . , x r) ∈ L[σ], for each R ∈ τ, where r is the arity of
R and each x i is a tuple of n variables, defining the relations of τ.

With every interpretationI, we can associate FO-definable admissibility
conditions stating that ε defines a congruence relation on the set of elements

satisfying δ with respect to the relations defined by the formulae φR . For

any σ-structure A satisfying the admissibility conditions, the interpretation

I defines the canonical τ-structure I(A) := (δA , (φA
R)R∈τ)/εA, and we say

that a τ-structureB is interpreted in A ifB ≅ I(A).

Furthermore, an n-dimensional L(σ , τ)-interpretation I defines a

translation of L[τ]-formulae φ into L[σ]-formulae I(φ) obtained by re-

placing each atomic formula x = y with ε(x , y), each atom R(x1 , . . . , xr)
with φR(x 1 , . . . , x r), and by relativising and expanding the quantifiers, i.e.,

more precisely, by replacing

◆ ∀xφ(x) with ∀x1 , . . . , xn(δ(x) → I(φ)(x)), and
◆ ∃xφ(x) with ∃x1 , . . . , xn(δ(x) ∧ I(φ)(x)).

These two translations induced by an interpretation are linked accord-

ing to the following proposition.

Proposition 2.2. Let I be an L(σ , τ)-interpretation. For any σ-structure A
satisfying the admissibility conditions of I, and any formula φ ∈ L[τ], we
have

I(A) ⊧ φ if and only if A ⊧ I(φ) .

The concept of interpreting structures directly translates into the two-

sorted setting by modifying the definition such as to allow for the spec-

ification of two domain formulae, one for each sort, and two formulae

defining equality. Thus, an L(σ , τ)-interpretation of a two-sorted struc-

ture in another two-sorted structure is specified by two domain formulae

δ1(x1 , . . . , xn1 , α1 , . . . , αn2) and δ2(x1 , . . . , xm1 , α1 , . . . , αm2), i.e. each first-

sort element of the interpreted structure is represented by a tuple of n1

first-sort and n2 second-sort elements, and each second-sort element is

represented by m1 first-sort and m2 second-sort elements, two formulae

defining equality ε1(x , α, y, β) and ε2(x , α, y, β), and, as before, formulae

defining the relations of τ with the appropriate numbers and sorts of vari-

ables. Such interpretations will be frequently used in Chapter 4.

16

2.4 Descriptive Complexity Theory

2.4 Descriptive Complexity Theory

The central aspect of descriptive complexity theory is the study of the re-

lationship of the descriptive resources that are necessary for describing a

property of structures in a logic to the computational resources needed for

deciding that property. Since we only rely on high-level results, we do not

give an introduction to details such as representing structures as input to

Turing machines or representing classes of structures as decision problems.

Further details can be found in [EF99, GKL+07, Lib04].

Definition 2.3. A logic L captures a complexity class C on a domain D of

finite structures if for all vocabularies τ and allK ⊆ D[τ],

K< ∈ C if and only if there exists a sentence φ ∈ L[τ]
such thatK = {A ∈ D[τ] ∶ A ⊧ φ} ,

whereK< = {(A, <) ∶ A ∈ K, and < is a linear order on A}.

Note that the structures constituting the classesK in the definition are

neither necessarily ordered nor unordered. On the other hand, containment

in a complexity class is only well defined for a class of ordered structures since

a Turing machine only decides properties of an ordered representative of an

unordered structure. However, it must accept or reject an input structure A

for all possible orderings of its universe, i.e. the result of the computation

must be order-invariant.

2.5 Games

We consider two-player games played on directed graphs. The underlying

graph, called arena, is given by a tripleA = (V ,V0 , E) such that (V , E) is a
directed graph and V0 ⊆ V is a subset of the vertices belonging to player 0.

Since every position belongs either to player 0 or to player 1, we do not need

to specify the set of vertices of player 1 explicitly, but it is understood that

V1 := V ∖ V0. A game G(A,Win, v0) is given by an arena A, a winning

condition Win, and an initial position vo . It is played by moving a token

starting from the initial position, and, depending on whether the current

position belongs to player 0 or player 1, the respective player moves the token

along an edge of the arena. This continues until one of the players gets stuck,

17

2 Preliminaries

or, if there are no terminal vertices, it continues forever, and the generated

finite or infinite path π is called a play. The winning condition specifies the

subset of plays that are winning for player 0.

A strategy for player σ is a function fσ ∶ V∗Vσ → V that tells the player

for each history of the play and at each of her positions where to move. The

strategy fσ is called a winning strategy for player σ from position v if player σ
wins the game starting at v against her opponent by following the strategy fσ
no matter how her opponent plays. A strategy is called positional if it can be

represented as a function fσ ∶ Vσ → V , i.e. if the next move only depends

on the current position but not on the history of the play. A strategy with
finite memory is a function fσ ∶ Vσ × S → V where S is a finite set of memory

states. After every move, the memory is updated depending on the current

position and the previous content according to a function u ∶ V × S → S,
and the next move of player σ playing according to fσ is determined by the

current position in the game and the current memory content.

In the case that the arena contains terminal positions, we usually con-

sider a reachability winning condition such that the player who gets stuck

loses. If the arena admits infinite plays, these are either considered as draws

or declared as winning for one of the players.

A crucial property of the games we consider is determinacy which

means that, from any position v, exactly one of the players has a winning
strategy. Already in 1913, Zermelo proved, using the example of chess, the

determinacy of finite reachability games

Theorem 2.4 (Zermelo). In every finite reachability game, from each posi-

tion exactly one of the players has a strategy to win or both players have a

strategy to achieve a draw.

The games we consider in Chapter 5 belong to the class of infinite

games. In these games, all plays are infinite which is achieved by prohibiting

terminal positions in the arena. In general, the set of possible plays of an

infinite game is uncountable, so the specification of a winning condition

can already be very complex. However, rather simple winning conditions

suffice for our purposes; we will consider Büchi games, parity games, and

Muller games. Their respective winning conditions are specified in terms of

an arena that is extended by a function Ω ∶ V → C = {0, . . . , d} assigning
priorities (also referred to as colours) from a finite set C to the positions and

18

2.5 Games

the set inf(Ω(π)) denoting the set of priorities that are seen infinitely often

during the play π as follows.

◆ The Büchi winning condition is defined by a set F ⊆ C such that

Win = {π ∈ Vω ∶ inf(Ω(π)) ∩ F ≠ ∅}.
◆ The parity winning condition is specified by

Win = {π ∈ Vω ∶ min{inf(Ω(π))} is even}.
◆ TheMuller winning condition is given by a familyF ⊆ P(C) such that
Win = {π ∈ Vω ∶ inf(Ω(π)) ∈ F}.

These winning conditions are very simple from a topological point of view,

in fact all these games are Borel games, and hence they are determined as

shown by Martin [Mar75].

For parity and Muller games, there are even stronger determinacy

results regarding the complexity of the winning strategies.

Theorem 2.5 (Emerson & Jutla [EJ91]). Every parity game is determined in

positional strategies.

Theorem 2.6 (Gurevich & Harrington [GH82], and McNaughton [McN93]).
Every Muller game is determined in finite memory strategies.

Büchi games also enjoy positional determinacy since they can easily be

translated into parity games with only two priorities. For a direct proof see

[GTW02].

19

Part I

Order Invariance and Local

Orderings

3 order-invariance vs.

counting in mso

Certain properties are easily definable on structures that are equipped with

particular relations. For example, on structures with a successor relation

and on linearly ordered structures, we can easily express in MSO that the

cardinality of the universe is even by stating that the set containing every

other element of the order starting with the smallest one does not contain

the largest element. We will see later that MSO fails to define this query

(EVEN) on the class of plain sets. On the other hand, the property itself

is not tied to ordered structures, and it is especially not a property of the

order. Rather, since we are not interested in the actual elements contained

in the set described above, the truth of the formula does not depend on a

particular linear order at all.

Intuitively, whenever a property is definable on a class of ordered struc-

tures such that the formula does not make a statement about the order but

rather uses the order without depending on a particular interpretation, we

say that the property is order-invariantly definable. This concept is made

more precise in the following definition.

Definition 3.1. Let τ be a relational vocabulary, and let φ ∈ L[τ ∪̇ {<}], i.e. φ
may contain an additional relation symbol <. Then φ is called order-invariant
on a classK of τ-structures if and only if (A, <1) ⊧ φ ⇐⇒ (A, <2) ⊧ φ for

all A ∈ K and all linear orders <1 and <2 on A.

Considering order-invariant MSO, Courcelle investigated the relation-

ship between order-invariant MSO and countingMSO (short CMSO), an

23

3 Order-Invariance vs. Counting in MSO

extension of MSO that allows to reason about cardinalities of sets modulo

fixed integers. He showed that order-invariant MSO collapses to CMSO on

the class of trees [Cou96], conjecturing that order-invariant MSO is strictly

stronger than CMSO for general graphs [Cou96, Conjecture 7.3]. Further,

results by Lapoire [Lap98] are claimed to imply the collapse of MSO<-inv to

CMSO on all classes of bounded tree width.

This chapter is devoted to the proof of Courcelle’s conjecture showing

that this collapse does not occur in general. Towards this goal, we first

introduce an Ehrenfeucht-Fraïssé game capturing equivalence of structures

with respect to CMSO formulae and present a class of grid-like structures

that is definable in order-invariant MSO but not in CMSO.

3.1 Counting MSO

The notion of (modulo-)counting monadic second-order logic (CMSO) can

be introduced in two different, but nonetheless equivalent, ways. The first is

to regard CMSO as an extension of MSO by modulo-counting first-order

quantifiers.

Definition 3.2. Let τ be a signature and M ⊆ N+ a set of moduli, then

◆ every formula φ ∈MSO[τ] is also a formula in CMSO
(M)[τ], and

◆ if φ(x) ∈ CMSO
(M)[τ] and m ∈ M, then ∃(m)x .φ(x) ∈ CMSO

(M)[τ].

If we do not restrict the set of modulo-counting quantifiers being used,

we obtain the full language CMSO[τ] = CMSO
(N+)[τ]. The semantics of

plain MSO formulae is as expected, and we have A ⊧ ∃(m)x .φ(x) if and
only if ∣{a ∈ A ∶ A ⊧ φ(a)}∣ ≡ 0 (mod m). The quantifier rank qr(ψ) of a
CMSO[τ] formula ψ is defined as for MSO-formulae with the additional

rule that qr (∃(m)x .φ(x)) = 1 + qr(φ), i.e. we do not distinguish between

different kinds of quantifiers.

Here we use an alternative but equivalent definition of CMSO, namely

the extension of the MSO language by monadic second-order predicates

C(m) which hold true of a set X if and only if ∣X∣ ≡ 0 (mod m). As in
the definition above, formulae of the fragment CMSO

(M)[τ]may only use

predicatesC(m) wherem ∈ M. The back-and-forth translation can be carried

out along the following equivalences which increase the quantifier rank by

24

3.1 Counting MSO

at most one in each step:

∃(m)x .φ(x) ≡ ∃X(C(m)(X) ∧ ∀x(Xx ↔ φ(x))) and

C(m)(X) ≡ ∃(m)x .Xx .

Hence, if we obtain ψ′ as the translation of a formula ψ, then qr(ψ′) ≤
2 ⋅ qr(ψ).

Furthermore, the introduction of additional predicates C(m ,r) (or,

equivalently, additional modulo-counting quantifiers ∃(m ,r)) stating for a

set X that ∣X∣ ≡ r (mod m) does not increase the expressive power since
they can be simulated as follows (increasing the quantifier rank by r + 1):

C(m ,r)(X) ≡ ∃X0(“X0 ⊆ X” ∧ “∣X0∣ = r” ∧ “C(m)(X ∖ X0)”) ,

where all subformulae are easily expressible in MSO.

It is an easy observation that, generalising the idea of how to express

even on ordered structures, every CMSO formula is equivalent over the

class of finite structures to an order-invariant MSO formula.

Proposition 3.3. CMSO ⊆MSO<-inv.

Proof. Amodulo-counting quantifier ∃(q) can be translated in the following

way, stating that the set of elements satisfying φ can be partitioned into

q subsets X0 , . . . , Xq−1, each containing every q-th element satisfying φ,
such that X0 contains the minimal and Xq−1 contains the maximal element

satisfying φ:

∃(q)x .φ(x) ∶= ∃X∃X0 . . . ∃Xq−1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∀x (Xx ↔ φ(x)) ∧ “{X0 , . . . , Xq−1} is a partition of X”
∧ ∃x(X0x ∧ ∀y(Xy → x ≤ y))

∧ ∃x(Xq−1x ∧ ∀y(Xy → x ≥ y))

∧ ∀x∀y (Sφ ,<(x , y) → (
q−1
⋀
i=0

X ix ↔ X i+1 (mod q)y))

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where Sφ ,< defines the successor relation on the subset of elements defined

by φ that is induced by an arbitrary order < on the universe of the structure.

Note however, that the quantifier rank of the translated formula grows

depending on the parameter in the modulo-counting quantifier. q.e.d.

25

3 Order-Invariance vs. Counting in MSO

3.2 The Ehrenfeucht-Fraïssé method for CMSO

In this section, we develop the tools to prove inexpressibility results on

countingMSO bymeans of the Ehrenfeucht-Fraïssé method, which provides

a game-theoretic characterisation of the indistinguishability of structures

with respect to CMSO sentences.

Definition 3.4. Two τ-structuresA andB are called rank r/mod Mequivalent,
A ≡Mr B, if A ⊧ φ if and only if B ⊧ φ for all φ ∈ CMSO

(M)[τ] with
qr(φ) ≤ r.

The Ehrenfeucht-Fraïssé game capturing the expressiveness of MSO

parametrised by the quantifier-rank (cf. [EF99, Lib04]) can be naturally

extended to a game capturing the expressiveness of CMSO parametrised

by the quantifier rank and the set of moduli being used in the cardinality

predicates or counting quantifiers.

Viewing CMSO as MSO with additional quantifiers ∃(m)x .φ(x) for all
m in a fixed set M leads to a new type of move which is also described by

Nurmonen in the context of extending FO by modulo-counting quantifiers

[Nur00]. Since a modulo-counting quantifier actually combines notions

of a first-order and a monadic second-order quantifier in the sense that it

makes a statement about the cardinality of a certain set of elements, but,

on the other hand, behaves like a first-order quantifier binding an element
variable and making a statement about that particular element, the move

capturing modulo-counting quantification consists of two phases. First,

Spoiler chooses one of the structures A orB, say A, where he selects a set

of elements S ⊆ A. Duplicator answers with a set D ⊆ B such that ∣S∣ ≡ ∣D∣
(mod M). In the second phase of the move, Spoiler and Duplicator select

elements b ∈ B and a ∈ A, respectively, such that a ∈ S if and only if b ∈ D.
After the move, reflecting the first-order nature of the quantifier, only the

two selected elements a and b are remembered and contribute to the next

position in the game, whereas the information about the chosen sets is

discarded.

Due to the huge effort an additional move demands from descriptions

of winning strategies for the two players, we prefer the approach to CMSO

via second-order cardinality predicates, which yields an Ehrenfeucht-Fraïssé

game that allows a much clearer description of winning strategies. Since we

do not use additional quantifiers, we get along with exactly the same types of

26

3.2 The Ehrenfeucht-Fraïssé method for CMSO

moves as in the Ehrenfeucht-Fraïssé game for MSO, and instead we modify

the winning condition to take the new predicates into account.

Towards this end, we first introduce a suitable concept of partial iso-

morphisms between structures.

Definition 3.5. With any structure A and any set M ⊆finN+ we associate
the (first-order) power set structure AM ∶= (P(A), (C(m ,r)) m∈M

0≤r<m
), where

the predicates C(m ,r) are interpreted by the set of those elements x ∈ P(A)
such that ∣x∣ ≡ r (mod m). (Note that first-order predicates in the power

set structure AM naturally correspond to second-order predicates in A.)

Let A andB be τ-structures, and let M ⊆finN+ be a fixed set of mod-

uli. Then the mapping (A1 , . . . ,As , a1 , . . . , at) ↦ (B1 , . . . , Bs , b1 , . . . , bt) is
called a twofold partial isomorphism between A andB with respect to M if

(1) (a1 , . . . , at) ↦ (b1 , . . . , bt) is a partial isomorphism between the ex-

pansions (A,A1 , . . . ,As) and (B, B1 , . . . , Bs) and

(2) (A1 , . . . ,As) ↦ (B1 , . . . , Bs) is a partial isomorphism betweenAM and

BM .

3.2.1 The Ehrenfeucht-Fraïssé game

We propose the following Ehrenfeucht-Fraïssé game to capture the expres-

siveness of CMSO where the use of moduli is restricted to a (finite) set M
and formulae of quantifier rank at most r.

Definition 3.6 (Ehrenfeucht-Fraïssé game for CMSO). Let M ⊆finN+ and
r ∈ N. The r-round (modM) Ehrenfeucht-Fraïssé game GM

r (A,B) is played

by Spoiler and Duplicator on τ-structures A andB. In each turn, Spoiler

can choose between the following types of moves.

◆ Point move: Spoiler selects an element in one of the structures, and

Duplicator answers by selecting an element in the other structure.

◆ Set move: Spoiler selects a set of elements X in one of the structures,

and Duplicator responds by choosing a set of elements Y in the other

structure.

After r = s + t rounds, when the players have chosen pairs of sets

(A1 , B1), . . . (As , Bs) as well as pairs of elements (a1 , b1), . . . , (at , bt) in
the two structures A and B, Duplicator wins the game if and only if

27

3 Order-Invariance vs. Counting in MSO

(A1 , . . . ,As , a1 , . . . , at) ↦ (B1 , . . . , Bs , b1 , . . . , bt) is a twofold partial iso-

morphism between A andB with respect to M.

First note that, although Duplicator is required to answer a set move

X by a set Y such that ∣X∣ ≡ ∣Y ∣ (mod M) in order to win, we do not

have to make this explicit in the rules of the moves since these cardinality

constraints are already imposed by the winning condition (X and Y would

not define a twofold partial isomorphism if they did not satisfy the same

cardinality predicates). Furthermore, for M = ∅ or M = {1}, the resulting
game GM

r (A,B) corresponds exactly to the usual Ehrenfeucht-Fraïssé game

for MSO.

3.2.2 Rank r/mod M-Types

A rank r/mod M-CMSO type T in s free second-order variables and t free
first-order variables is a maximally consistent set of CMSO

(M)
formulae

φ(X , x) of quantifier rank at most r. Accordingly, the rank r/mod M-type
of the tuples U , a in a structure A is defined as

tp
M ,r
A (U , a) = {φ(X , x) ∶ φ ∈ CMSO

(M)[τ], qr(φ) ≤ r,
(A,U , a) ⊧ φ} .

By definition, (A,U , a) ≡Mr (B,V , b) if and only if tp
M ,r
A (U , a) =

tp
M ,r
B (V , b).

Definition 3.7. Let X = (X1 , . . . , Xs) and x = (x1 , . . . , xt) be sequences
of free second- and first-order variables, respectively. The rank r/mod M-

isomorphism type induced by U , a in A is defined as

φM ,0
A,U ,a

(X , x) = ⋀{φ ∶ φ ∈ tpM ,0
A (U , a)}

φM ,r+1
A,U ,a

(X , x) = ⋀
a∈A

∃xt+1φM ,r
A,U ,aa

(X , xxt+1)

∧ ∀xt+1 ⋁
a∈A

φM ,r
A,U ,aa

(X , xxt+1)

∧ ⋀
U⊆A

∃Xs+1φM ,r
A,UU ,a

(XXs+1 , x)

∧ ∀Xs+1 ⋁
U⊆A

φM ,r
A,US ,a

(XXs+1 , x) .

28

3.2 The Ehrenfeucht-Fraïssé method for CMSO

Note that (up to equivalence) tp
M ,0
A (U , a) contains only finitely many

atomic and negated atomic formulae such that the conjunction in the def-

inition above is finite. As we will prove in the following, the formula

φM ,r
A,U ,a

(X , x) intuitively describe those pairs of tuples (V , b) that are suffi-

ciently similar to (U , a) such that Duplicator would win an r-round Ehren-

feucht-Fraïssé game starting from the position described by the tuples. We

begin by proving the rather trivial fact that φM ,r
A,U ,a

indeed says that U , a
looks similar enough to itself.

Proposition 3.8. For all structures A, M ⊆fin N+, r ∈ N, and tuples U and a
in A

(1) qr(φM ,r
A,U ,a

(X , x)) = r, and
(2) (A,U , a) ⊧ φM ,r

A,U ,a
(X , x).

Proof. (1) Obviously follows from the definition.

(2) For r = 0, φM ,0
A,U ,a

(X , x) is the conjunction of all φ ∈ tpM ,0
A (U , a), and

hence, by definition of the rank r/mod M-type,A ⊧ φM ,0
A,U ,a

(U , a). For
r > 0, A ⊧ φM ,r

A,U ,a
(U , a) holds if

◆ A ⊧ ⋀a∈A ∃xt+1φM ,r−1
A,U ,aa

(U , axt+1),

◆ A ⊧ ∀xt+1⋁a∈A φM ,r−1
A,U ,aa

(U , axt+1),

◆ A ⊧ ⋀U⊆A ∃Xs+1φM ,r−1
A,UU ,a

(UXs+1 , a), and

◆ A ⊧ ∀Xs+1⋁U⊆A φM ,r−1
A,UU ,a

(UXs+1 , a).
Assuming that the claim is true for r − 1, the first formula holds if we

choose, in each conjunct, the element a for xt+1, and for each a chosen

for xt+1 in the second formula the disjunct for this particular a is true.

The same reasoning applies for the remaining two formulae. Hence, by

induction, A ⊧ φM ,r
A,U ,a

(U , a) for all r ∈ N. q.e.d.

Theorem 3.9. The following are equivalent:

(1) (A,U , a) ≡Mr (B,V , b)
(2) (B,V , b) ⊧ φM ,r

A,U ,a
(X , x)

(3) Duplicator wins GM
r (A,U , a,B,V , b).

Proof. (1) ⇒ (2) follows from Proposition 3.8.

29

3 Order-Invariance vs. Counting in MSO

(2) ⇔ (3): Let r = 0. (B,V , b) ⊧ φM ,0
A,U ,a

(X , x) if and only if (B,V , b) ⊧ φ
for all φ ∈ tp

M ,0
A (U , a), if and only if (U , a) ↦ (V , b) is a twofold

partial isomorphism between A and B, if and only if Duplicator wins

GM
0 (A,U , a,B,V , b).

r > 0: (B,V , b) ⊧ φM ,r
A,U ,a

(X , x)
iff B ⊧ ⋀a∈A ∃xt+1φM ,r−1

A,U ,aa
(V , bxt+1),

B ⊧ ∀xt+1⋁a∈A φM ,r−1
A,U ,aa

(V , bxt+1),
B ⊧ ⋀U⊆A ∃Xs+1φM ,r−1

A,UU ,a
(VXs+1 , b), and

B ⊧ ∀Xs+1⋁U⊆A φM ,r−1
A,UU ,a

(VXs+1 , b)
iff for all moves a ∈ A of Spoiler, Duplicator finds a b ∈ B, and

for all moves b ∈ B of Spoiler, Duplicator finds an a ∈ A
such that she wins the game GM

r−1(A,U , aa,B,V , bb), and
for all moves U ∈ A of Spoiler, Duplicator finds a V ∈ B, and
for all moves V ∈ B of Spoiler, Duplicator finds a U ∈ A
such that she wins the game GM

r−1(A,UU , a,B,VV , b).
(3) ⇒ (1): For r = 0, Duplicator wins the game GM

0 (A,U , a,B,V , b)
if (U , a) ↦ (V , b) is a twofold partial isomorphism between A and B.

Hence, (A,U , a) and (B,V , b) agree on all quantifier free formulae, and

(A,U , a) ≡M0 (B,V , b).
Let r > 0, and assume that Duplicator has a winning strategy in the

game GM
r (A,U , a,B,V , b). Then for all a ∈ A there is a b ∈ B (and vice

versa) such that she wins GM
r−1(A,U , aa,B,V , bb). By induction hypothesis,

(A,U , aa) ≡Mr−1 (B,V , bb). Consider a formula φ with qr(φ) = r. Then φ
is a Boolean combination of formulae that have a lower quantifier rank, or

that are of the form ∃xψ(x), ∀xψ(x), ∃Xψ(X), ∀Xψ(X), where qr(ψ) =
r − 1. Hence, for any such ψ(x), we have (A,U , aa) ⊧ ψ(x) if and only if

(B,V , bb) ⊧ ψ(x) (and analogously for ψ(X) and set moves). Thus, also

(A,U , a) ⊧ φ if and only if (B,V , b) ⊧ φ. q.e.d.

Corollary 3.10. LetA andB be τ-structures, r ∈ N, and M ⊆finN. Then the

following are equivalent:

(1) A ≡Mr B.

(2) Duplicator has a winning strategy in the r-round (modM) Ehrenfeucht-

Fraïssé game GM
r (A,B).

30

3.3 CMSO on disjoint unions of structures

Lemma 3.11. Every formula φ(X , x) ∈ CMSO
(M)

of quantifier rank r is
equivalent to a disjunction of r-mod-M-isomorphism types, in particular

⊧ φ(X , x) ↔⋁{φM ,r
A,U ,a

∶ A ∈ Str[τ], A ⊧ φ(U , a)} .

Proof. First of all, the disjunction is finite since there are only finitely

many non-equivalent formulae φM ,0
A,U ,a

as there are only finitely many non-

equivalent (negated) atomic τ-formulae, and assuming that there are only

finitely many non-equivalent formulae φM ,r
A,U ,a

, there are, by definition, also

only finitely many non-equivalent formulae φM ,r
A,U ,a

.

Assume thatB ⊧ φ(V , b), then φM ,r
B,V ,b

appears in the disjunction, and

hence, B ⊧ ⋁ Conversely, assume B ⊧ ⋁ Then B ⊧ φM ,r
A,U ,a

for

someA,U ⊆ A, and a ∈ AwithA ⊧ φ(U , a). ByTheorem 3.9, (B,V , b) ≡Mr
(A,U , a), and hence, alsoB ⊧ φ(V , b). q.e.d.

Then we obtain the following standard argument to prove non-

definability results.

Theorem 3.12. A class K of τ-structures is not definable in CMSO if and

only if, for every r ∈ N and everyM ⊆finN+, there are τ-structuresAM ,r ∈ K

andBM ,r /∈ K such that AM ,r ≡
M
r BM ,r .

Proof. The “if ” direction is straightforward. Considering the “only if ” direc-

tion assume that there exist r ∈ N and M ⊆finN+ such that all A,B ∈ Str[τ]
that are neither both inK nor both not inK are not r-mod-M-equivalent.

Then φ ∶= ⋁{φM ,r
A ∶ A ∈ K} definesK. q.e.d.

3.3 CMSO on disjoint unions of structures

It is possible formany logics such as FO andMSO to deduce the theory of the

disjoint union of two structures from the theories of the separate structures.

This result, which is also one of the central tools exploited and investigated in

Chapter 5, does also hold for countingMSO. Depending on the intended use

there are two approaches towards proving it. The approach we are using later

and which is also carried out by Courcelle [Cou90, Lemma 4.5] for CMSO

is to specify a translation of sentences talking about the disjoint union of

two structures into a Boolean combination of sentences each talking about

31

3 Order-Invariance vs. Counting in MSO

one of the individual structures. At this point we are rather interested in

definability issues, so we use an Ehrenfeucht-Fraïssé game-based technique

showing that winning strategies for Duplicator in separate games on two

pairs of structures can be combined into a winning strategy on the pair of

disjoint unions of the structures.

Lemma 3.13. Let A1 ,A2 ,B1 , andB2 be τ-structures such that A1 ≡
M
r B1

and A2 ≡
M
r B2. Then A1 ∪̇A2 ≡

M
r B1 ∪̇B2.

Proof. Consider the game on A ∶= A1 ∪̇A2 andB ∶= B1 ∪̇B2. A Spoiler’s

pointmove inA (resp., inB) is answered byDuplicator according to her win-

ning strategy in either GM
r (A1 ,B1) or G

M
r (A2 ,B2) depending on whether

Spoiler chose and elements from A1 or A2 (resp, B1 or B2). A set move

S ⊆ A (analogous for S ⊆ B) is decomposed into two subsets S1 ∶= S∩A1 and

S2 ∶= S∩A2, and is answered byDuplicator by the setD ∶= D1∪D2 consisting

of the setsD1 andD2 chosen according to her winning strategies as responses

to S1 and S2 in the respective games GM
r (A1 ,B1) and G

M
r (A2 ,B2).

Since A1 and A2 as well as B1 and B2 are disjoint, we have ∣S∣ = ∣S1∣+∣S2∣
and ∣D∣ = ∣D1∣ + ∣D2∣. Furthermore, as the sets D1 and D2 are chosen ac-

cording to Duplicator’s winning strategies in the games on A1 andB1, and

A2 and B2, respectively, ∣S1∣ ≡ ∣D1∣ (mod M) and ∣S2∣ ≡ ∣D2∣ (mod M).
Since ≡ (mod M) is a congruence relation with respect to addition, we have

that ∣S∣ ≡ ∣D∣ (mod M). It is easily verified that the sets and elements cho-

sen according to this strategy indeed define a twofold partial isomorphism

between A andB. q.e.d.

As a direct corollary we obtain the following result that will be used

in the inductive step in the forthcoming proofs and intuitively states that

remembering the origin of elements does not render disjoint unions of

indistinguishable components distinguishable.

Corollary 3.14. LetA1 ,A2 ,B1 , andB2 be τ-structures, such thatA1 ≡
M
r B1

and A2 ≡
M
r B2. Then (A1 ∪̇A2 ,A1) ≡

M
r (B1 ∪̇B2 , B1), where A1 and B1

denote the universes of A1 andB1, respectively.

Proof. We consider the following τ ∪̇ {P}-expansions of the given structures:
A′1 ∶= (A1 ,A1), B

′
1 ∶= (B1 , B1), A

′
2 ∶= (A2 ,∅), and B′2 ∶= (B2 ,∅). It is

immediate that

(1) A1 ≡
M
r B1 implies (A1 ,A1) ≡

M
r (B1 , B1), and

32

3.3 CMSO on disjoint unions of structures

(2) A2 ≡
M
r B2 implies (A2 ,∅) ≡

M
r (B2 ,∅)

sinceDuplicator can obviously win the respective Ehrenfeucht-Fraïssé games

on the expanded structures using the same strategies as in the games witness-

ing the equivalences on the left-hand side. The claim follows by applying

the previous lemma to the τ ∪̇ {P}-expansions. q.e.d.

It is well known that MSO exhibits a certain weakness regarding the

ability to specify cardinality constraints on sets, i.e. structures over an empty

vocabulary.

Proposition 3.15. LetA andB be ∅-structures, and let r ∈ N. ThenA ≡r B

if ∣A∣, ∣B∣ ≥ 2r .

A proof using Ehrenfeucht-Fraïssé games is presented, for example,

by Libkin [Lib04, Proposition 7.12]. By adapting this proof, we show that

basically the same holds for CMSO.

Lemma 3.16. Let A and B be ∅-structures, M ⊆finN+, and r ∈ N. Then

A ≡Mr B if ∣A∣, ∣B∣ ≥ (2r+1 − 4) lcm(M) and ∣A∣ ≡ ∣B∣ (mod M).

Proof. We prove by induction on the number of rounds that Duplicator wins

the (mod M) r-round Ehrenfeucht-Fraïssé game GM
r (A,B). For r = 0 and

r = 1 the claim is obviously true. Let r > 1, assume that the claim holds for

r−1, and consider the firstmove of the r-round game. We assume that Spoiler

makes his move in A since the reasoning in the other case is completely

symmetric.

If Spoiler makes a set move S ⊆ A, we consider the following cases:

(1) ∣S∣ < (2r−4)⋅ lcm(M) (or ∣A−S∣ < (2r−4)⋅ lcm(M)). ThenDuplicator

selects a set D ⊆ B such that ∣D∣ = ∣S∣ (or ∣B − D∣ = ∣A− S∣), and hence

S ≅ D and A− S ≡Mr−1 B − D (or A− S ≅ B − D and S ≡Mr−1 D).
(2) ∣S∣, ∣A − S∣ ≥ (2r − 4) ⋅ lcm(M). Then Duplicator selects a set D ⊆ B

such that ∣D∣ ≡ ∣S∣ (mod M) and ∣D∣, ∣B − D∣ ≥ (2r − 2) ⋅ lcm(M). In
fact, she chooses for D half of the elements plus ℓ < lcm(M) additional
elements to fulfil the cardinality constraints ∣D∣ ≡ ∣S∣ (mod M). Then,

for the set B − D of non-selected elements, we have

∣B − D∣ ≥ 1

2
((2r+1 − 4) lcm(M)) − ℓ

≥ (2r − 2) lcm(M) − lcm(M) ≥ (2r − 4) lcm(M)

33

3 Order-Invariance vs. Counting in MSO

x

y

Figure 3.1. Grid with distinguished horizontal and vertical edges, a definable

diagonal-edge relation

for all ℓ satisfying 0 ≤ ℓ < lcm(M). Since ∣D∣ = ∣B − D∣ + 2ℓ, obviously
∣D∣ ≥ (2r − 4) lcm(M) as well.

Thus, in both cases, by the induction hypothesis we get S ≡Mr−1 D and A −
S ≡Mr−1 B − D. Hence, by Corollary 3.14 (A, S) ≡Mr−1 (B,D), i.e. Duplicator
has a winning strategy in the remaining (r − 1)-round game from position

(S ,D).
If Spoiler makes a point move s ∈ A, Duplicator answers by choosing an

arbitrary element d ∈ B. Similar to Case 1 above, we observe that ({s}, s) ≅
({d}, d) and A − {s} ≡Mr−1 B − {d} by the induction hypothesis. Thus,

by Lemma 3.13, (A, s) ≡Mr−1 (B, d) implying that Duplicator has a winning

strategy for the remaining r − 1 rounds from position (s, d). q.e.d.

3.4 The Separating Example

We will first give a brief description of our example showing that MSO<-inv
is strictly more expressive than CMSO. We consider a property of two-

dimensional grids, namely that the number of rows divides the number of

columns. This property is easily definable in MSO for grids that are given

as directed graphs with two edge relations, one for the horizontal edges

pointing rightwards, and one for the vertical edges pointing upwards, by

defining a new relation of diagonal edges combining one step rightwards

and one step upwards wrapping around from the top border to the bottom

border but not from the right to the left border. Note that there is a path

following those diagonal edges starting from the bottom-left corner of the

34

3.4 The Separating Example

grid and ending in the top-right corner if and only if the vertical dimension

divides the horizontal dimension of the grid (see Figure 3.1). Thus, for our

purposes, we have to weaken the structure in the sense that we hide some

information that remains accessible toMSO<-inv-formulae but not to CMSO

formulae.

An appropriate loss of information is achieved by replacing the two edge

relations with their reflexive symmetric transitive closure, i.e. to consider

grids given as structures with two equivalence relations which provide a

notion of rows and columns. Obviously, notions like corner and border

vertices as well as the notion of an order on the rows and columns that were

important for the MSO-definition of the divisibility property are lost, but

clearly, all these notions can be regained in presence of an arbitrary linear

order. First, the order allows us to uniquely define an element (e.g. the

<-least element) to be the bottom-left corner of the grid, and second, the

order induces successor relations on the set of columns as well as on the set

of rows, from which both horizontal and vertical successors of any vertex

can be deduced. Since the divisibility property is obviously invariant with

respect to the ordering of the rows or columns, this allows for expressing

it in MSO<-inv. The remainder of this section is devoted to developing the

arguments showing that CMSO fails to express this property on the following

class of grid-like structures.

Definition 3.17. A cliquey (k, ℓ)-grid is a {∼h , ∼v}-structure that is isomor-

phic toGkℓ ∶= ({0, . . . , k − 1} × {0, . . . , ℓ − 1}, ∼h , ∼v), where

∼h ∶= {((x , y), (x′ , y′)) ∶ x = x′} and
∼v ∶= {((x , y), (x′ , y′)) ∶ y = y′} ,

i.e. ∼h consists of exactly k equivalence classes (called rows), each containing
ℓ elements, and ∼v consists of exactly ℓ equivalence classes (called columns),
each containing k elements, such that every equivalence class of ∼h intersects

every equivalence class of ∼v in exactly one element and vice versa.

A horizontally coloured cliquey (k, ℓ)-grid is a {∼v , P0 , . . . , Pk−1}-
structure that is isomorphic to

Gkℓ ∶= ({0, . . . , k − 1} × {0, . . . , ℓ − 1}, ∼v , P0 , . . . , Pk−1)

35

3 Order-Invariance vs. Counting in MSO

●

●

●

⋮

●

●

●

⋮

●

●

●

⋮

●

●

●

⋮

⋯

⋯

⋯

ℓ

k

Figure 3.2. A cliquey (k, ℓ)-grid

P2

P1

P0

Figure 3.3. A horizontally coloured cliquey (3, 5)-grid

where

∼v ∶= {((x , y), (x′ , y′)) ∶ y = y′} and
Pi ∶= {i} × {0, . . . , ℓ − 1}, for all i ∈ {0, . . . , k − 1} .

That is, a horizontally coloured cliquey (k, ℓ)-grid is obtained from the

{∼v}-reduct of a cliquey (k, ℓ)-grid by introducing new unary predicates

{P0 , . . . , Pk−1} (in the following referred to as colours), such that each set Pi
corresponds to exactly one of the former ∼h equivalence classes.

The name originates from the initial intuition of replacing the paths

defined by the vertical edges and the horizontal edges in the grid in Figure 3.1

by cliques. However, the formalisation via equivalence relations (the classes

of which correspond to the mentioned cliques) allows for a more elegant

exposition.

The class is first-order definable by a sentence ψgrid stating that

◆ ∼v and ∼h are equivalence relations, and

◆ every pair consisting of one equivalence class of ∼h and ∼v each has

exactly one element in common

as these properties are sufficient to enforce the desired grid-like structure.

36

3.4 The Separating Example

Note that even the second property is first-order definable since every equiv-

alence class is uniquely determined by any of its elements.

The following two lemmas justify the introduction of the notion of

horizontally coloured cliquey grids for use in the forthcoming proofs.

Lemma3.18. LetGcol
kℓ1 ,G

col
kℓ2 ,G

col
kℓ′1

, andGcol
kℓ′2

be horizontally coloured cliquey

grids such thatGcol
kℓ1 ≡

M
r Gcol

kℓ′1
andGcol

kℓ2 ≡
M
r Gcol

kℓ′2
. ThenGcol

k ,ℓ1+ℓ2 ≡
M
r Gcol

k ,ℓ′1+ℓ′2
.

Proof. Note that, since there are no horizontal edges in horizontally coloured
cliquey grids and the vertical dimension of all grids is k, Gcol

k ,ℓ1+ℓ2 is the

disjoint union of the two smaller horizontally coloured cliquey gridsGcol
kℓ1

andGcol
kℓ2 , and of course, the same holds forGcol

k ,ℓ′1+ℓ′2
. Thus, the claim follows

by Lemma 3.13. q.e.d.

Lemma 3.19. LetGcol
kℓ ≡

M
r Gcol

kℓ′ . ThenGkℓ ≡
M
r Gkℓ′ .

Proof. For each fixed horizontal dimension k,Gk ,ℓ is interpretable inGcol
k ,ℓ

by a one-dimensional quantifier-free interpretation since we can define the

horizontal equivalence relation ∼h in terms of the colours by

x ∼h y ≡
k
⋁
i=1

Pix ∧ Pi y . q.e.d.

Actually, thinking in terms of Ehrenfeucht-Fraïssé games, the argu-

ment implies that Duplicator wins a game on cliquey grids using the same

strategy that is winning in the corresponding game on coloured grids since

a strategy preserving the colours of selected elements particularly preserves

the equivalence relation ∼h .

Our next goal is to obtain a result about the expressive limits of CMSO

on cliquey grids. In particular, we are interested in a result similar to

Lemma 3.16 for sets aboutwhen two gridswith a different number of columns

are indistinguishable by a CMSO sentence.

Before approaching this lemma, we will first prove a combinatorial and

rather technical result about the existence of equivalence relations satisfy-

ing certain constraints, which we need to synthesise Duplicator’s winning

strategy in the forthcoming game.

Definition 3.20. Two numbers a, b ∈ N are called threshold t equal (modM),

denoted a =Mt b, if

37

3 Order-Invariance vs. Counting in MSO

(1) a = b or
(2) a, b ≥ t and a ≡ b (mod M).

Intuitively, a =Mt b means that the numbers are equal if they are small,

or that they are at least congruent modulo all m ∈ M if they are both larger

than or equal to the threshold t.

Lemma 3.21. For every p, t ∈ N, and M ⊆finN+, we can choose an arbitrary

threshold T ≥ p ⋅ (t + lcm(M) − 1) such that for all sets A and B with

∣A∣ =MT ∣B∣ and for every equivalence relation ≈A on A of index at most p
there exists an equivalence relation ≈B on B and a bijection g∶A/≈A → B/≈B
satisfying ∣{a′ ∈ A ∶ a ≈A a′}∣ =Mt ∣g({a′ ∈ A ∶ a ≈A a′})∣ for all a ∈ A.

Proof. We let {a1 , . . . , ap′}, where p′ ≤ p denotes the index of ≈A, be a

systemof class representatives ofA/≈A , andwe let [a]≈A ∶= {a′ ∈ A ∶ a′ ≈A a}
denote the equivalence class of a in A. Note that we will usually omit the

subscript ≈A if it is clear from the context and instead reserve the letters a
and b for elements denoting equivalence classes in A and B, respectively.
Furthermore, a set will be called small in the following if it contains less

than t elements and large otherwise.
The equivalence relation ≈B on B is constructed by partitioning the

set into p′ disjoint non-empty subsets {B1 , . . . , Bp′} as follows. If ∣A∣ = ∣B∣,
we choose a set B i with exactly ∣[a i]∣many elements for each class [a i]. If
∣A∣, ∣B∣ ≥ T , we have to distinguish between the treatment of small and large

classes. Since ∣A∣ ≥ T ≥ p ⋅ (t + lcm(M)− 1), and lcm(M) ≥ 1, and the index
of ≈A is at most p, at least one of the equivalence classes contains at least t
elements, i.e. it is large, and without loss of generality, we assume that this is

the case for [a1]. For each small class [a i], we choose a set B i with exactly

∣[a i]∣many elements. If [a i] is large, we choose a set B i containing t+ℓ many

elements where ℓ is the smallest non-negative integer such that ∣[a i]∣ ≡ ∣B i ∣

(mod M). The number of elements selected according to these rules is at

most p ⋅ (t + lcm(M) − 1) ≤ T ≤ ∣B∣. Since [a1] is large by assumption,

any possibly remaining elements in B that have not been assigned to one of

the subsets B1 , . . . , Bp′ yet can be safely added to B1 without violating the

condition that ∣[a1]∣ ≡ ∣B1∣ (mod M).
This partitioning uniquely defines the equivalence relation ≈B ∶=

⋃
p′

i=1(B i × B i) on B. By selecting an arbitrary element of each B i , we get a

set of class representatives {b1 , . . . , bp′} which directly yields the bijection

38

3.4 The Separating Example

g∶ [a i] ↦ [b i] for all 1 ≤ i ≤ p′ satisfying ∣[a]∣ =Mt ∣g([a])∣ for all a ∈ A by

construction. q.e.d.

Descriptions of winning strategies for Duplicator in Ehrenfeucht-

Fraïssé games usually involve thresholds depending on the number of rounds

that remain to be played that yield notions such as sets being large enough
or elements being far enough apart to render the logic indifferent about the
exact size or distance.

The following lemma that extends the result on CMSO-equivalence of

large and similar sets to large and similar grids states that threshold t equality
(mod M) yields an appropriate notion of sets being similar enough to be

indistinguishable by CMSO formulae. We will prove this by an induction on

the number of rounds to be played in an Ehrenfeucht-Fraïssé game on two

cliquey grids with the same number of rows, and use the preceding lemma

to show that Duplicator has a winning strategy against Spoiler due to certain

equivalence relations that she can construct on her grid to appropriately

answer Spoiler’s set moves. To obtain a condition on the number of rows

that are sufficient for Duplicator to do so repeatedly, we consider, for fixed

parameters p ∈ N (determined by the grid) and M ⊆finN+ (determined by

the allowed moduli), a function fp ,M ∶ N → N such that, for all r ∈ N+,
letting t = fp ,M(r − 1) we can choose T = fp ,M(r) in the previous lemma.

A solution to the recursive inequalities obtained by the condition that T =
fp ,M(r) ≥ p ⋅ (fp ,M(r− 1)+ lcm(M)− 1), which was imposed by Lemma 3.21,

is fp ,M(r) = 2 ⋅ (pr − 1) ⋅ lcm(M).

Lemma 3.22. Let M ⊆finN+, r ∈ N and k > 1 be fixed. Then for f (r) ∶=
f2k ,M(r) = (2kr+1 − 2) lcm(M), as given above,Gkℓ1 ≡

M
r Gkℓ2 if ℓ1 =Mf (r) ℓ2.

Proof. As justified by Lemma 3.19, we consider the r-round (modM) Ehren-

feucht-Fraïssé game on the corresponding horizontally coloured cliquey

gridsGcol
kℓ1 andGcol

kℓ2 , and we show by induction on the number of rounds

that Duplicator has a winning strategy in this game.

Intuitively, the proof proceeds as follows. Spoiler’s set move induces an

equivalence relation determined by the colours of the elements he chooses

on the set of columns forming the grid he plays in, and we exploit the

previous lemma to show that Duplicator is actually able to construct an

equivalence relation on the columns of the other grid that is similar in

the sense that corresponding equivalence classes satisfy certain cardinality

39

3 Order-Invariance vs. Counting in MSO

Gcol
kℓ1

⋯ ⋯ ⋯

Figure 3.4. Spoiler’s set move

Gcol
kℓ1

⋯ ⋯ ⋯

Figure 3.5. Equivalence relation induced by Spoiler’s move—the grid falls into ≤ 2
k

classes

constraints. Since the grids can be regarded as disjoint unions of these

equivalence classes, we can argue by induction that corresponding subparts

of the two grids, being similar enough, cannot be distinguished during the

remaining r − 1 rounds of the game. A point move can basically be regarded

as a singleton-set move.

Assume first that Spoiler performs a set move. The case where ℓ1 = ℓ2
is trivial since grids of the same size are isomorphic. Thus, we assume in the

following that ℓ1 , ℓ2 ≥ f (r) and ℓ1 ≡ ℓ2 (mod M). The claim is obviously

true for r = 0, and hence we assume that it holds for r − 1 and proceed

with the inductive step. As before, we assume without loss of generality that

Spoiler makes his moves inGcol
kℓ1 since the other case is symmetric.

A coloured k-column Ccol
k is a {∼v , P1 , . . . , Pk}-structure that is isomor-

phic to Gcol
k ,1 , i.e. each coloured grid can be regarded as a disjoint union

of coloured columns. Given a subset S of vertices of a grid and one of its

coloured k-columns C with universe C, the colour-type of C induced by S is
defined as the isomorphism type of the expansion (C, S ∩ C) denoted by

tp(C, S). Given a set F of k-columns, each subset S of all of their vertices
gives rise to an equivalence relation ≈S on F by virtue of C1 ≈S C2 if and

only if tp(C1 , S) = tp(C2 , S). Note that the index of ≈S is at most 2k .

Assume, Spoiler performs a set move and chooses a subset S inGcol
kℓ1 =

C1 ∪̇⋯ ∪̇Cℓ1 , see Figure 3.4. As described above, S induces an equivalence

relation ≈S with at most 2k equivalence classes on the set F = {C1 , . . . ,Cℓ1}

40

3.4 The Separating Example

Gcol
kℓ1

Gcol
kℓ2

s ≤ f (r − 1)

⋯ ⋯

s > f (r − 1) s

⋯

s

s

⋯

d = f (r − 1) + x s

⋯

d

≅ ≅≡Mr−1 ≡Mr−1

Figure 3.6. Duplicator’s response yielding equivalent matching parts

of columns forming the grid, see Figure 3.5. Since ℓ1 , ℓ2 ≥ f (r), for p = 2k ,
t = f (r − 1) and M as given, the previous lemma ensures the existence of

an equivalence relation ≈′S on the set F ′ = {C′1 , . . . ,C
′
ℓ2} of columns on the

Duplicator’s gridGcol
kℓ2 as well as a bijection g mapping equivalence classes

of columns in one grid to equivalence classes in the other one such that the

cardinalities of the corresponding equivalence classes are threshold t equal
(mod M).

Given that the index of both ≈S and ≈
′
S is p′ ≤ p = 2k , we can assume

{C1 , . . . ,Cp′} and {C
′
1 , . . . ,C

′
p′} to be the sets of class representatives of ≈S

and ≈′S , respectively. Duplicator now selects the unique set D of elements

such that tp(C, S) = tp(C′ ,D) for all 1 ≤ i ≤ p′, C ∈ [Ci] and C′ ∈ g([Ci]),

see Figure 3.6.

For each 1 ≤ i ≤ p′, we let ⟨Ci⟩ ∶= G
col
kℓ1 ∩ [Ci] and ⟨C

′
i⟩ ∶= G

col
kℓ2 ∩ [C

′
i]

denote the substructures of the gridsGcol
kℓ1 andGcol

kℓ2 induced by the sets of

columns [Ci] and [C
′
i], respectively. By construction, we have ∣[Ci]∣ =

M
f (r−1)

∣[C′i]∣ for all i. Thus, depending on whether [Ci] (and hence [C′i]) are

small or large with respect to the threshold f (r − 1), either ⟨Ci⟩ ≅ ⟨C
′
i⟩

or ⟨Ci⟩ ≡
M
r−1 ⟨C

′
i⟩ by the induction hypothesis. Since S and D induce the

same colour-types on the columns in [Ci] and [C
′
i], respectively, we have

(⟨Ci⟩, S ∩ ⟨Ci⟩) ≡
M
r−1 (⟨C

′
i⟩,D ∩ ⟨C′i⟩) for all i.

41

3 Order-Invariance vs. Counting in MSO

Thus, a repeated application of Lemma 3.13 shows that Duplicator has a

winning strategy in the remaining rounds of the game GM
r−1(G

col
kℓ1 ,G

col
kℓ2)

from position (S ,D).
If Spoiler makes a point move s, say in column C1 of the grid Gcol

kℓ1 ,

Duplicator picks an arbitrary element d of the same colour in her grid, say in

column C′1. As the substructures consisting of just the columns containing

the chosen elements are isomorphic, i.e. (C1 , s) ≅ (C′1 , d), and by the induc-

tion hypothesis we have C2 ∪̇⋯ ∪̇Cℓ1 ≡
M
r−1 C

′
2 ∪̇⋯ ∪̇C′ℓ2 , Duplicator has a

winning strategy in the remaining (r − 1)-round game from position (s, d)
by Lemma 3.13. q.e.d.

Proposition 3.23. The classKdiv ∶= {Gkℓ ∶ k ∣ ℓ } is not definable in CMSO.

Proof. We show that, for any choice of r ∈ N and M ⊆finN+, there are

k, ℓ1 , ℓ2 ∈ N such that Gkℓ1 ∈ K, Gkℓ2 /∈ K, and Gkℓ1 ≡
M
r Gkℓ2 which

contradicts the CMSO-definability ofK.

Let r ∈ N and M ⊆finN+ be fixed. We choose s ≥ r + 1 such that 2s ∤

lcm(M). Let k = 2s , ℓ1 = 2kr+1 lcm(M), and ℓ2 = ℓ1 + lcm(M). Obviously,

ℓ1 and ℓ2 satisfy the conditions of Lemma 3.22, and thusGkℓ1 ≡
M
r Gkℓ2 .

Furthermore, ℓ1 = k ⋅ 22
s ⋅r−s+1 lcm(M), and hence k ∣ ℓ1 andGkℓ1 ∈ K.

But k ∤ ℓ2 = ℓ1 + lcm(M) by the choice of s, and henceGkℓ2 /∈ K. q.e.d.

Theorem 3.24. CMSO ⊊MSO<-inv.

Proof. We show that the classKdiv is order-invariantly definable in MSO by

the sentence ψgrid ∧ φ, where

φ = ∃min∃c

⎛
⎜
⎜
⎜
⎜
⎝

∀x(min ≤ x) ∧ ¬∃z(Eh(c, z) ∨ Ev(c, z))

∧ ∀T(Tmin ∧ ∀x∀y(Tx ∧ φdiag(x , y) → Ty)
→ Tc) ,

⎞
⎟
⎟
⎟
⎟
⎠

and

φdiag(x , y) = (∃z(Ev(x , z) ∧ Eh(z, y)))

∨ (¬∃zEv(x , z) ∧ ∃z(z ∼h min ∧ z ∼v x ∧ Eh(z, y))) ,

42

3.4 The Separating Example

Eh(x , y) = x ∼h y

∧ ∃x0∃y0
⎛
⎜
⎜
⎜
⎝

x0 ∼h min ∧ y0 ∼h min
∧ x ∼v x0 ∧ y ∼v y0 ∧ x0 < y0
∧ ∀z0(z0 ∼h min→ z0 ≤ x0 ∨ z0 ≥ y0) ,

⎞
⎟
⎟
⎟
⎠

Ev(x , y) = x ∼v y

∧ ∃x0∃y0
⎛
⎜
⎜
⎜
⎝

x0 ∼v min ∧ y0 ∼v min
∧ x ∼h x0 ∧ y ∼h y0 ∧ x0 < y0
∧ ∀z0(z0 ∼v min→ z0 ≤ x0 ∨ z0 ≥ y0) ,

⎞
⎟
⎟
⎟
⎠

As hinted above, the horizontal and vertical edge relations (Eh and Ev , re-

spectively) are defined using the successor relation which is induced by an

arbitrary ordering on the row (and column) containing the minimal element

(min) which itself serves as the lower left corner of the grid. φdiag defines

diagonal steps through the grid that wrap around from the top to the bot-

tom row. Finally, φ states that the pair consisting of the lower left corner

(min) and the upper right corner (c) of the grid is contained in the transitive

closure of φdiag. Obviously, there is such a sawtooth-shaped path starting at

min and ending exactly in the upper right corner if and only if k ∣ ℓ.
By the previous proposition,Kdiv is not CMSO-definable, and hence

the claim follows. q.e.d.

Using a straightforward interpretation argument, we obtain Courcelle’s

original conjecture as a corollary.

Corollary 3.25. CMSO is strictly less expressive than MSO<-inv on plain

graphs.

Proof. By taking the union of the two equivalence relations and removing

tuples of the form (v , v), we obtain an undirected graph from a cliquey grid

formalised by the following interpretation I:

δ(x) = (x = x)
ε(x , y) = (x = y)

φE(x , y) = (x ≠ y) ∧ (x ∼h y ∨ x ∼v y) .

If there were a formula φ ∈ CMSO[E] defining the class of k by ℓ
grids such that k ∣ ℓ, then, since I is a one-dimensional interpretation,

43

3 Order-Invariance vs. Counting in MSO

I(φ) ∈ CMSO[∼h , ∼v] would define the classKdiv which contradicts Propo-

sition 3.23. q.e.d.

It is well known that unary TC formulae, i.e. formulae applying the

transitive closure operator to binary relations only, can be translated into

MSO via

[tcx y φ(x , y, z)](x , y) ↦
∀X(∀u∀v(Xu ∧ φ(u, v , z) → Xv) ∧ Xx → Xy) .

The same holds for DTC formulae since they can be translated into TC

formulae of the same arity.

Corollary 3.26.

(1) DTC
1 ⊊ DTC1

<-inv

(2) TC
1 ⊊ TC1

<-inv

Proof. We argue that the order-invariant MSO sentence defining the class

Kdiv ∶= {Gkℓ ∶ k ∣ ℓ } can be expressed in DTC. The horizontal and vertical

edge relations and the diagonal edges are FO definable, and the remaining

part defines the set of vertices reachable by a path of diagonal edges. Since

the diagonal edge relation is deterministic, its transitive closure is DTC

definable, and hence

φ = ∃min∃c
⎛

⎝

∀x(min ≤ x) ∧ ¬∃z(Eh(c, z) ∨ Ev(c, z))
∧ [dtcx y φdiag(x , y)](min, c)

⎞

⎠

defines the classKdiv. q.e.d.

3.5 Conclusion

We have provided a characterisation of the expressiveness of CMSO in terms

of an Ehrenfeucht-Fraïssé game that naturally extends the known game

capturing MSO-definability, and we have presented an order-invariantly

MSO definable class of structures that are shown, using the proposed game

characterisation, not to be definable by a CMSO-sentence. This establishes

that order-invariant MSO is strictly more expressive than counting MSO

44

3.5 Conclusion

in the finite and proves Courcelle’s conjecture about the expressiveness of

order-invariant MSO.

There are further useful classes that are order-invariantly definable such

as the class of square grids (by not letting the diagonal edges wrap around

from the top to the bottom row of the grid) or the class of square grids whose

width (and thus height) is prime (by stating that there is no non-trivial subset

of the rows such that restricting the diagonal edges to these rows still leaves

the border reachable).

Further, Otto’s separating example for order-invariant first-order logic

(for details see [Ott00]) is based on the idea that a property of a graph, which

is embedded in a larger structure, becomes definable if one has access to a

Boolean algebra over the vertices of the graph. To prevent plain FO from

making use of that Boolean algebra, he extends the structure by inserting

an intermediate part, which we can regard as an information hiding gad-
get as it is connected to the graph and the Boolean algebra in such a way

that a bijection between the graph and the atoms of the Boolean algebra

is order-invariantly definable but not in plain FO. Since it is possible to

define a bijection between a row and a column in a square cliquey grid

order-invariantly, such a grid could serve as an information hiding gadget

inside other separating examples.

45

4 local orderings

The descriptive complexity of transitive closure logics on ordered struc-

tures is well understood since Immerman showed that DTC and TC cap-

ture Logspace and NLogspace, respectively [Imm87, Imm88]. However,

on unordered structures, computationally simple properties such as the

Logspace-computable property EVEN are not DTC definable in general.

In fact, there are classes of graphs on which DTC collapses to FO as shown

by Grädel and McColm [GM95].

In this chapter, we advance results of Etessami and Immerman who

addressed the question of whether weaker forms of orderings, in particular

local orderings on graphs, are already sufficient to obtain similar captur-

ing results. An essential insight originates from the reachability algorithm

recently presented by Reingold in his proof that undirected reachability is

decidable in Logspace.

We begin with formally introducing themodel of locally ordered graphs

and discuss different representations. Afterwards, we introduce basic notions

on expander graphs, which are an integral part of Reingold’s algorithm, to

provide the necessary intuitions. Then we show how Reingold’s algorithm

deciding the undirected reachability problem gives rise to a DTC formula

defining the transitive closure of undirected locally ordered graphs with an

additional linearly ordered number sort. Combining this result with the

techniques used by Etessami and Immerman in their proof that TC+C, the

extension of TC by counting terms, captures NLogspace on two-way locally

ordered graphs, we finally obtain the main theorem that DTC+C captures

Logspace on undirected locally ordered graphs.

47

4 Local Orderings

4.1 Locally Ordered Graphs

A locally ordered graph is a graph in which each vertex is equipped with

an ordering that linearly orders its 1-neighbourhood. In case of directed

graphs, we distinguish orderings on the set of successors of a vertex, i.e. the

set of vertices incident to the outgoing edges, from orderings on the set of

predecessors of a vertex, i.e. the set of vertices incident to the incoming edges.

Since each successor or predecessor of a vertex uniquely defines an edge in

the graph, a local ordering simultaneously defines an order on incoming

and outgoing edges. It is also useful to imagine that the edges are labelled

by numbers according to their position in the ordering such that we will

equivalently speak of the i-th incoming or outgoing edge of a vertex or the
edge with label i.

4.1.1 Representing locally ordered graphs

There are two different approaches present in the literature towards rep-

resenting locally ordered graphs as relational structures. First, the model

considered by Etessami and Immerman [EI95a, EI00] represents a locally

ordered graph as an {E , I,O}-structure (or {E , �, �}-structure) where the
local orderings are represented as ternary relations O or � (for an order on

the outgoing edges or successor vertices) and I or � (for an order on the in-

coming edges or predecessor vertices) such that, for every vertex v, O(v , ⋅, ⋅)
or �v is a linear order on the set of successors of v, and analogously, I(v , ⋅, ⋅)
or �v is a linear order on the set of predecessors of v. If there is only one
local ordering present (usually the one on the outgoing edges/successors),

we speak of a one-way locally ordered graph, otherwise we call the graph

two-way locally ordered.
A second possibility is to describe a graph in terms of its rotation map

introduced by Reingold et al. [RVW02]. A rotation map defining an undi-

rected d-regular graph, possibly with self-loops and parallel edges, in which

the edges incident to a vertex are labelled by 0, . . . , d − 1 is a permutation

ρ ∶ V × [d]0 → V × [d]0 on pairs of a vertex and an edge label with the se-

mantics that ρ(v , α) = (w , β) denotes that the α-th edge leaving v is the β-th
edge entering w. Due to the explicit use of edge labels, this presentation can

only be realised in a structure with a sufficient number of constants or in a

two-sorted structure (e.g. in the canonical two-sorted graph structure) using

48

4.1 Locally Ordered Graphs

two functions or a single (2,2)-ary edge relation E ⊆ V × [n]0 × V × [n]0,
interpreted as the graph of the rotation map, such that (v , α,w , β) ∈ E if and

only if ρ(v , α) = (w , β).
The rotation map or its relational presentation is particularly useful in

an algorithmic context since it combines the complete description of a graph

in a single data structure and offers direct access to particular neighbours of

a vertex. Moreover, it is straightforward to represent graphs with self-loops

and parallel edges between vertices as these are distinguishable by their

associated labels.

From a logical point of view, the first model is more universal in the

sense that the relations are not defined in terms of additional constants or

an additional number sort which is usually only assumed to be present in

the context of counting logics. Furthermore, the original definition of a

rotation map is only suitable for the special case of representing undirected

regular multigraphs. With respect to logical definability, however, the two

approaches, at least in cases where both are applicable, are equivalent in the

sense that the relations are inter-definable in any logic in which a bijection

between numbers and positions in the local ordering is definable.

Since the graph construction we describe in the following introduces

parallel edges, wewill workwith graphs defined by a quaternary edge relation

which can be considered as representing a partially defined rotation map

where a vertex in a non-regular graph does not necessarily need to have an

i-th neighbour for each i, and which naturally supports the representation

of multiple edges between pairs of vertices. In particular, using the following

interpretation Irot, we obtain Irot(G
∗) as the canonical two-sorted graph

represented by its rotation map interpreted in a two-sorted graph G∗ =

(V , E , �, �)∪({0, . . . , ∣V ∣}, <)where the local orderings are given by ternary
relations:

δ1(v) = (v = v)
δ2(ι) = (ι = ι)

ε1(v ,w) = (v = w)
ε2(ι, κ) = (ι = κ)

φR((v , ι), (w , κ)) =
∃z(ζ(v , z) ∧ [dtcxα ,yβ succout(v , x , y) ∧ β = α + 1](z, 0,w , ι))

∧ ∃z(ζ(w , z) ∧ [dtcxα ,yβ succin(w , x , y) ∧ β = α + 1](z, 0, v , κ))

49

4 Local Orderings

●u

●v

● w

2

2

1
1

Figure 4.1. A non-rigid one-way locally ordered graph

where

ζ(v , z) = E(v , z) ∧ ∀w(E(v ,w) → (z �v w ∨w = z))
[z is the smallest neighbour of v]

succout(v , x , y) = x �v y ∧ ∀u(x �v u ∧ u �v y
→ (x = u ∨ y = u))

[x and y are successors w. r. t. �v]

succin(v , x , y) = x �v y ∧ ∀u(x �v u ∧ u �v y
→ (x = u ∨ y = u))

[x and y are successors w. r. t. �v] .

4.1.2 One-Way vs. two-way local orderings

In the case of directed graphs, there is a difference between one-way locally

ordered graphs and two-way locally ordered ones. Consider, for example,

the one-way locally ordered graphG in Figure 4.1. The mapping

π ∶ u ↦ v , v ↦ u, w ↦ w

is an automorphism ofG, and hence the two predecessors ofw, u and v, can-
not be distinguished by only a local order on the outgoing edges. Intuitively,

if we walk along one of the edges to w, upon entering w we cannot possibly

know where we came from. However, in presence of a second local ordering

on the predecessors of vertices, the graph becomes rigid since either u or v
is the smallest predecessor of w, and the vertices become distinguishable.

This potentially renders logics more powerful on two-way than on one-way

locally ordered graphs. Let us remark that, contrary to totally ordered graphs,

two-way locally ordered graphs are not necessarily rigid.

Since the edge relation in undirected graphs is symmetric, each prede-

cessor of a vertex is also one of its successors. Hence, the distinction between

50

4.2 Reingold’s Algorithm

orderings on predecessors and successors becomes obsolete, and the notions

of one-way and two-way locally ordered graphs coincide.

4.2 Reingold’s Algorithm

In 2005, Reingold proved that the undirected s-t-reachability problem (in

short, ustcon), i.e. the problem whether two distinguished vertices s and t
are connected by some path in an undirected graph, can be reduced to

the reachability problem in expander graphs. In particular, he presented

a method to transform arbitrary undirected graphs into regular expander

graphs with a predefined degree and expansion parameter while preserving

reachability, and he showed that the transformation is in fact Logspace-

computable. Since the diameter of an expander graph is logarithmic in the

number of its vertices, deciding the existence of a connecting path can be

realised, for regular graphs, by a logarithmically space bounded computation

that performs an exhaustive search of all paths of length bounded by the

diameter.

4.2.1 Expander Graphs

We introduce some notions and properties of expander graphs needed to

get a basic understanding of how and why the algorithm works. For a more

comprehensive overview, we refer to the detailed survey on applications of

expander graphs [HLW06].

Intuitively, an undirected (multi)graph is called an expander graph if
it is sparse, i.e. the degree of its vertices is small compared to its size, but

nevertheless highly connected, i.e. neighbourhoods around vertices or sets of

vertices are large. Tomake this precise, there are several notions of expansion
and expansion parameters relating to different but tightly connected essential
properties of expander graphs.

First, the notion of edge expansion takes the number of edges from a

subset of the vertices to its neighbourhood into account.

Definition 4.1. LetG = (V , E) be an undirected multigraph (self-loops are

allowed) on n vertices, and let ∂S denote the edge boundary of a set S ⊆ V ,

i.e. the set of edges from S into its complement. Then the edge expansion

51

4 Local Orderings

ratio ofG is defined as

h(G) ∶= min
S⊆V ,∣S∣≤ ∣V ∣2

∣∂S∣
∣S∣

.

The second notion stems from spectral graph theory and defines the

spectral expansion ratio of a regular graph in terms of the eigenvalues of its

normalised adjacency matrix.

Definition 4.2. LetG = (V , E) be an undirected d-regular multigraph (self-

loops are allowed) on n vertices, and letA = A(G) be its adjacencymatrix, i.e.

the entry A(u, v) denotes the number of edges between the vertices u and v.
Let Â = 1

d A be the normalised adjacency matrix and λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λn be its
eigenvalues. SinceG is undirected, the matrices A and Â are symmetric and

have n real eigenvalues. Furthermore, as Â is normalised, λ1 = 1. The spectral
expansion ratio of G = (V , E) is defined as the second-largest eigenvalue

λ(G) ∶= λ2.

The analysis of randomised reachability algorithms yields an intuitive

interpretation of the spectral expansion ratio and the associated spectral gap
1 − λ(G), i.e. the gap between the largest and the second-largest eigenvalue.

In fact, the spectral expansion ratio gives a good estimate on themixing time,
i.e. the expected number of steps after which a random walk on the graph

starting from an arbitrary initial distribution converges to a uniform distri-

bution on the set of reachable vertices (note that the normalised adjacency

matrix is the probabilistic transition matrix of the graph).

We consider a graph to be a good expander if it has a large edge expan-

sion ratio, or, in terms of the spectrum, if it has a large spectral gap (which

means a small second-largest eigenvalue).
By definition, every connected graph has non-zero but possibly very

small edge-expansion; in fact, h(G) = Ω(1/∣V ∣), i.e. this trivial bound tends

to zero as the size of the graph grows larger. On the other hand, graphs with

a large minimal degree naturally have large edge-expansion. Hence, there

are two important questions. Are there infinite families of larger and larger

graphs whose degree grows very slowly or is bounded by a constant but

whose expansion parameter is nevertheless bounded away from zero by a

positive constant? And, given a particular size, degree and edge-expansion

ratio, is there a graph with these parameters, and, if so, can we construct it?

52

4.2 Reingold’s Algorithm

Indeed, an explicit construction of a family of 8-regular expander graphs

was given by Margulis [Mar73], and later many more constructions were

presented. Towards the second question, Pinsker gave a probabilistic proof

that almost all graphs are good expanders [Pin73]. However, the problem

to decide whether a graph has a given edge expansion ratio is coNP-hard

[BKV+81], so the naïve approach of randomly constructing a graph and

verifying its expansion properties is not feasible for actually obtaining the

desired expander graph.

The following theorem obtained by Alon and Milman [AM85, Alo86]

stating that the two expansion ratios are related in the sense that a small

edge expansion ratio implies a small spectral gap and vice versa allows for

such an approach since the spectral gap of the adjacency matrix is easy to

compute and provides a lower bound on the edge expansion ratio.

Theorem 4.3 ([AM85, Alo86]). Let G be an undirected d-regular multi-

graph, and let λ1 ≥ ⋅ ⋅ ⋅ ≥ λn be the spectrum of its normalised adjacency

matrix. Then

1

2
(1 − λ2) ≤

h(G)
d
≤
√
2(1 − λ2) .

Besides the possibility to obtain expanders by randomly guessing and

checking the spectral expansion ratio, there are several other explicit con-

structionmethods available. This justifies the following proposition ensuring

the existence of an expander graph with particular parameters which is nec-

essary for the construction performed by Reingold’s algorithm.

Proposition 4.4 ([Rei05]). There exists a number d ∈ N such that there

exists a d-regular graphG = (V , E)with d 16 vertices and spectral expansion

ratio λ(G) ≤ 1/2.

We conclude this section by stating the following crucial property of

expander graphs the algorithm relies upon.

Proposition 4.5. Let G = (V , E) be an undirected d-regular connected
multigraph with edge expansion ratio h(G) = h > 0 and ∣V ∣ = n. Then the

diameter ofG, ∆(G), is bounded by c log n for some constant c > 0.

Proof. Let δ(u, v) denote the distance between vertices u and v in G, let

Br(u) ∶= {v ∈ V ∶ δ(u, v) ≤ r} be the r-ball around u consisting of all

53

4 Local Orderings

vertices whose distance to u is at most r, and let Br(U) ∶= ⋃u∈U Br(u). Due
to the expansion property ofG, for every U such that ∣Br(U)∣ ≤ ∣V ∣2 ,

∣Br+1(U)∣ ≥ (1 +
h
d
)

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
>1

∣Br(U)∣ .

Hence, for any vertex u, ∣Br({u})∣ ≥ n
2 for some r ≤ log(1+ h

d)
n
2 , which

implies that the length of a shortest path between any two vertices is bounded

by 2⌈log(1+ h
d)

n
2 ⌉ + 1, and hence, ∆(G) ∈ O(log n). q.e.d.

4.2.2 Graph transformations

The goal of the algorithm is to transform an arbitrary input graph into a

regular expander graph with short paths between any two vertices, i.e. to

reduce the diameter while keeping the degree constant. The transformation

is mainly based on two operations: Powering and the zig-zag product. Pow-
ering a graph, i.e. raising its adjacency matrix to some power, shortens the

paths and improves the expansion parameter but increases the degree polyno-

mially. The zig-zag product taken with a good expander graph, on the other

hand, yields a graph with slightly worse expansion properties but greatly re-

duced degree. Interestingly, although the operations achieve rather opposite

goals and seem to mutually foil each other’s improvements, by choosing the

parameters carefully, it can be ensured that successive transformations yield

a good expander graph with a fixed degree in the end.

Following the original exposition, and due to the introduction of paral-

lel edges by powering a graph, we describe the operations in terms of the

representation via rotation maps.

Definition 4.6 (Powering). The p-power of G is obtained by raising the

adjacency matrix A = A(G) ofG to the p-th power. This yields a matrix in

which each entry Ap(u, v) denotes the number of paths of length exactly p
between u and v inG. Obviously, given a d-regular graphG, its p-powerGp

is d p-regular, and generally contains parallel edges since the entries in Ap

can be larger than 1. If the graph G is locally ordered, the induced edge

labelling itself naturally induces a labelling of the edges ofGp by sequences

of length p (see Figure 4.2). Hence, the rotation map of the p-th power of a

locally ordered graphG is a permutation of pairs of a vertex with a sequence

54

4.2 Reingold’s Algorithm

●v0 ●v1 ●v2 ●vp−1 ●vp
α1 β1 α2 β2 ⋯

αp βp

●v0 ●vp
α1α2 . . . αp βpβp−1 . . . β1

Ô
⇒

Figure 4.2. p-Powering: A path of p edges is transformed into a single edge, and the

respective edge labels are concatenated.

Hv

v

Hw

w

α

α′

β′

β

α′
β′

ι

ι′

κ′

κ

Figure 4.3. Construction of the edge ((v , α), (ι, κ) ; (w , β), (ι′ , κ′)) in the zig-zag

product

of p edge labels and is FO definable in terms of the edge relation of G as

follows:

E p(v0 , α1 . . . αp , vp , βp . . . β1) = ∃v1 . . . vp−1
p

⋀
i=1

E(v i−1 , α i , v i , β i) .

Definition 4.7. The zig-zag productG�H of aD-regular graphG = (V , EG)

on n vertices with a d-regular graph on D verticesH = ([D]0 , EH) is defined

as follows:

◆ VG�H ∶= V × [D]0
◆ EG�H((v , α), (ι, κ) ; (w , β), (ι′ , κ′)) iff there exist α′ , β′ ∈ [D]0 s. th.

(1) ((α, ι); (α′ , ι′)) ∈ EH

(2) ((v , α′); (w , β′)) ∈ EG

(3) ((β′ , κ); (β, κ′)) ∈ EH .

55

4 Local Orderings

It is crucial that the parameters are chosen such that there is a one-to-

one correspondence between the vertices of the graph H and the edge labels

inG. Intuitively, the zig-zag product ofG andH replaces each vertex ofG by

a copy of H, and we will refer to the set of vertices replacing a vertex v inG

as the cloud of v. These new vertices are connected as depicted in Figure 4.3

by following three edges. The first edge label (ι) determines the so-called

zig-step in the local copy of H the target vertex of which corresponds to

an edge label (α′) in G. The second step is taken in G leading to another

copy ofH (Hw). The edge label seen upon entering this copy (β′) determines

the vertex in the copy of H from which to proceed with the third and final

zag-step following the second given edge label (κ) in that target copy of H.

Performing this construction for all possible combinations of two edge

labels yields a d2-regular graph, and the intention is to operate with a fixed

d-regular graph H on D-regular graphs where D is much larger than d such

that in the resulting zig-zag product graph the number of vertices increases

(by the constant factor D) while the degree is considerably reduced to d2.

The effects of these transformations on the expansion parameter of

the constructed graph are crucial for the analysis of the space requirements

of the algorithm. By definition of the powering operation, the adjacency

matrix A(Gp) = A(G)p . Hence, the eigenvalues of A(Gp) are λp
1 , . . . , λ

p
n

where λ1 , . . . , λn are the eigenvalues of A(G). This proves the following

proposition implying that powering, as intended, widens the spectral gap of

a graph since the value of the second-largest eigenvalue decreases.

Proposition 4.8. LetG be an undirected d-regular connected multigraph.

Then the spectral expansion ratio λ(Gp) = λ(G)p .

The following theorem gives an estimate on the spectral expansion of

the zig-zag product of two graphs.

Theorem 4.9 ([Rei05]). Let α and λ be fixed, let G be a D-regular graph
such that λ(G) ≤ λ, and letH be a d-regular graph with D vertices such that

λ(H) ≤ α. Then

λ(G�H) ≤
1

2
(1 − α2)λ + 1

2

√
(1 − α2)2λ2 + 4α2 .

56

4.2 Reingold’s Algorithm

This theorem implies that the spectral gap of the product graph does

not decrease too much, and indeed the following corollary shows that it

can be bounded from below by a factor that solely depends on the spectral

expansion α of H.

Corollary 4.10 ([Rei05]). Let α and λ be fixed, letG be a D-regular graph
such that λ(G) ≤ λ, and letH be a d-regular graph with D vertices such that

λ(H) ≤ α. Then

1 − λ(G�H) ≥
1

2
(1 − α2) ⋅ (1 − λ) .

4.2.3 Reingold’s Expander Construction

We first give an informal high-level description of the algorithm as presented

in [Rei05] and sketch the proof of its correctness and the space bound. Later,

we show how the configurations arising during the computation can be

encoded in a two-sorted graph structure, and explain the steps and their

description in DTC in more detail.

Reingold states that the expander graph needed for the construction

can be obtained by a Logspace computation. However, since it does not

depend on the input graph, it may as well be obtained independently and

hard-coded in the algorithm. Hence, for every d ≥ 3 such that there exists a

d-regular graph X with d 16 vertices and λ(X) ≤ 1/2, we obtain an algorithm

deciding the reachability problem in logarithmic space.

By Proposition 4.4 such a constant d exists. Let us fix this d and the

corresponding expander graph X for the rest of the section. The algorithm

deciding whether two vertices s and t are connected in G consists of the

following three steps.

(1) Transform the input graphG into a D = d 16-regular graphGreg while

preserving its connectivity.

(2) Improve the expansion properties of Greg while keeping its degree

constant by iterating the zig-zag product with the expander X and

8-powering ℓ = O(log n)many times. This finally yields a D-regular
graphGexp with sufficiently good expansion properties.

(3) Check for all paths of length at most k ⋅ log n, where k depends only
on the expansion parameter of X, whether one of them connects the

clouds of s and t inGexp.

57

4 Local Orderings

Lemma 4.11 ([Rei05]). Let G = (V , E) and X be the graphs used in the

previous transformation. If G is connected and non-bipartite, λ(X) ≤ 1/2,

and ℓ is the smallest integer such that (1 − 1
D∣V ∣2)

2 ℓ < 1
2 , then λ(Gexp) ≤

1
2 .

Concerning the logarithmic space bound it is important to note that

the expander graph resulting from the transformation cannot be constructed

explicitly since in each iteration of Step (2) the size of the graph increases by a

constant factor, and hence, the size of the final expander graph is polynomial

in the size of the input and thus too large to be stored in memory. Instead,

the algorithm, in its outer loop, performs Step (3) by repeatedly computing

values of the rotation map of the final expander in logarithmic space on the

fly (see Procedure 4.1).

4.3 Defining Reachability in DTC

We describe how the computation performed by Reingold’s algorithm can be

captured by formulae in DTC on locally ordered graphs with an additional

number sort where the edge relation and the local ordering are represented

by a (2, 2)-ary relation as discussed in Section 4.1.

We aim at a formula φ(u, v) ∈ DTC defining the transitive closure of

the edge relation of an undirected locally ordered graph, and for technical

reasons, without loss of generality, we restrict our attention to graphs with at

least D vertices (the value of D will become clear during the construction)

for the remainder of this section; the transitive closure of the edge relation

of a graph with less than D vertices is definable by a plain FO formula.

Note that we will use numeric constants such as 0, 1, 2,max (denoting
the maximal element of the number sort) as well as arithmetic operations

such as addition, subtraction, multiplication and exponentiation, which are

all definable in DTC on a linearly ordered number sort. (See Section 2.2.3

for further details.)

We begin with following the steps of the reachability algorithm which

will eventually yield a DTC-interpretation of the expander graph that is

implicitly constructed by the algorithm in a given two-sorted locally ordered

graphG∗.

Step 1. Transformation of the input graphG into a D-regular graphGreg

where the value of D follows from constraints motivated in Step 2.

58

4.3 Defining Reachability in DTC

0 1
2

3
4

5

6 v w6

v

(v , 0)

(v , 1)

(v , 2)

(v , 3)

(v , 4)

01 01

0
1

0
1

0
1

0 1

(v , i)

(v , n − 1)

w
(w , 0)

(w , 1)

(w , 2)
(w , 3)

(w , 4)

(w , 5)

(w , 6)
0

1

0
1

0
1

0
1

0 1
0

1

0
1

0
1

(w , n − 1)

2

2

Figure 4.4. Transformation of a graph G (upper part) into the regular graph Greg

(lower part); exemplified by an edge connecting two vertices v and w

This is accomplished by replacing each vertex v in the graphG = (V , E)
by a gadget consisting of a cycle of n = ∣V ∣ vertices (v , 0), . . . , (v , n− 1) such
that (v , ι) and (v , κ) are connected via their first and second incident edge

if ι − κ = ±1 (mod n) (see Figure 4.4). In Reingold’s construction, the

edge relation ofG is preserved by introducing an edge ((v ,w), 2, (w , v), 2)
in Greg for every edge (v , ⋅,w , ⋅) of G. Since G is not ordered, there is

no correspondence between vertices and the numbers used to index the

vertices on the cycle, so we need to deviate from the original construction.

We do so by translating an edge (v , ι,w , κ) of the input graph into an edge

((v , ι), 2, (w , κ), 2) inGreg, and thus even retain the information about the

labels of the original edge. Eventually, to obtain a D-regular graph, we add
an appropriate number of self-loops to each vertex. Note that each self-loop

only contributes 1 to the valence of the vertex.

This yields the following interpretation Ireg interpreting the two-sorted

regular graphGreg inG
∗ by representing a vertex inGreg by a pair consisting

of a vertex and a number inG∗.

δ1(v , ι) = ∃µ(ι < µ) [restrict the second component

δ2(ι) = (ι = ι) to values from {0, . . . , ∣V ∣ − 1}]

ε1((v , ι), (w , κ)) = (v = w) ∧ (ι = κ)
ε2(ι, κ) = (ι = κ)

59

4 Local Orderings

φ<(ι, κ) = ι < κ
φE((v , ι), α, (w , κ), β) =

(α = 0 ∧ β = 1 ∧ v = w ∧ κ = ι + 1 (mod max))
∨ (α = 1 ∧ β = 0 ∧ v = w ∧ κ = ι − 1 (mod max))
∨ (α = 2 ∧ β = 2 ∧ E(v , ι,w , κ))
∨ (α = 2 ∧ β = 2 ∧ ∀v′∀ι′¬E(v , ι, v′ , ι′) ∧ v = w ∧ ι = κ)
∨ (3 ≤ α < D ∧ β = α ∧ v = w ∧ ι = κ) .

The graph Greg ≅ I(G∗) is regular, and the connectivity of G∗ is

preserved in the sense that there is a path from vertex (v , ι) to (w , κ), for
any ι and κ, if and only if there is a path from v to w inG.

Step 2. Improving the expansion properties.

The regular graph Greg obtained by the transformation in Step 1 is

transformed into an expander graph by iterating a zig-zag product with the

expander graph X and powering according to the following rules:

H0(G,X) ∶= Greg ,

Hi(G,X) ∶= (Hi−1(G,X)�X)
8
.

Note that we have to apply at least a (p = 8)-powering step to obtain a graph

with sufficiently good expansion properties which follows from the proof

of Lemma 4.11. For larger values of p we would need fewer iterations to

construct the final expander; however, its degree would be larger. Hence,

this definition justifies the choice of D = d 16 = (d2)p since otherwise the

zig-zag product would not be defined. Starting with the D-regular graph
Greg, the zig-zag product Greg �X is d2-regular, and 8-powering yields a

D-regular graph again. Thus, all graphsHi are D-regular, and in the end, we

obtain the graph

H(G,X) ∶= Hℓ(G,X)

for the smallest integer ℓ satisfying

(1 −
1

d 16n2)
2ℓ

<
1

2
. (∗)

60

4.3 Defining Reachability in DTC

Moreover, ℓ ≈ ⌈2 log n + logD⌉, i.e. the value of ℓ is logarithmically bounded

in the size of the input graph.

Since the zig-zag product is defined over the Cartesian product of the

vertices, each graph Hi , for i ≤ ℓ, consists of n2 ⋅ D i vertices, and a vertex

can be represented by one pointer into the set of vertices and numbers each

(defining a vertex of the regular graphGreg) and a sequence of i numbers

in [D]0 determining a particular sub-vertex by which a vertex of Greg is

replaced in the i-fold zig-zag product.

To represent vertices of H = Hℓ by elements of our structure (the input

graphG), we fix a k such that nk ≥ Dℓ . Since

Dℓ ≈ D2 log n+log D = D2 log nDlog D

≤ n2 log Dnlog D = n3 log D
,

the number k only depends on D, i.e. we can represent vertices of Hℓ by a

tuple of numbers whose length is independent of the size of the input graph.

Another important aspect of the chosen parameters is the following.

The algorithm relies on tracing, remembering and recombining edge labels.

The zig-zag product is defined such that vertices of one graph represent

edge labels of the other graph, and after powering, the edge labels of the

resulting graph are sequences of edge labels of the former one. Since during

the construction we only work with d-regular and D-regular graphs where
D = d 16, sequences of edge labels can be interpreted as numbers represented

in baseD as well as in base d, and in particular, the conversion between these
representations can be done digit by digit since a single digit in the base D
representation corresponds to exactly 16 digits in the base d representation

(similar to the conversion of hexadecimal numbers into binary).

In summary, we use k-tuples of number variables to represent sequences

of labels from [D]0 of length at most ℓ, and we will commonly view a label

from [D]0 representing a sequence of 16 values from [d]0. This conversion

is definable in DTC by the following formula (similar to the bit-predicate)

extracting the κ-th digit (where 0 ≤ κ < ℓ = c log n and the 0-th bit is

least significant) of a number in [Dℓ]0 represented by a k-tuple ι of number

variables:

digitD(ι, κ, δ) = ∃ι
∗(0 ≤ ι − ι∗ < Dκ

∧ [dtcια , ι′α′ ι′ = ι + Dκ ∧ α′ = α + 1 (mod D)](0, 0, ι∗ , δ)) ,

61

4 Local Orderings

Procedure 4.1. RotH (i , (v , a0 . . . a i−1), a i)

1 for j = 0 to 7 do
2 (a i−1 , k i ,2 j) ← RotX(a i−1 , k i ,2 j) /* a i = (k i , j)15j=0 */

3 ((v , a0 , . . . , a i−2), a i−1) ← RotH ((i − 1), (v , a0 , . . . , a i−2), a i−1)
4 (a i−1 , k i ,2 j+1) ← RotX(a i−1 , k i ,2 j+1)
5 endfor
6 k i ,0 , . . . , k i ,15 ← k i ,15 , . . . , k i ,0 /* reverse edge labels */

7 return ((v , a0 . . . a i−1), a i)

where ι∗ is intended to represent the largest number smaller or equal to ι
and divisible by Dκ .

Note that we rely here on the assumption that n > D since otherwise

we could not hold values from [D]0 in a single number variable.

Procedure 4.1, computing values of the rotationmap, is the core of the al-

gorithm, and it is a syntactically modified version of the procedure originally

described byReingold [Rei05]. The for-loop is partly unravelled to emphasise

the correspondence with the definition of the graphs Hi . Lines 2–4 compute

the zig-zag product, i.e. making a zig-step in X followed by an edge in Hi−1

and finishing by a zag-step in X again. The for-loop corresponds to the

powering operation by concatenating 8 edges in the zig-zag product graph.

Altogether, the procedure computes, given an input (ℓ, (v , a0 . . . aℓ−1), aℓ),
the value of the rotation map of Hℓ , i.e. some pair ((w , β0 . . . βℓ−1), βℓ) con-
sisting of a vertex and an edge label. Due to the correspondence of edge

labels of Hi and vertices of X, given an identifier (v , a0 , a1 , . . . , aℓ−1) of a
vertex in Hℓ , the initial subsequence of the form (v , a0 , a1 , . . . , a i−1 , a i) can
be regarded as an identifier of a vertex in Hi and an edge label (a i). Hence,
recursive calls of the procedure simply work on an initial part of the sequence

stored in memory. Furthermore, while traversing edges, we do not need

to memorise which outgoing edge we took, but instead it suffices to know

via which incoming edge we entered the target vertex. Thus it is possible to

successively overwrite the input sequence with the output obtained from

the recursive calls, and due to this in-place modification each level of the

recursion only needs D more “bits” of memory. For more details on the

correctness of the procedure see [Rei05].

62

4.3 Defining Reachability in DTC

The current state of the program during its execution is completely

determined by the values of the following variables:

◆ the current recursion depth δ ≤ ℓ,
◆ an ℓ-tuple ι = (j1 , . . . , jℓ) storing the values of the loop variables j ∈
{0, . . . , 7} on each recursion level, and

◆ a (single) program counter ρ determining the current line in the pro-

gram.

Actually, we do not have to maintain the value of the program counter on the

call stack since there is only one possible return address from the recursive

call of the procedure, i.e., after a return statement, the program state can

always be reconstructed from the recursion depth and the value of the loop

variable on that level. Further, a configuration of the program is given by the

current program state, determined by the variables δ, ι and ρ as discussed
before, and the memory content (v , a0 , . . . , aℓ), represented by a vertex

variable v (a vertex in the regular graph Greg) and an ℓ-tuple of number

variables α.
Note that, in the formulae, we have to represent the ℓ tuples ι and α by

k-tuples ι∗ and α∗ ranging over the whole numeric domain. Nevertheless,

to keep the formulae more readable, we directly refer to the components α i

of the ℓ-tuple α as the value of α i can be defined by

(α i = µ) ≡ digitD(α
∗
, i , µ) .

The same applies for the tuple ι. Further, a value α i ∈ [D]0 represents a
sequence (κ0 , . . . , κ15) ∈ [d]160 , and we use the shorthand notation

κ = α i for
15
⋀
j=0

digitd(α i , j, κ j) .

Furthermore, we use atomic formulae ι = ι′ to say that the tuples agree in
all components as well as the shorthand notation ι−∆ = ι′−∆ for a set ∆ of

indices to indicate that the tuples agree in all but the components listed in ∆.

The following formulae next, zig, zag, reverse, edge, and end de-

scribe parts of the computation of the algorithm. next describes the transi-

tion from one program state to the next one and keeps track of the changes of

the program counter ρ, the recursion level δ and the loop variables ι. The for-

mulae zig and zag describe the manipulations on the memory determined

63

4 Local Orderings

by the zig and zag steps of the zig-zag product performed in lines 2 and 4,

respectively. Note that line 3 is not explicitly mentioned in the formula since

it consists of either a recursive call of the procedure continuing in line 2, or,

on the bottom-most level of the recursion, when δ = 0, we follow an edge in

the graphGreg, which is captured by the formula edge, and the control flow

continues at line 4.

next := (δ > 0 ∧ ρ = 2)
→ (δ′ = δ − 1 ∧ ι′−{δ′} = ι−{δ′} ∧ ι′δ′ = 1 ∧ ρ′ = 2)

[recursively call procedure after line 2;

continue in line 2 and reset loop variable on new rec. level]

∧ (δ = 0) → (δ′ = 1 ∧ ρ′ = 4 ∧ ι′ = ι)
[unless bottom level of recursion reached; then return to line 4]

∧ (δ > 0 ∧ ρ = 4 ∧ ιδ < 8)
→ (δ′ = δ ∧ ι′−{δ} = ι−{δ} ∧ ι′δ = ιδ + 1 ∧ ρ′ = 2)

[if loop not finished, increment loop variable, continue at line 2]

∧ (δ > 0 ∧ ρ = 4 ∧ ιδ = 8) → (δ
′ = δ ∧ ι′ = ι ∧ ρ′ = 6)

[if the loop is finished, continue at line 6]

∧ (ℓ > δ > 0 ∧ ρ = 6) → (δ′ = δ + 1 ∧ ι′ = ι ∧ ρ′ = 4)
[after reversing, return from recursive call and continue at line 4]

∧ (δ = ℓ ∧ ρ = 6) → (δ′ = δ ∧ ι′ = ι ∧ ρ′ = 7)
[if already at the top level, go to end configuration instead]

zig := (ρ = 2) → ∃κ0 , . . . , κ15∃κ
′
0 , . . . , κ

′
15(κ = αδ ∧ κ′ = α′δ

∧ κ−{2ιδ} = κ
′
−{2ιδ} ∧ α−{δ ,δ−1} = α

′
−{δ ,δ−1}

∧ EX(αδ−1 , κ2ιδ , α
′
δ−1 , κ

′
2ιδ))

[make a zig-step in X in line 2]

zag := (ρ = 4) → ∃κ0 , . . . , κ15∃κ
′
0 , . . . , κ

′
15(κ = αδ ∧ κ′ = α′δ

∧ κ−{2ιδ+1} = κ
′
−{2ιδ+1}

∧ α−{δ ,δ−1} = α
′
−{δ ,δ−1}

∧ EX(αδ−1 , κ2ιδ+1 , α
′
δ−1 , κ

′
2ιδ+1))

[make a zag-step in X in line 4]

64

4.3 Defining Reachability in DTC

edge := (δ = 0) → (α−{0} = α
′
−0 ∧ E(v , α0 , v

′
, α′0))

[at the bottom-most level follow an edge inGreg]

reverse := (δ > 0 ∧ ρ = 6) → ∃κ0 , . . . , κ15∃κ
′
0 , . . . , κ

′
15

(κ = αδ+1 ∧ κ′ = α′δ+1 ∧
15
⋀
i=0

κ i = κ
′
15−i)

[reverse the edge labels since we keep incoming labels in memory]

end := (ρ = 7) → (α = α′ ∧ ι = ι′ ∧ ρ = ρ′ ∧ δ = δ′)
[do not change anything, loop in the end configuration.]

In the formulae zig and zag, EX is the formula describing the edge relation

of the finite expander X hard-coded into the algorithm.

In summary, using these subformulae, we can formalise the computa-

tion of the procedure and obtain the following interpretation Iexp such that

I(Greg) is isomorphic to the expander graphGexp constructed by Reingold’s

algorithm.

δ1(v , α1 , . . . , αk) :=
k
⋀
i=1
∃µ(α i < µ)

δ2(ι) := (ι = ι)
ε1((v , α), (w , β)) := (v = w) ∧ (α = β)

ε2(ι, κ) := (ι = κ)
φ<(ι, κ) := (ι < κ)

φE(u, α, v , β) := ∃ℓ(“ℓ satisfies Equation (∗)”

∧ [dtcvαδιρ ,v′α′δ′ ι′ρ′ φprocedure](uαℓ, 0, 2 , vβℓ, 7, 7))

where

φprocedure := next ∧ zig ∧ edge ∧ zag ∧ reverse ∧ end .

Note that we crucially rely on the ability of DTC to define all arithmetic

operations such as addition, multiplication, exponentiation etc. on the

number sort. However, we do not make use of counting terms. The only

connection needed between the number universe and the graph vertices is

the addressing of edges by numbers smaller than the degree of the graph

which is made possible by the given local ordering.

65

4 Local Orderings

Step 3. Searching for a connecting path.

By Lemma 4.11, the constructed graph Gexp has a large spectral gap; in

particular 1 − λ(Gexp) ≥ 1/2. Hence, Theorem 4.3 implies that the edge

expansion ratio ofGexp is at least D/4. Finally, Proposition 4.5 gives a bound

on the diameter ∆ of the connected components ofGexp, and this bound is

expressible in DTC.

Any start vertex v in Gexp together with a sequence of edge labels

π ∈ [D]∗0 , called directions, defines a path through the graph. In the follow-

ing, we restrict our attention to directions of length approximately ∆. In

particular, there is an ℓ such that nℓ ≥ D∆ , such that we can use ℓ-tuples of
number variables to represent directions of length at least ∆.

The formula σ describes a single step on a path according to a given

tuple of directions π, i.e. σ states that, if v is the ι-th vertex on a path, then v′

is the next (i.e. the ι + 1st) vertex when following the ι-th edge label in π.

σ(v , ι, v′ , ι′ , π) = (ι′ = ι + 1) ∧ ∃η∃η′
⎛

⎝

digitD(π, ι, η)
∧ E(v , η, v′ , η′) .

⎞

⎠

The transitive closure of σ , for fixed directions π, yields the relation “reacha-

bility via subsequences of directions π” inGexp. Since the directions define

unique successors, the transitive closure is even DTC-definable by

χ(s, t, π) = [dtcv ι ,v′ ι′ σ(vι, v′ι′ , π)](s0, t∆)

stating that the vertex t is reachable from s in exactly ∆ many steps by

following the directions π.
Finally, the following formula expresses that t is reachable from s via

some path of length ∆.

ρ(s, t) = ∃π . χ(s, t, π) .

Theorem 4.12. The formula

ρ̂(u, v) = ∃α0α1 . . . αk∃β0β1 . . . βk(Irot ○ Ireg ○ Iexp)(ρ)(uα, vβ)

defines the transitive closure of E in a two-sorted undirected locally ordered

graphG∗, i.e.G∗ ⊧ ρ̂(u, v) if and only if the vertices u and v are connected
in the graphG.

66

4.4 Canonisation of locally ordered undirected graphs

Proof. First of all, since the constructed expander graphGexp is D-regular,
every ℓ-tuple of numbers represents a valid sequence of edge labels, and

conversely, every sequence of edge labels of length at most ∆ is represented

by an ℓ-tuple of numbers.

Note that each vertex of G is first replaced by a cycle of vertices to

obtain the regular graph Greg, and during the expander construction via

the zig-zag product, these vertices are replaced by more and more vertices,

yielding the cloud of v.
By construction, all self-loops inGreg give rise to edges inGexp that stay

inside the same cloud. Hence, if the cloud of v is reachable from a particular

vertex (u, α) in the cloud of u in δ ≤ ∆ many steps inGexp, then there also

exists some vertex (v , β) in the cloud of v that is reachable from (u, α) in
exactly ∆ many steps. q.e.d.

4.4 Canonisation of locally ordered undirected

graphs

Even if we are not able to define a linear order on the universe of a structure,

it may still be possible to interpret an isomorphic linearly ordered structure

in a given one. This is more precisely captured by the concept of canonisation.

Definition 4.13. LetK be a class of finite τ-structures, and let ∼ be an equiva-
lence relation onK. Recall thatK< = {(A, <) ∶ A ∈ K, < a lin. order on A}.
A function f ∶ K → K< mapping a structure A to the ordered structure

f (A) = (A′ , <) such that

(1) A ∼ A′ and

(2) A ∼B implies f (A) ≅ f (B) for all A,B ∈ K

is called a canonisation function for ∼ on K.

That is, a canonisation function picks an ordered representative of each

equivalence class. We are particularly interested in the definability of such

ordered representatives which is made precise in the following.

Definition 4.14. LetK be a class of finite τ-structures, and let ∼ be an equiv-

alence relation onK. We say that (K, ∼) admits L-definable canonisation if

there exists an L[τ, τ ∪ {<}]-interpretation I such that each A ∈ K fulfils

the admissibility conditions and f ∶ A ↦ I(A) is a canonisation function

67

4 Local Orderings

for ∼ onK. We shortly say thatK admits L-definable canonisation if this is

the case for (K, ≅).

Intuitively, ifK ⊆ Str[τ] admits L-definable canonisation, it is possible,

for every structure A ∈ K, to interpret a linearly ordered expansion A<
whose unordered τ-reduct is isomorphic to A in the structure A itself.

Etessami and Immerman showed that the class of two-way locally

ordered (directed) graphs admits TC+C-definable canonisation [EI95b,

EI00]. The earlier result of Immerman [Imm87, Imm88] that TC captures

NLogspace then implies that TC+C captures on the class of two-way locally

ordered graphs.

The interpretation can be obtained using the following two techniques.

First, using the edge labels induced by the local orderings, it is possible

to linearly order each weakly connected component of the graph. Second,

allowing counting terms permits the definition of a pre-order on the weakly

connected components regarding their size and further criteria such that

each equivalence class of the pre-order only contains isomorphic compo-

nents.

In the following, we explain this approach in more detail and show that,

by using the previously obtainedDTC formula defining the transitive closure,

we obtain a DTC+C-definable canonisation for locally ordered undirected
graphs.

Lemma 4.15. Let G be an undirected locally ordered graph. There is a

formula defining an ordering on the vertices reachable from v in G by

lexicographically comparing the paths of length ∆(G) connecting them to

v inGexp.

Proof. Let χ(s, t, π) be the formula from Step 3 stating that the vertices s and
t in the expander graph are connected via directions π. Then φ(v , x , y) ∶=
∃π(χ(v , x , π) ∧ ∀π′(χ(v , y, π′) → π <lex π′)) states that x is reachable

from v via some path π and that all paths (if any) connecting v to y are
lexicographically larger. Hence, φ̂(v , x , y) = (Irot○Ireg○Iexp)φ(v0, x0, y0)
is the desired formula. q.e.d.

Lemma 4.16. The class of locally ordered undirected graphs (with constants)

admits DTC+C-definable canonisation.

68

4.4 Canonisation of locally ordered undirected graphs

Proof. LetG = (V , E , �, c1 , . . . , ck) be an undirected locally ordered graph

with constants, and letG∗ be the corresponding canonical two-sorted struc-

ture.

For each connected component, the choice of some vertex v defines a
total ordering on all vertices of the component by Lemma 4.15. Thus, the

choice of a vertex v induces an adjacency matrix Av in which the rows and

columns are given in the order of the induced ordering. Let code(Av) be

a representation of the adjacency matrix Av as a string that is obtained by

concatenating all rows of the matrix. Towards picking a vertex v as the

smallest one in a connected component, we consider an ordering <v to

be smaller than <w if code(Av) <lex code(Aw), and we pick the vertex v
inducing the smallest code(Av) as the smallest vertex in the component.

Note that it might be the case that there is a unique minimal adjacency

matrix, but different orderings <v and <w , say, inducing this matrix. How-

ever, this can only happen if there is an automorphism of the connected

component exchanging v and w.
First, we define a preorder ≼ on the connected components of the graph

based on four criteria in the following precedence:

◆ size of the component (non-decreasing);

◆ lexicographic value of the minimal adjacency sub-matrix of the com-

ponent (non-decreasing);

◆ encoding of the minimal adjacency sub-matrix (lexicographic, non-

decreasing);

◆ containment of constants c1 , . . . , ck (increasing: c1 < c2 < ⋅ ⋅ ⋅ < ck <
none).

Note that any two vertices u and v belonging to the same connected compo-

nent or to different isomorphic components are equivalent in the sense that

u ≼ v and v ≼ u hold.

The preorder is definable by

x ≼ y ∶= ∃κ1∃κ2[CompSize(x , κ1) ∧CompSize(y, κ2)
∧ (κ1 < κ2 ∨ (κ1 = κ2 ∧ (val(x) < val(y) ∨ (val(x) = val(y)
∧ “Comp(y) contains no constants or, if Comp(x) contains

a constant, Comp(y) contains no smaller constant”))))]

69

4 Local Orderings

≼
≼

≼

≼

≼

≅

x

y

λ − η vertices smaller and
not equivalent to x and y

η vertices equiv-
alent to x and y

λ vertices not larger than x and y

Figure 4.5. Ordering of the connected components

where

CompSize(x , κ) ∶= #yρ̂(x , y) = κ

val(x) = val(y) ∶= ∃κ[CompSize(x , κ) ∧CompSize(y, κ)
∧ ∀α∀β((α < κ ∧ β < κ) → Adj(x , α, β) = Adj(y, α, β))]

val(x) < val(y) ∶= ∃κ[CompSize(x , κ) ∧CompSize(y, κ)
∧ ∃α∃β(α < κ ∧ β < κ ∧Adj(x , α, β) < Adj(y, α, β))

∧ ∀β′(β′ < β → Adj(x , α, β′) = Adj(y, α, β′))

∧ ∀α′∀β′((α′ < α ∧ 0 ≤ β′ < κ)
→ Adj(x , α′ , β′) = Adj(y, α′ , β′))]

Adj(x , α, β) = λ ∶= ∃κ∃y∃z[CompSize(x , κ) ∧ α < κ ∧ β < κ
∧ “y is the α-th element of the ordering <x”

∧ “z is the β-th element of the ordering <x”

∧ ∃λ′ . E(y, λ, z, λ′)]

[the entry at position α, β in the adjacency matrix is λ

such that β is the λ-th neighbour of α.]

70

4.4 Canonisation of locally ordered undirected graphs

Using this preorder, we obtain the following interpretation Iord in-

terpreting an ordered graph Gord(V ′ , E′ , <) in a two-sorted locally or-

dered undirected graph G∗ arising from G = (V , E , �) and satisfying

(V ′ , E′) ≅ (V , E).

δ(µ) = ∃ν(µ < ν)
ε(µ, ν) = (µ = ν)

φ<(µ, ν) = (µ < ν)

φE(µ, ν) = ∃x∃y∃λ((Exy ∧ #z(z ≼ x) = #z(z ≼ y) = λ)

[There exist two connected vertices x and y

each comparable to λ non-larger vertices,]

∧ ∃κ(CompSize(x , κ) ∧CompSize(y, κ)
[living in connected components of the same size κ,]

∧ ∃η(#z(x ≼ z ∧ z ≼ x) = #z(y ≼ z ∧ z ≼ y) = η)

[each being equivalent to η other vertices]

∧ ∃α∃β(α < κ ∧ β < κ ∧ ∣α − β∣ < κ
∧ α ≡ (µ − (λ − η)) (mod κ)
∧ β ≡ (ν − (λ − η)) (mod κ)

[and being the α-th and β-th vertex in the same component.]

∧ ∃u(∀v(val(u) ≤ val(v)) ∧ ∃ξ . Adj(u, α, β) = ξ))

[And, according to the min. adjacency matrix,

there is an edge between α and β.]

q.e.d.

Corollary 4.17. DTC+C captures Logspace on locally ordered undirected

graphs.

Proof. On the one hand, DTC+C formulae can be evaluated in Logspace as

each formula has only a fixed number of counting terms, so these counting

terms can be stored and evaluated using only logarithmic memory. On

the other hand, DTC captures Logspace on ordered graphs [Imm87], and

the class of locally ordered undirected graphs admits DTC+C-definable

canonisation. q.e.d.

71

4 Local Orderings

4.5 Discussion

It is clear that DTC without counting fails to capture Logspace on locally

ordered graphs since any local order relation is empty in a graph without

edges, and hence DTC alone cannot express Logspace-computable queries

such as EVEN.

On the other hand, it is not immediately obvious whether reachability is

definable in plain DTC on locally ordered graphs or not. The approach taken

in the previous section by describing Reingold’s algorithm is not feasible;

although the formula defining the transitive closure does not use counting

terms, it heavily relies on being able to express arithmetic computations on

the number sort and to encode paths for which a linear order is needed that

must be at least as long as the size of the graph.

Also from a computational point of view it is still not clear how

Logspace computations can be characterised. Variousmodels were analysed

and compared, including their shortcomings and possible remedies. One

prominent feature usually associated with logspace computations is the use

of only constantly many variables pointing into the input structure which

is incorporated in so-called jumping automata on graphs (JAG) introduced
by Cook and Rackoff [CR80] and DTC. However, this characterisation is

not universal as is shown by Reingold’s algorithm which also uses, besides

constantly many pointers into the input structure, logarithmically many

variables holding bit values. This is neither possible in DTC on structures

without a total order nor in the JAG model.

In contrast to logics, which exhibit a clear conceptual difference be-

tween variables referencing elements of the structure and variables referenc-

ing numbers (at least when the structure is not totally ordered), in some

programming languages allowing pointers, this distinction is blurred how-

ever, e.g. in languages such as C it is common to manipulate the address of a

pointer by arithmetic operations. In an effort to characterise and get a better

understanding of the computational limitations of various models of pointer

languages, Hofmann and Schöpp [HS08] introduced and investigated the

programming language purple (short for Pure Pointer Language), an imper-

ative programming language allowing iteration via while- and forall-loops

and using a constant number of so-called pure pointers, i.e. purple can be

seen as a programming language extending the JAG formalism by forall-

loops which provide a means to access all elements in a structure regardless

72

4.5 Discussion

of whether they are reachable in the Gaifman graph or not. However, the

semantics of purple requires the programs to be order-invariant in the sense

that the output must not depend on the order in which the elements in a

forall-loop are iterated. Essentially, the pure pointers in purple reference ele-

ments of the input structure (e.g. a graph) and may only be updated to point

to either a constant or to an element related to the current one (i.e. connected

in the Gaifman graph). This especially means that arbitrary placement and

pointer arithmetic such as “move to the next vertex in the implicitly given

input-ordering” are not allowed, which makes pointer variables in purple

comparable to variables in logics evaluated on unordered structures.

In fact, DTC formulae can be evaluated by purple programs [HS08,

HS10]. However, since it is straightforward to implement a program in pur-

ple that tests whether the input structure has an even number of elements, it

is strictly more powerful than DTC. Further, Hofmann and Schöpp [SH08]

develop an involved argument showing that there exist classes of graphs on

which every purple program of bounded complexity can be simulated by a

so-called local program, i.e. by a program that does not contain loops and

hence cannot move its pointers out of a local neighbourhood around their

initial position.

Theorem 4.18 ([SH08, Corollary 24]). There is no purple program that

decides undirected reachability on locally ordered graphs of degree 3.

Since purple programs can evaluate DTC formulae, this implies a

similar inexpressibility result for DTC.

Corollary 4.19 ([SH08, Corollary 25]). Reachability in locally ordered undi-

rected graphs of degree 3 is not definable by a DTC formula.

This limitation reminds of a similar result obtained by Grädel and

McColm [GM95]. They identify much simpler classes of graphs on which

the expressive power of DTC collapses to plain FO. It would be interesting

to further investigate the expressive power of DTC on the class of locally

ordered graphs and to derive a locality result, possibly based on the class of

structures described by Hofmann and Schöpp. However, at the moment, the

available tools for proving bounds on the expressiveness of DTC are rather

limited.

It is worth to note that, on the class of (plain) graphs, adding a counting

mechanism toDTCdoes not prevent the collapsementioned above; Etessami

73

4 Local Orderings

and Immerman proved that even DTC+C collapses to FO+C on graphs

[EI95a]. However, as we showed, in the presence of a local ordering, adding

a counting mechanism increases the expressive power sufficiently to capture

all of Logspace.

74

Part II

Compositional Model

Checking

5 compositional model

checking of weak mso

In this chapter, we shift our attention to infinite structures that admit a repre-

sentation by means of finite systems of equations. Such an equation system

defines a (finite) set of structures inductively by describing isomorphism

types and how to compose these to obtain new structures. One of the most

intuitive examples, described later in more detail, is the infinite binary tree,

which can be constructed from a root node with two successors that are

themselves the root nodes of two infinite binary trees, again. Conversely,

the defining equations also yield information about how a structure can be

decomposed into pieces and thus make such structures ideally suited for

compositional model checking techniques. These techniques rely on being

able to evaluate formula decompositions, i.e. formulae derived from the

given formula, on the parts of a structure and appropriately combine these

results to answer whether the original formula holds in the whole structure.

We start with formally introducing the class of inductive structures and

continue with presenting an algorithm for obtaining the desired formula

decompositions. Further, we introduce a new model checking game for

WMSO on inductive structures and prove its soundness and completeness.

While the arena of a classical model checking game for (W)MSO is infinite

if the structure is infinite but admits only finite plays, our new game exploits

formula decompositions to obtain a finite arena. Admittedly, we sacrifice

the simple (reachability) winning condition for a Büchi winning condition

since the arena admits infinite plays, now. We conclude by showing how the

77

5 Compositional Model Checking of Weak MSO

winning condition can further be modified to capture model checking of

WMSO extended with the so-called unbounding quantifier.

5.1 Inductive Structures

We investigate weak monadic second-order logic on inductive structures
that are defined by a system of equations, similar to the definition of vertex

replacement graphs but strictly monotone. Further, such structures admit

bounded clique-width decompositions with regular labels.

In the following, we will frequently speak of indexed structures and
indexed elements. The latter are elements paired with a finite word (called

index) over a specific alphabet Σ. An indexed structure consists of a universe

of indexed elements. We usually identify a plain structure with the indexed

structure in which all elements are indexed by the empty word ε.

Definition 5.1. Given, for eachR i ∈ τ = {R1 , . . . , Rt}with arity r i , a function
f i ∶ {1, . . . , k}r i → {�, ⊺}, and indexed structures A1 , . . . ,Ak over Σ ⊇ [k],
we define the (k-ary) disjoint sum with connectionsB = (B, RB

1 , . . . , RB
t),

denoted⊕ f (A1 , . . . ,Ak), by

◆ B ∶= {(a, cw) ∶ (a,w) ∈ Ac , c ∈ [k]} and

◆ ((b1 , c1w1), . . . , (br i , cr iwr i)) ∈ RB
i if and only if

– ∣{c1 , . . . , cr i}∣ = 1 and (b1 , . . . , br i) ∈ R
Ac1
i or

– ∣{c1 , . . . , cr i}∣ > 1 and f i(c1 , . . . , cr i) = ⊺.

That is,B is constructed by taking the disjoint union of the structures Ac ,

and adding tuples spanning multiple components according to the given

functions f i . It is implicit in the definition that unary relations are inherited

from the components, whereas only at least binary relations are augmented

with additional tuples. Intuitively, the indices keep track of the origin of

elements. We let B[c] ∶= B ∩ {(b,w) ∈ B ∶ w = cw′} denote the c-th
component of the disjoint sum, and, as expected,B[c] is isomorphic to Ac

via πc ∶ (b, cw′) ↦ (b,w′). Furthermore, definingB[ε] ∶=B, the notation

naturally extends toB[cw] ∶= (B[c])[w] =B ∩ {(b, v) ∈ B ∶ v = cww′}.

Example 5.2. Given f (1, 2) = ⊺ and f (c1 , c2) = � otherwise, the binary

disjoint sum with connections
●

●
⊕ f ●

●
=

●1

●1

● 2

● 2
.

78

5.1 Inductive Structures

Definition 5.3. A system of structure equationsD over τ = {R1 , . . . , Rt} has

the form

D =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Λ1 = A1
1 ⊕ A2

1 ⊕ . . . ⊕ Ak1
1 with f1,1 , . . . , f1,t

⋮ ⋮ ⋮

Λn = A1
n ⊕ A2

n ⊕ . . . ⊕ Akn
n with fn ,1 , . . . , fn ,t

where each Ac
i is either a finite structure or one of the formal variables

Λ1, . . . , Λn and each f i , j is a function {1, . . . , k i}r j → {�, ⊺}. Further, we
let λ(i , c) = m if Ac

i = Λm and λ(i , c) = fin otherwise, and we denote by

Str(D) ∶= {Ac
i ∶ λ(i , c) = fin} the set of finite structures occurring inD.

Definition 5.4. A system of structure equations defines an operation on n-
tuples of τ-structures as follows. LetB1 , . . . ,Bn be τ-structures to substitute
for variables on the right-hand side of the equations inD. Then, we define

the new left-hand side structures (C1 , . . . ,Cn) =∶ D(B1 , . . . ,Bn) by:

Ci =⊕ f i (D1 , . . . ,Dk i) whereDc =

⎧⎪⎪
⎨
⎪⎪⎩

Ac
i if λ(i , c) = fin,

Bk if λ(i , c) = k .

A successive application of this operator to a tuple C0 of empty struc-

tures yields the infinite sequence (Ci)
i∈ω defined by

C0 ∶= (∅, . . . ,∅) and

Ci+1 ∶= D(Ci) .

Observe that the operator C↦ D(C) is monotone in the sense that there ex-

ists an embedding of Ci intoDi(C) preserving the indices of elements. This

is due to the fact that unary relations are only inherited from the finite struc-

tures contained in the equations and theway tuples spanning components are

added to the relations. Hence, the notion of the union Ci ∪Di(C) = Di(C)

is well defined. This implies that the iteration of the operator yields, in the

limit, the inductive fixed pointDω(∅) = ⋃i∈ω C
i = ⋃i∈ωD

i(∅), which will

be referred to as S(D). We denote the i-th structure of the fixed point by

Si(D), and we call a structureA inductive if and only if there exists a system
of equationsD such that A is isomorphic to some Si(D).

79

5 Compositional Model Checking of Weak MSO

Let S(D) = (A1 , . . . ,An). By definition, each Am is an indexed

structure over Σ = [max(k1 , . . . , kn)] obtained as a (km-ary) disjoint sum
⊕ f m(Dc)c∈[km] with additional tuples spanning components according toD,

and hence, for each c = 1, . . . , km , the component Am[c] is either isomor-

phic to the finite structure Ac
m ∈ Str(D) if λ(m, c) = fin or to Aλ(m ,c)

otherwise. For easier referencing, we will partition the sets of indices

into Fini = {c ∶ λ(i , c) = fin}, and ∆ i = {c ∶ λ(i , c) ≠ fin}. Further-

more, for an indexed element (a,w) ∈ A i , the depth of (a,w) is defined as

dp(a,w) = ∣w∣, and the depth of a set is the maximal depth of its elements,

dp(S) = max{dp(s) ∶ s ∈ S}.

Example 5.5. The system of equations defining the infinite binary tree T2

with prefix ordering and unary predicates S0 and S1 for the left and right

successor is:

D1 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Λ1 = ({●}, S0 = ∅, S1 = ∅, < = ∅) ⊕ Λ2 ⊕ Λ3 with f<
Λ2 = ({●}, S0 = {●}, S1 = ∅, < = ∅) ⊕ Λ2 ⊕ Λ3 with f<
Λ3 = ({●}, S0 = ∅, S1 = {●}, < = ∅) ⊕ Λ2 ⊕ Λ3 with f<

where

f<(c1 , c2) =
⎧⎪⎪
⎨
⎪⎪⎩

⊺ if c1 = 1 and c2 ∈ {2, 3}
� otherwise .

Note that, by definition, the values of the functions are only relevant for

tuples in which at least two arguments differ, and the unary predicates S0
and S1 are solely inherited from the right-hand side structures. The defined

structure is depicted in Figure 5.1.

The second example is the system D2 defining an infinite list of lists

with two order relations, S on the primary list and L on the branching lists,

as depicted in Figure 5.2.

D2 =

⎧⎪⎪
⎨
⎪⎪⎩

Λ1 = Λ2 ⊕ Λ1 with f1,L , f1,S
Λ2 = ({●}, L = ∅, S = ∅) ⊕ Λ2 with f2,L , f2,S

where f1,S(1, 2) = ⊺ and f2,L(1, 2) = ⊺, and f i , j(c1 , c2) = � otherwise.

Observe that in the tree a direct successor relation is definable inWMSO

from the constructed prefix ordering. Further, the dotted edges in Figure 5.2

80

5.1 Inductive Structures

●

● S0

● S0 ● S1

● S1

● S0 ● S1

⋮ ⋮ ⋮ ⋮

S1(D1)[2]
S1(D1)[31]

Figure 5.1. Inductive definition of the infinite binary tree T2 ≅ S1(D1)

●

●

●

L

L

L

⋮

●

●

●

L

L

L

⋮

●

●

●

L

L

L

⋮

⋯S S

S

Figure 5.2. Inductive definition of the infinite list of lists

81

5 Compositional Model Checking of Weak MSO

indicate unintentional S-edges introduced by the fixed-point construction.

The intended edge relation S∗ as indicated by the solid S-edges connecting
the heads of the vertical lists only is definable by

S∗(x , y) = Sxy ∧ ¬∃z(Lzx ∨ Lzy) .

5.2 Formulae with Restricted Variables

Intuitively, inductive structures are disjoint sums of other inductive struc-

tures with added relation tuples, and thus naturally decompose into compo-
nents. When writing formulae over such structures, it is often convenient to

restrict specific variables to specific components of the universe. Here, we

introduce related notions and a procedure to split variables in a formula so

as to convert a formula into one that only contains variables restricted to

disjoint parts of the universe.

Formulae with restricted variables of k kinds are defined in the same

way as WMSO formulae, but in addition to the standard first- and second-

order variables x1 , x2 , . . . and X1 , X2 , . . . we allow the use of restricted vari-

ables x c1 , x c2 , . . . and X c
1 , X c

2 , . . . for c = 1, . . . , k distinguished from ordinary

variables by superscripts. Intuitively, we think of formulae containing re-

stricted variables as speaking about a structure where the universe A is

partitioned into k pairwise disjoint sets A1 , . . . ,Ak such that the variables x c

and X c are understood as referring only to elements in the c-th component

Ac of A.
We formally define the semantics of τ-formulaewith restricted variables

of k kinds by a translation into formulae over the expanded vocabulary

τ̂ = τ ∪ {P1 , . . . , Pk} where Pc are unary predicates not contained in τ.
Given a formula φ with restricted variables, let φ̂ be the formula obtained

from φ by applying the following replacements

x c = yd ↦ x ∈ Pc ∧ y ∈ Pd ∧ x = y

R(x c11 , . . . , x
cr
r) ↦ (⋀

j=1, . . . ,r
x j ∈ Pc j) ∧ R(x1 , . . . , xr),

x c ∈ Y d ↦ x ∈ Pc ∧ x ∈ Pd ∧ x ∈ Y
∀x cφ(x c) ↦ ∀z(z ∈ Pc → φ(z))

[z is a fresh variable]
∃x cφ(x c) ↦ ∃z(z ∈ Pc ∧ φ(z))

82

5.2 Formulae with Restricted Variables

∀X cφ(X c) ↦ ∀Z(Z ⊆ Pc → φ(Z))
[Z is a fresh variable]

∃X cφ(X c) ↦ ∃Z(Z ⊆ Pc ∧ φ(Z)) .

Note that the first three items are mainly important if the formula contains

free variables since the range of quantified variables is already appropriately

restricted by the guards. Given a τ-structureA and a partition of its universe

into k sets A1 , . . . ,Ak , we refer toA⟨A1 , . . . ,Ak⟩ as the partitioned structure, and
denote the τ̂-expansion of A in which each Pc is interpreted as the set Ac as

usual by (A,A1 , . . . ,Ak). The semantics of φ evaluated on a partitioned τ-
structure given an assignment β of the free first- and second-order variables

is defined by (A⟨A1 , . . . ,Ak⟩ , β) ⊧ φ if and only if (A,A1 , . . . ,Ak , β) ⊧ φ̂. Note
that β is an assignment of the free original variables, and not of each restricted

occurrence.

Concerning formulae with restricted variables we need an appropriate

notion of quantifier rank. Classically, the quantifier rank corresponds to

the deepest nesting of quantifiers in a formula. We extend this notion to a

formula φ with restricted variables such that qri(φ) counts only the nesting
of quantified variables that are restricted to the i-th component.

Definition 5.6. Let φ be a WMSO formula with restricted variables. Then

the quantifier rank over component c is defined inductively by

◆ qrc(φ) = 0 if φ is an atomic formula,

◆ qrc(¬φ) = qrc(φ),
◆ qrc(φ) = max(qrc(ψ), qrc(ϑ)) if φ = ψ ∧ ϑ or φ = ψ ∧ ϑ,
◆ qr

c(∃Xdφ) = qrc(∃xdφ)

= qrc(∀Xdφ) = qrc(∀xdφ) =
⎧⎪⎪
⎨
⎪⎪⎩

qrc(φ) + 1 if d = c
qrc(φ) otherwise.

The restricted quantifier rank qr∗(φ) is defined as the maximum over the

quantifier ranks over the components: qr∗(ψ) = max{qrc(ψ) ∶ 1 ≤ c ≤ k}.

5.2.1 Splitting Variables

Each formula of monadic second-order logic can be transformed into

an equivalent formula in which all variables are restricted. The proce-

dure split defined below computes, given a formula φ with variables

{X1 , . . . , Xr , x1 , . . . , xs} and a positive integer k, a formula ψ with variables

{X c
1 , . . . , X c

r , x c1 , . . . , x cs ∶ 1 ≤ c ≤ k} such that A, β ⊧ φ if and only if

83

5 Compositional Model Checking of Weak MSO

Procedure 5.1. splitk(φ)

case φ contains a free (unrestricted) FO variable x
return splitk(⋁c=1, . . . ,k φ[x ← x c])

case φ contains a free (unrestricted) MSO variable X
return splitk(φ[X ← ⋃c X c])

case φ is an atom return φ
case φ = ¬ψ return ¬splitk(ψ)
case φ = φ1 ∨ φ2 return splitk(φ1) ∨ splitk(φ2)

case φ = φ1 ∧ φ2 return splitk(φ1) ∧ splitk(φ2)

case φ = ∃xψ return ⋁c=1, . . . ,k ∃x csplitk(ψ[x ← x c])
case φ = ∀xψ return ⋀c=1, . . . ,k ∀x csplitk(ψ[x ← x c])
case φ = ∃Xψ return ∃X1 . . . Xksplitk(ψ[X ← ⋃c X c])

case φ = ∀Xψ return ∀X1 . . . Xksplitk(ψ[X ← ⋃c X c])

A⟨A1 , . . . ,Ak⟩ , β ⊧ ψ for any partition A1 , . . . ,Ak of the universe of A and any

interpretation β of the free variables. In the notation used in the procedure

split, we allow to substitute a sum, e.g. X∪Y for a second-order variable Z.
This should be understood as replacing each atom z ∈ Z by z ∈ X ∨ z ∈ Y
(and Z ← ∅means substituting an atom z ∈ Z by �). To improve readability,

we denote the input parameter k as an index.

Note that it is important that the replacement of the free variables in

the procedure split is done first before splitting the rest of the formula.

Example 5.7.

split3(∃X∀x(x ∈ X)) = ∃X
1∃X2∃X3(∀x 1(

3
⋁
i=1

x 1 ∈ X i)

∧ ∀x2(
3
⋁
i=1

x2 ∈ X i) ∧ ∀x3(
3
⋁
i=1

x3 ∈ X i)) .

Lemma 5.8 (Splitting Lemma). For any positive integer k, any structure A,
any partition (A1 , . . . ,Ak) of the universe of A and any assignment β of the

free variables occurring in φ,

(1) A, β ⊧ φ if and only if A⟨A1 , . . . ,Ak⟩ , β ⊧ splitk(φ), and
(2) qr∗(splitk(φ)) ≤ qr(φ) .

84

5.2 Formulae with Restricted Variables

Proof. Statement (2) immediately follows from the definition of quantifier

rank and the definition of splitk . We show the first statement by an induc-

tion on the structure of formulae.

Atomic formulae:

◆ φ = (x = y)

A, β ⊧ x = y ⇐⇒ β(x) = β(y)
⇐⇒ ex. c, d ∈ [k] such that β(x) ∈ Ac

, β(y) ∈ Ad
, and β(x) = β(y)

⇐⇒ (A,A1
, . . . ,Ak

, β) ⊧
k
⋁
c=1

k
⋁
d=1

x ∈ Pc ∧ y ∈ Pd ∧ x = y
´¹¹¸¹¹¶

translation of x c = yd

⇐⇒ (A⟨A1 , . . . ,Ak⟩ , β) ⊧
k
⋁
c=1

k
⋁
d=1
(x c = yd) = splitk(φ)

◆ φ = R(x1 , . . . , xr)

A, β ⊧ R(x1 , . . . , xr)
⇐⇒ (β(x1), . . . , β(xr)) ∈ RA

⇐⇒ ex. c1 , . . . , cr such that β(x1) ∈ Ac1 , . . . , β(xr) ∈ Acr ,

and (β(x1), . . . , β(xr)) ∈ RA

⇐⇒ (A,A1
, . . . ,Ak

, β) ⊧ ⋁
(c1 , . . . ,cr)∈[k]r

⋀
j=1, . . . ,r

x j ∈ Pc j ∧ R(x1 , . . . , xr)

´¹¹¹¸¹¹¶
translation of R(x c1

1 , . . . , x cr
r)

⇐⇒ (A⟨A1 , . . . ,Ak⟩ , β) ⊧ ⋁
(c1 , . . . ,cr)∈[k]r

R(x c11 , . . . , x
cr
r) = splitk(φ)

◆ φ = x ∈ Y

A, β ⊧ x ∈ Y
⇐⇒ ex. c ∈ [k] such that β(x) ∈ Ac

, and β(x) ∈ β(Y)
⇐⇒ ex. c ∈ [k] such that β(x) ∈ Ac

, and β(x) ∈ ⋃
d
(β(Y) ∩ Ad)

⇐⇒ (A,A1
, . . . ,Ak

, β) ⊧
k
⋁
c=1

k
⋁
d=1

x ∈ Pc ∧ x ∈ Pd ∧ x ∈ Y
´¹¹¹¸¹¹¶

translation of x c ∈ Y d

⇐⇒ (A⟨A1 , . . . ,Ak⟩ , β) ⊧
k
⋁
c=1

k
⋁
d=1

x c ∈ Y d = splitk(φ)

85

5 Compositional Model Checking of Weak MSO

Inductive step:

◆ If φ is a Boolean combination, the statement is obvious.

◆ φ = ∃xψ(x)

A, β ⊧ ∃xψ(x)
⇐⇒ ex. a ∈ A such that A, β[x ↦ a] ⊧ ψ(x)
⇐⇒ ex. c and a ∈ Ac

such that A, β[x ↦ a] ⊧ ψ(x)
(IH)
⇐⇒ ex. c and a ∈ Ac

such that A⟨A1 , . . . ,Ak⟩ , β[x ↦ a] ⊧ splitkψ(x)

⇐⇒ A⟨A1 , . . . ,Ak⟩ , β ⊧
k
⋁
c=1
∃x csplitkψ(x

c)

◆ φ = ∀xψ(x) is analogous.
◆ φ = ∃Xψ(X)

A, β ⊧ ∃Xψ(X)
⇐⇒ ex. S ⊆ A such that A, β[X ↦ S] ⊧ ψ(X)
⇐⇒ ex. S1 ⊆ A1

, . . . , Sk ⊆ Ak

such that A, β[X1 ↦ S1 , . . . , Xk ↦ Sk] ⊧ ψ[X ←
k
⋃
c=1

Xc]

⇐⇒ ex. S1 ⊆ A1
, . . . , Sk ⊆ Ak

such that A⟨A1 , . . . ,Ak⟩ , β[Xc ↦ Sc] ⊧ splitk(ψ[X ←
k
⋃
c=1

Xc])

⇐⇒ A⟨A1 , . . . ,Ak⟩ , β ⊧ ∃X1
. . . Xksplitk(ψ[X ←

k
⋃
c=1

X c])

◆ φ = ∀Xψ(X) is analogous. q.e.d.

5.3 Decomposing Formulae

Given a system of equations defining an inductive structure, we can de-

compose a WMSO formula into a Boolean combination of formulae to be

checked on the constituent structures.

Definition 5.9. Let D be a system of n structure equations such that k i
structures appear on the right-hand side of the i-th equation. Let S(D) =

86

5.3 Decomposing Formulae

(A1 , . . . ,An) and let φ be a WMSO formula with free variables free(φ) =
{X1 , . . . , Xr , x1 , . . . , xs}. For each m ∈ [n], a Dm-decomposition of φ is a

sequence of k-tuples (k = km) of formulae (ψ1
1 , . . . ,ψk

1), . . . , (ψ1
l , . . . ,ψ

k
l)

such that the free variables of each ψc
i are included in free(φ), qr(ψc

i) ≤

qr(φ), and

Am , β ⊧ φ ⇐⇒ for some i ∈ [l] and each c ∈ [k]: Am[c], β̂c ⊧ ψ̂c
i ,

where β is an assignment of the free first- and second-order variables, and β̂c

is a partial assignment defined as follows:

◆ β̂c is undefined for those variables x such that β(x) /∈ Am[c],
◆ β̂c(x) = β(x) otherwise, and
◆ β̂c(X) = β(X) ∩ Am[c].

Furthermore,

ψ̂c
i =

⎧⎪⎪
⎨
⎪⎪⎩

� if ψc
i contains a free variable x with β(x) /∈ Am[c] and

ψc
i otherwise .

Modifying the formulae and the interpretation ensures that all free

first-order variables in the formulae ψ̂c
i are actually interpreted by β̂c and

captures the intuition that a first-order variable cannot be assigned values

from different components at the same time.

If the formula φ does not contain free first-order variables, we do not

need to modify the formulae ψc
i and only need to restrict the interpretation

of the free second-order variables to the available universe.

The following theorem is the main result used to prove the correctness

of our algorithm. Let us remark that it can be obtained from more general

composition theorems of Shelah [She75], but those theorems do not yield a

practical algorithm.

Theorem 5.10 (Decomposition Theorem). For any WMSO formula φ (with

arbitrary free variables), any systemD with n structure equations, and any

m ∈ [n], there exists a Dm-decomposition of φ, and the decomposition is

computable.

The rest of this section is devoted to a proof of the Decomposition

Theorem in the setting of inductive structures which will be used in the

87

5 Compositional Model Checking of Weak MSO

following to define a model checking game. Towards this, we introduce a

new normal form for WMSO formulae, called the type normal form (TNF),

which is inspired by the classical Hintikka formulae. As we will see later,

during the transformation of a split formula into TNF, subformulae speaking

about the same component get grouped together such that, if we convert

the finally obtained TNF into a DNF, we immediately obtain the desired

decomposition which can be considered as a list of all possible combinations

of types the components must have in order for the whole structure to satisfy

the original formula. Note that the TNF is in a sense a converse of the prenex

normal form since quantifiers are pushed as deep inside the formulae as

possible.

5.3.1 Type Normal Form

For a set of formulae Φ, we denote by B+(Φ) all positive Boolean combi-

nations of formulae from Φ, i.e. the set of formulae we obtain by closing Φ

under finite disjunctions and conjunctions (but not negation).

Definition 5.11. We call a formula φ normal if it is of the following form:

φ = R(x) ∣ ¬R(x) ∣ x = y ∣ x ≠ y ∣ x ∈ X ∣ x ∉ X
∣ ∃xB+(Φx) ∣ ∀xB+(Φx) ∣ ∃XB+(ΦX) ∣ ∀XB+(ΦX)

such that all formulae in Φx and ΦX are normal, x ∈ free(φ) for all φ ∈ Φx ,

and X ∈ free(φ) for all φ ∈ ΦX . A formula is in type normal form, TNF, if it

is a positive Boolean combination of normal formulae.

Example 5.12. Consider φ = ∃x(P(x) ∧ (Q(y) ∨ R(x))). The formula is

not in TNF since Q(y) violates the constraint that the quantified variable x
has to appear freely in every subformula. The TNF of φ is

(Q(y) ∧ ∃xP(x)) ∨ ∃x(P(x) ∧ R(x)) .

We claim that for each formula φ there exists an equivalent formula ψ
in TNF such that qr(ψ) ≤ qr(φ) (and qr∗(ψ) ≤ qr∗(φ) for formulae with

restricted variables) and the set of atoms of ψ is a subset of the atoms of φ.
Moreover, the procedure TNF(φ) computes such a formula ψ given a for-

mula φ in negation normal form. Note that it uses sub-procedures DNF

88

5.3 Decomposing Formulae

Procedure 5.2. TNF(φ)

case φ is a literal return φ
case φ = φ1 ∨ φ2 return TNF(φ1) ∨ TNF(φ2)

case φ = φ1 ∧ φ2 return TNF(φ1) ∧ TNF(φ2)
case φ = ∃xψ (or ∃Xψ) and DNF(TNF(ψ)) = ⋁i(⋀ j ψ i

j)

J i ← { j ∣ x ∈ free(ψ i
j)}

return ⋁i (⋀ j/∈J i ψ
i
j ∧ ∃x(⋀ j∈J i ψ

i
j))

case φ = ∀xψ (or ∀Xψ) and CNF(TNF(ψ)) = ⋀i(⋁ j ψ i
j)

J i ← { j ∣ x ∈ free(ψ i
j)}

return ⋀i (⋁ j/∈J i ψ
i
j ∨ ∀x(⋁ j∈J i ψ

i
j))

and CNF which, given a Boolean combination of formulae, convert it to

disjunctive or conjunctive normal form without introducing new atoms.

Theorem 5.13. The formula ψ = TNF(φ) is in TNF, equivalent to φ, and its

atoms and free variables are included in those of φ and qr(ψ) ≤ qr(φ). If φ
contains restricted variables, then qr∗(ψ) ≤ qr∗(φ).

Proof. We proceed inductively on the structure of φ. For literals all the
claims are trivial since TNF is an identity. For Boolean combinations of

formulae, the procedure TNF only calls itself recursively, thus all claims of

the theorem follow inductively as well.

Consider the case when φ = ∃xψ and DNF(TNF(ψ)) = ⋁i(⋀ j ψ i
j).

We convert TNF(ψ) to disjunctive normal form in this case since the ex-

istential quantifier is distributive over disjunctions, and thus TNF(φ) ≡
⋁i(∃x⋀ j(ψ i

j)). Since quantifiers are also distributive over formulae which

do not contain the quantified variable, we get that the result, ⋁i (⋀ j∈J i ψ
i
j ∧

∃x(⋀ j/∈J i ψ
i
j)), is equivalent to ∃xTNF(ψ), and thus, by the induction hy-

pothesis, also to φ. Since each formula ψ i
j is normal by the induction hypoth-

esis, in order to show that the result is in TNF, we only need to check that

∃x(⋀ j∈J i ψ
i
j) is normal. Syntactically this is trivial, and the constraint on

variables in the TNF is indeed satisfied by the choice of J i . By the induction
hypothesis and the assumption on the procedure DNF, the set of atoms does

not increase, and due to the choice of J i there are no new free variables

89

5 Compositional Model Checking of Weak MSO

introduced. Furthermore, neither the quantifier rank nor the quantifier rank

over any restricted variable increases. The case of universal quantification

is analogous, but instead of the DNF, we consider the CNF of the inner

formula. q.e.d.

For proving the main lemma about decompositions, we need to exploit

the following important but rather technical property of formulae in TNF.

Lemma 5.14. Let φ be a formula in TNF, and let V1 , . . . ,Vn be a partition of

the variables occurring in φ such that if two variables appear in the same

atom in φ, these variables belong to the same Vi (we say that the partition

is compatible with the atoms). Then φ is a Boolean combination of normal

formulae φ1 , . . . , φm such that each φ j contains only atoms with variables

from one of the sets Vi .

Proof. By contradiction, assume that there exists a formula φ in TNF which

does not satisfy the above condition. Consider the smallest such formula

(with respect to its length). Then φ is normal since from a Boolean combina-

tion of normal formulae one could choose a single subformula with atoms

from different sets.

Since the chosen partition is compatible with the atoms, the counter-

example φ cannot be an atom, and thus it is of the form ∃XB+(ΦX) or

∀XB+(ΦX) (or of the same form for first-order quantification). Due to the

minimality of φ, each formulaψ j ∈ ΦX satisfies the claim and contains atoms

from only a single set Vi j . But, by the constraint on TNF, we know that X
occurs as a free variable in each formula in ΦX , and thus X is contained in

each of the sets Vi j . Since the sets Vi are pairwise disjoint, all indices i j must

be the same. This contradicts the assumption that φ contains subformulae

with variables from different sets Vi . q.e.d.

5.3.2 Formula Decomposition Algorithm

Procedure 5.3 combines the procedures for splitting formulae and the TNF

conversion to obtain an algorithm for actually computing aDm-decompo-

sition. Note that the algorithm does not need the whole description of the

system of equations, but it suffices to know the number km of components

the m-th structure is composed of and the functions (fm , i)i∈[km] defining

the relations between components.

90

5.3 Decomposing Formulae

Procedure 5.3. decomp(φ,m)

ψm ← splitkm(φ)
ϑm ← replace in ψm

– x c1 ∈ X c2 or x c1 = x c2 with � if c1 ≠ c2
– R i(x

c1
1 , . . . , x

cri
r i) with fm , i(c1 , . . . , cr i) if not all c l are equal

return DNF(TNF(ϑm)) /* = ⋁i ⋀ j τ i j */

Lemma 5.15 (Decomposition Lemma). Let φ be a formula with free variables

{X1 , . . . , Xr , x1 , . . . , xs}, and letD be a system of n structure equations

D =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Λ1 = A1
1 ⊕ A2

1 ⊕ . . . ⊕ Ak1
1 with f1,1 , . . . , f1,t

⋮ ⋮ ⋮

Λn = A1
n ⊕ A2

n ⊕ . . . ⊕ Akn
n with fn ,1 , . . . , fn ,t

with S(D) = (A1 , . . . ,An). For each m ∈ [n], decomp(φ,m) computes a

Dm-decomposition of φ.

Proof. We first consider the case that φ does not contain any free first-order

variables. By the Splitting Lemma and the definition ofWMSO semantics we

get that Am , P ⊧ φ⇐⇒ Am , Pc ⊧ ψm , where Pc
i = Pi ∩Am[c]. Considering

Step 2 of the algorithm, by the definition of the semantics of WMSO with

restricted variables and the definition of S(D) we further get that

Am , Pc ⊧ ψm ⇐⇒ Am , Pc ⊧ ϑm .

After this simplification step, all variables occurring in the same atomic

subformula in ϑm are restricted to the same component, and by Lemma 5.14,

each subformula τ i j in DNF(TNF(ϑm)) = ⋁i ⋀ j τ i j contains only atoms

(and thus also quantifiers) with variables restricted to a single component.

Let ψc
i be the conjunction of all τ i j containing variables restricted to the

component c ∈ [k l], or⊺ if no such τ i j occurs. Clearly TNF(ϑm) is equivalent
to ⋁i(⋀c ψc

i), and combining this with the previous equivalences we get

that

Am , P ⊧ φ⇐⇒ Am , Pc ⊧ ⋁
i
(⋀

c
ψc
i) .

91

5 Compositional Model Checking of Weak MSO

To show that ψc
i with restricted variables X c , x c replaced by the stan-

dard ones X , x is a Dm-decomposition of φ, it only remains to prove

that qr(τ i j) ≤ qr(φ) for all i , j. Observe that, by Lemma 5.8, we have

qr∗(ψm) ≤ qr(φ). Replacing atoms does not change the quantifier rank,

and Theorem 5.13 implies that qr∗(TNF(ϑm)) ≤ qr∗(ψm). But since each

τ i , j contains only quantification over variables from one component, we

obtain that qr∗(TNF(ϑm)) = maxi , j qr(τ i , j) ≤ qr(φ).

Now consider the slightly more involved case that the formula con-

tains free first-order variables. We show that the algorithm also yields a

decomposition satisfying all required properties. In the following, for a

formula φ with free first-order variables {x1 , . . . , xs} and a tuple (c1 , . . . , cs),
we will use the notation φc to denote the formula φ[x1/x

c1
1 , . . . , xs/x css].

Furthermore, given an assignment β of the free first-order variables, we

denote by cβ = (c1 , . . . , cs) the tuple of components such that β(x i) ∈ Ac i

for i = 1, . . . , s.

The first step of the algorithm computes ψm = splitkm(φ). Assume

that φ contains the free variables x1 , . . . , xs . Then, after splitting all first-order

variables, we obtain

ψm = ⋁
(c1 , . . . ,cs)∈[km]s

splitkm(φ
c)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ηc
m

,

i.e. ψm contains, for every possible combination of components, a disjunct

in which each free variable is restricted to that specific component. Further-

more, by the Splitting Lemma,

A, β ⊧ φ ⇐⇒ A⟨A1 , . . . ,Akm ⟩ , β ⊧ splitkm(φ) .

By the definition of the semantics of formulae with restricted variables,

it is clear that a formula containing a variable x j restricted to c j is evaluated
to � under an assignment β with β(x j) /∈ Ac j . Hence, for every assignment β,
there is exactly one disjunct in ψm that does not trivially evaluate to �, which

immediately implies that A, β ⊧ φ ⇐⇒ A⟨A1 , . . . ,Akm ⟩ , β ⊧ splitkm(φ
cβ).

Since the definition of the TNF does not impose constraints on oc-

currences of free variables, the transformation TNF(φ(x)) yields a formula

with the same free variables in TNF. Furthermore, by definition of Proce-

92

5.3 Decomposing Formulae

dure 5.2, TNF(ψm) = TNF(⋁c ηcm) = ⋁c TNF(ηcm), and due to commutativity

of disjunction also DNF(TNF(⋁c ηcm)) = ⋁c DNF(TNF(ηcm)).
As each disjunct represents a tuple of formulae in the sequence which

we claim to be aDm-decomposition, this sequence can be seen as a concate-

nation of subsequences—one for each formula φc .

Again, according to the definition of the restricted-variable semantics,

A, β ⊧ φ if and only if A⟨A1 , . . . ,Akm ⟩ , β ⊧ φcβ . Let β be fixed, and assume

that Am , β ⊧ φ. By the same reasoning as before, the subsequence obtained

from the decomposition of φcβ contains a tuple (ψ1 , . . . ,ψkm) such that

Am[c], β̂c ⊧ ψ̂c for each c = 1, . . . , km . (Note that in this case, β̂c(x i) =
β(x i) and ψ̂c = ψc for all c ∈ [km].) Conversely, assume there is a tuple

(ψ1 , . . . ,ψkm) such that Am[c], β̂c ⊧ ψ̂c for each c = 1, . . . , km , then this

tuple must originate from the decomposition of φcβ . Otherwise, ψ̂c = � for

some c, contradicting the assumption. Hence, by the semantic equivalence

of the TNF to the original formula and the Splitting Lemma, Am , β ⊧ φcβ ,

and by the above observation also Am , β ⊧ φ. q.e.d.

This eventually concludes the proof of Theorem 5.10; as we have seen,

the Decomposition Lemma provides an effective solution to the problem of

computing decompositions by means of Procedure 5.3. Generally analysing

the size of the resulting decompositions is quite involved; the main source

for massive inflation being quantifier alternations in connection with con-

junctions and disjunctions necessitating DNF and CNF conversions during

the computation of the TNF. Hence, implementations depend to a great

extent on the performance of efficient conversion algorithms. Further, the

algorithm still leaves much room for optimisations, which is also indicated

in the following example.

Example 5.16. We consider the following system of equations defining the

infinite binary treewith the prefix ordering, a root predicateR, and predicates
SL and SR for left and right successors, respectively.

D =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Λ1 = ({●}, R = {●}, S0 = ∅, S1 = ∅, < = ∅) ⊕ Λ2 ⊕ Λ3 , f<
Λ2 = ({●}, R = ∅, S0 = {●}, S1 = ∅, < = ∅) ⊕ Λ2 ⊕ Λ3 , f<
Λ3 = ({●}, R = ∅, S0 = ∅, S1 = {●}, < = ∅) ⊕ Λ2 ⊕ Λ3 , f<

where f<(c1 , c2) = ⊺ if and only if c1 = 1 and c2 ∈ {2, 3}.

93

5 Compositional Model Checking of Weak MSO

We compute theD1-decomposition of the formula

ψ = ∃X∀x(x ∈ X → SLx ∧ ∀y(y ≺ x → (Ry ∨ SR y)))

on the binary tree defined byD following Procedure 5.2 and Procedure 5.3.

split3(∃X∀x(x ∈ X → SLx ∧ ∀y(y ≺ x → (Ry ∨ SR y))))

= ∃X1∃X2∃X3∀x 1
⎛
⎜
⎜
⎜
⎜
⎜
⎝

3
⋁
i=1

x 1 ∈ X i →

⎛
⎜
⎜
⎜
⎜
⎜
⎝

SLx 1

∧ ∀y1(y1 ≺ x 1 → (Ry1 ∨ SR y1))
∧ ∀y2(y2 ≺ x 1→ (Ry2 ∨ SR y2))
∧ ∀y3(y3 ≺ x 1→ (Ry3 ∨ SR y3))

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎠

∧ ∀x2
⎛
⎜
⎜
⎜
⎜
⎜
⎝

3
⋁
i=1

x2 ∈ X i →

⎛
⎜
⎜
⎜
⎜
⎜
⎝

SLx2

∧ ∀y1(y1 ≺ x2 → (Ry1 ∨ SR y1))
∧ ∀y2(y2 ≺ x2→ (Ry2 ∨ SR y2))
∧ ∀y3(y3 ≺ x2→ (Ry3 ∨ SR y3))

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎠

∧ ∀x3
⎛
⎜
⎜
⎜
⎜
⎜
⎝

3
⋁
i=1

x3 ∈ X i →

⎛
⎜
⎜
⎜
⎜
⎜
⎝

SLx3

∧ ∀y1(y1 ≺ x3 → (Ry1 ∨ SR y1))
∧ ∀y2(y2 ≺ x3→ (Ry2 ∨ SR y2))
∧ ∀y3(y3 ≺ x3→ (Ry3 ∨ SR y3))

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Since x j ∈ X i ≡ � if i ≠ j, and y i ≺ x j ≡ f≺(i , j) if i ≠ j, the formula

immediately simplifies to

∃X1∃X2∃X3⎛

⎝
∀x 1(x 1 ∈ X1 → SLx 1 ∧ ∀y1(y1 ≺ x 1 → (Ry1 ∨ SR y1))
´¹¹¹¸¹¹¶

η1

)

∧ ∀x2
⎛

⎝
x2 ∈ X2 → SLx2 ∧

⎛

⎝

∀y1(Ry1 ∨ SR y1)
∧∀y2(y2 ≺ x2 → (Ry2 ∨ SR y2))

⎞

⎠

⎞

⎠

´¹¹¸¹¹¹¶
η2

∧ ∀x3
⎛

⎝
x3 ∈ X3 → SLx3 ∧

⎛

⎝

∀y1(Ry1 ∨ SR y1)
∧∀y3(y3 < x3 → (Ry3 ∨ SR y3))

⎞

⎠

⎞

⎠

´¹¹¹¸¹¹¹¶
η3

⎞

⎠

94

5.3 Decomposing Formulae

Although η1 is already in TNF, the procedure computes the CNF of

the quantified subformula and pushes the quantifier inside yielding

TNF(η1) = ∀x 1(x 1 /∈ X1 ∨ SLx 1)
∧ ∀x 1(x 1 /∈ X1 ∨ ∀y1(y1 ≺ x 1 → (Ry1 ∨ SR y1))) .

Analogously, the TNF of η2 is obtained by computing a CNF and pushing

the universal quantifier inside:

TNF(η2) = ∀x2(x2 /∈ X2 ∨ SLx2)
∧ (∀y1(Ry1 ∨ SR y1) ∨ ∀x2(x2 /∈ X2))

∧ ∀x2(x2 /∈ X2 ∨ ∀y2(y2 ≺ x2 → (Ry2 ∨ SR y2))) .

The TNF of η3 is identical up to the indices. Computing a DNF of

TNF(η1) ∧ TNF(η2) ∧ TNF(η3) and distributing the existential second-

order quantifiers, we finally obtain the TNF of the split formula as the fol-

lowing disjunctive normal form consisting of two clauses generated by the

two non-trivial clauses in TNF(η2) and TNF(η3) (underlined above).

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∀y1(Ry1 ∨ SR y1)

∧ ∃X1 ⎛

⎝

∀x 1(x 1 /∈ X1 ∨ SLx 1)
∧ ∀x 1(x 1 /∈ X1 ∨ ∀y1(y1 ≺ x 1 → (Ry1 ∨ SR y1)))

⎞

⎠

∧ ∃X2 ⎛

⎝

∀x2(x2 /∈ X2 ∨ SLx2)
∧ ∀x2(x2 /∈ X2 ∨ ∀y2(y2 ≺ x2 → (Ry2 ∨ SR y2)))

⎞

⎠

∧ ∃X3 ⎛

⎝

∀x3(x3 /∈ X3 ∨ SLx3)
∧ ∀x3(x3 /∈ X3 ∨ ∀y3(y3 ≺ x3 → (Ry3 ∨ SR y3)))

⎞

⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∨

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∃X1 ⎛

⎝

∀x 1(x 1 /∈ X1 ∨ SLx 1)
∧ ∀x 1(x 1 /∈ X1 ∨ ∀y1(y1 ≺ x 1 → (Ry1 ∨ SR y1)))

⎞

⎠

∧ ∃X2 ⎛

⎝

∀x2(x2 /∈ X2) ∧ ∀x2(x2 /∈ X2 ∨ SLx2)
∧ ∀x2(x2 /∈ X2 ∨ ∀y2(y2 ≺ x2 → (Ry2 ∨ SR y2)))

⎞

⎠

∧ ∃X3 ⎛

⎝

∀x3(x3 /∈ X3) ∧ ∀x3(x3 /∈ X3 ∨ SLx3)
∧ ∀x3(x3 /∈ X3 ∨ ∀y3(y3 ≺ x3 → (Ry3 ∨ SR y3)))

⎞

⎠

´¹¹¹¸¹¹¹¶
≡∀x3(x3/∈X3)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠ .

95

5 Compositional Model Checking of Weak MSO

Since the TNF is already in disjunctive normal form, it directly yields

the followingD1-decomposition ((ψ1
1 ,ψ2

1 ,ψ3
1), (ψ1

2 ,ψ2
2 ,ψ3

2)) where

ψ1
1 = ∀y(Ry ∨ SR y)

∧ ∃X∀x(x /∈ X ∨ (SLx ∧ ∀y(y ≺ x → (Ry ∨ SR y))))
ψ2
1 = ∃X(∀x(x /∈ X ∨ SLx) ∧ ∀x(x /∈ X ∨ ∀y(y ≺ x → (Ry ∨ SR y))))

ψ3
1 = ∃X(∀x(x /∈ X ∨ SLx) ∧ ∀x(x /∈ X ∨ ∀y(y ≺ x → (Ry ∨ SR y))))

ψ1
2 = ∃X∀x(x ∈ X → (SLx ∧ ∀y(y ≺ x → (Ry ∨ SR y))))

ψ2
2 = ∃X∀x(x /∈ X) (already simplified as indicated above)

ψ3
2 = ∃X∀x(x /∈ X) .

5.4 Model Checking Game for WMSO

Game-theoretic formalisations of model checking problems provide useful

insights into their complexity and manageability. For Boolean-valued logics,

the problem can be reduced to the problem of determining the winner in

a certain game between two players, called Verifier and Falsifier, in which

Verifier tries to prove that the formula holds in a given structure, whereas

Falsifier tries to prove that it does not.

For first-order model checking, reachability games suffice. The game

graph is constructed from the formula in negation normal form and the

structure such that positions consists of a formula together with an inter-

pretation of its free variables. If the formula at a position is a disjunction

(conjunction), Verifier (Falsifier) moves to either disjunct (conjunct) while

leaving the variable assignment untouched. In a position with a formula of

the form ∃xφ(x) (∀xφ(x)) and a variable assignment β, Verifier (Falsifier)
chooses an element a from the structure and moves to the position deter-

mined by φ and the extended assignment β[x ↦ a]. Positions with atomic

or negated atomic formulae are the terminal positions, and Verifier wins at

such a position if the formula holds under the assignment, otherwise Falsi-

fier wins. The winning objective for each player is to reach such a terminal

position where he or she wins. The size of the game graph is determined by

the product of the size of the structure and the size of the formula, and hence

it is finite if and only if the structure is finite. However, regardless of the

96

5.4 Model Checking Game for WMSO

structure, all possible plays are finite since the length of a play is bounded

by the length of the formula, and hence the game is determined, i.e. either

Verifier or Falsifier has a winning strategy. Furthermore one can show that,

as intended, Verifier has a winning strategy if and only if the formula holds

in the given structure.

Since finite two-player reachability games can be regarded as alternating

algorithms, we can directly conclude that the model checking problem for

FO on finite structures is in ALogspace or Ptime. For a more detailed

discussion see, for example, [GKL+07].

The FOmodel checking game can be extended to capture the semantics

of WMSO formulae by introducing new moves for formulae of the form

∃Xφ(X) (∀Xφ(X)) in which Verifier (Falsifier) may choose a finite subset

of elements. But still, the arena is infinite if the structure is infinite.

We will present a game for model checking WMSO on inductive struc-

tures whose game graph is finite as it only depends on the size of the de-

compositions and the size of the system of equations defining the structure

rather than on the size of the structure itself. Similarly to the standard FO or

WMSOmodel checking games, we obtain, in essence, a reachability game;

however, since the game graph is finite but the structures are in general

infinite, we have to allow for arbitrarily long plays, and thus the game graph

cannot be acyclic. This creates the possibility of playing infinitely long and

the need to declare the winner of such an infinite play. We resolve this by

introducing two priorities and considering a parity winning condition mak-

ing it, as we will see, in every position of the game unfavourable for one of

the players to pursue an infinite play.

While themoves for disjunctions and conjunctions can be handled as in

the FOmodel checking game, quantified formulae are more challenging and

cannot be captured by a single move but rather by a more complex subgame.

We will first describe the subgames arising for quantified formulae, show

how these subgames are linked to obtain a game for the whole formula,

and prove the soundness and completeness of the game-based approach by

induction.

The subgames we describe have exactly one starting position and dis-

tinguished exits which are terminal positions of the subgame in the sense

that there are no outgoing edges leading back into that subgame. Subgames

are linked to one another by gluing the exits to (identical) initial positions

97

5 Compositional Model Checking of Weak MSO

of other appropriate subgames. Thus, exits are not terminal positions of the

whole game anymore, but whenever the play passes through the exit of a

subgame, it can never return to that subgame afterwards.

We will first describe the individual subgames for the respective types

of formulae and prove their correctness in isolation. Reasoning that the

whole game constructed by linking together the relevant subgames is the

right model checking game then only requires an induction using those

partial correctness results.

Note that the games are always intended to be constructed such that,

for every position referencing a formula and a structure in the game graph,

Verifier has a winning strategy if and only if the structure is a model of the

formula under the interpretation of the free variables.

5.4.1 Subgame for the Existential Set Quantifier

Intuitively, to prove that an existentially quantified formula holds, Verifier

must provide an appropriate finite set of elements. To do so, she unravels the

structure according to its defining equations, chooses a subset of elements

from the finite-structure components of the equations and provides the right

tuple of formulae from the decomposition whose truth in the components

witness the truth of the initial formula on the whole structure. This process

of unravelling may have to be repeated for a finite number of steps until she

has completed choosing the set of elements satisfying the formula.

Definition 5.17. Let ∃Xφ(X) be a WMSO sentence, i.e. X is the only free

variable in φ. Let Φ = {ψ ∶ qr(ψ) ≤ qr(φ), free(ψ) ⊆ {X}}, and let D

be a system of n structure equations. The subgame G∃(φ,m) is defined as

follows.

◆ Positions of Verifier:

{⟪ψ,◻, i⟫ ∶ ψ ∈ Φ, i ∈ [n]}.
◆ Positions of Falsifier:

{⟪(ψ1 , . . . ,ψk i), S , i⟫ ∶ ψc ∈ Φ, S ⊆ ⋃c∈Fin i A
c
i , i ∈ [n]}.

◆ Initial position: ⟪φ,◻,m⟫.
◆ Exits:

– {⟪A,ψ, S , i⟫ ∶ A ∈ Str(D), ψ ∈ Φ, S ⊆ ⋃c∈Fin i A
c
i , i ∈ [n]}, and

– {⟪φ[X ← ∅],◻, i⟫ ∶ φ ∈ Φ, i ∈ [n]}.

98

5.4 Model Checking Game for WMSO

◆ Moves:

– ⟪ψ,◻, i⟫ V
Ð→ ⟪ψ[X ← ∅],◻, i⟫,

– ⟪ψ,◻, i⟫ V
Ð→ ⟪(ψ1 , . . . ,ψk i), S , i⟫, for each tuple (ψ1 , . . . ,ψk i)

in theDi-decomposition of ψ, and each S ⊆ ⋃c∈Fin i A
c
i , and

– ⟪(ψ1 , . . . ,ψk i), S , i⟫ F
Ð→

⎧⎪⎪
⎨
⎪⎪⎩

⟪Ac
i ,ψc , S , i⟫ if λ(i , c) = fin

⟪ψc ,◻, ℓ⟫ if λ(i , c) = ℓ.
◆ F := ∅.

The positions should be understood as follows. In a position ⟪ψ,◻, i⟫,
the formula ψ is checked on Si(D), i.e. on the i-th structure of the fixed

point. The blank symbol (◻) serves as a placeholder denoting that a subset

still has to be chosen for the only free set variable occurring in the formula.

In a position ⟪(ψ1 , . . . ,ψk i), S , i⟫, a set of elements S has been chosen, and

each formula ψc must be checked in the c-th component of Si(D). Finally,

in positions ⟪A,ψ, S , i⟫, the formula ψ is checked on the finite structure A

where X is interpreted by S.
Since the quantifier rank of the formulae in the decomposition tuples

is bounded by the quantifier rank of φ and there are only finitely many non-

equivalent formulae with fixed quantifier rank, Φ is finite. Furthermore, the

size of the sets chosen by Verifier is bounded by the size of the structures in

D, and hence the arena of the subgame G∃(φ,m) is finite.
To reason about the correctness of the presented subgame, consider

the game Ĝ∃(φ,m) obtained from G∃(φ,m) by adding a self loop to each
exit and re-defining

F := {⟪Ac
i ,ψ

c
, S , i⟫ ∶ Ac

i ⊧ ψ
c(S)}

∪ {⟪φ[X ← ∅],◻, i⟫ ∶ Si(D) ⊧ φ[X ← ∅]} .

Lemma 5.18. Verifier wins the game Ĝ∃(φ,m) if and only if Sm(D) ⊧

∃Xφ(X).

Proof. We prove that there is a direct correspondence between winning

strategies for Verifier and finite sets satisfying formulae. Note that Verifier

wins the Büchi game if she has a strategy to reach an exit in F in finitely

many steps. (An infinite play that does not loop through an exit in F either

loops in a bad exit or loops on the inner nodes which are all not contained

in F.)

99

5 Compositional Model Checking of Weak MSO

φ,◻,m for all ψ with qr(ψ) ≤ qr(φ), m ∈ [n]φ[X ← ∅],◻,m V

(ψ1
1 , . . . ,ψ

k
1), S1 ,m ⋯ (ψ1

r , . . . ,ψk
r), Sr ,m S i ⊆ ⋃

j∈Finm
Am[j]

V V⋯

Am[1],ψ1
r , Sr ⋯ Am[k],ψk

r , Sr

F F⋯

exit (assuming Am[1]
is a finite structure)

ψk
r ,◻, ℓ

assuming
Am[k] ≅ Aℓ

φ[X ← ∅],◻, ℓ V

V V⋯

⋮⋯ ⋯

Figure 5.3. Subgame G∃(φ,m) for checking whether Am ⊧ ∃Xφ(X)

(⇐) Let (A1 , . . . ,An) = S(D) and assume that Am ⊧ ∃Xφ(X). Let S
be a finite set such that Am , S ⊧ φ(X). By the Decomposition Theorem

there exists aDm-decomposition (ψ1
1 , . . . ,ψ

km
1), . . . , (ψ1

r , . . . ,ψkm
r) of φ and

an index ℓ ∈ [r] such that

(Am[c], S ∩Am[c]) ⊧ ψc
ℓ for all c ∈ [km] . (∗)

We prove the existence of a winning strategy for Verifier by induction on

the depth of S.

Let dp(S) = 1, i.e. S ⊆ ⋃c∈Finm Am[c]. Since dp(S) = 1, all elements

in S are from the finite components of Am , i.e. S ∩⋃c∈∆m Am[c] = ∅, and

Aλ(m ,c) ,∅ ⊧ ψc
ℓ for all c ∈ ∆m . (∗∗)

Hence, Verifier wins by moving to ⟪(ψℓ
1 , . . . ,ψℓ

km), S ,m⟫. Falsifier cannot
win by moving to a position ⟪Am[c],ψc

ℓ , S ,m⟫, for any c ∈ Finm , since these

positions are in F due to (∗), and from any position ⟪ψc
ℓ ,◻, λ(m, c)⟫ with

c ∈ ∆m , Verifier can move to ⟪ψc
ℓ[X ← ∅],◻, λ(m, c)⟫, which is in F due

to (∗∗), and win.

100

5.4 Model Checking Game for WMSO

Let dp(S) > 1, and let S0 = S ∩ ⋃c∈Finm Am[c]. We show that

Verifier has a winning strategy from ⟪(ψ1
ℓ , . . . ,ψ

km
ℓ), S0 ,m⟫. If Falsifier

chooses to move to ⟪Am[c],ψc
ℓ , S0 ,m⟫ for some c ∈ Finm , then Verifier

wins because (Am[c], S ∩Am[c]) ⊧ ψc
ℓ implies that ⟪Am[c],ψc

ℓ , S0 ,m⟫ is
in F. If Falsifier chooses to move to ⟪ψc

ℓ , S0 ,m⟫ for some c ∈ ∆m , then

dp (πc((S ∖ S0) ∩Am[c])) < dp(S) (where πc ∶ (s, cw) ↦ (s,w)), i.e. the
depth of the remaining elements decreases upon descending into the c-th
component. Since (Am[c], S ∩ Am[c]) ⊧ ψc

ℓ , Verifier wins from position

⟪ψc
ℓ ,◻, λ(m, c)⟫ for each c ∈ ∆m by the induction hypothesis.

(⇒) Assume that Verifier has a strategy σ to win the game from the ini-

tial position ⟪φ(X),◻,m⟫. Since all plays won by Verifier reach an exit after
finitely many steps, unravelling the game graph, and pruning all branches

that are not reachable by plays consistent with Verifier’s winning strategy or

that arise from unravelling the self loops on the exits, we obtain a finite tree

Tσ(φ,m) representing all possible plays of Falsifier against Verifier’s winning
strategy σ . The leaves of this tree are positions of the form ⟪Ac

i ,ψc , S , i⟫ or
⟪ψ[X ← ∅],◻, i⟫. We label the edges of the tree as follows: Edges represent-

ing Verifier’s moves are labelled with ε, and edges representing Falsifier’s

moves are labelled with letters from {1, . . . , k i} corresponding to which part
of the tuple Falsifier chooses, i.e. ⟪(ψ1 , . . . ,ψk i), S , i⟫

j
Ð→ ⟪Ai[c],ψc , S , i⟫

or ⟪(ψ1 , . . . ,ψk i), S , i⟫
j
Ð→ ⟪ψc ,◻, λ(i , c)⟫.

For each of Verifier’s positions p = ⟪ψ, i⟫ in the tree, we define the

set S(p) to be the unique set satisfying

S(p) ∩Ai[w] = S′ ⇐⇒
a leaf ⟪Aw , ⋅, S′ , ⋅⟫ is reachable from p via labels w

(note that the structure Aw in the leaf, being one of the finite structures in

D, is isomorphic to Ai[w]). Intuitively, this set is obtained by combining all

structures in reachable leaves after appropriately indexing their elements by

the pathw leading to them. We prove by induction on the height of positions
in the tree that (Ai , S(⟪φ,◻, i⟫)) ⊧ φ holds for each position ⟪φ,◻, i⟫.

Let h(⟪φ,◻, i⟫) = 0. Then the only successor position is the leaf

⟪φ[X ← ∅],◻, i⟫. Therefore S(⟪φ,◻, i⟫) = ∅, and since Verifier plays

a winning strategy, the exit must be in F. Hence, by definition of the game,

Ai ⊧ φ(∅).

101

5 Compositional Model Checking of Weak MSO

Let h(⟪φ,◻, i⟫) > 0. Then the only child ⟪(ψ1 , . . . ,ψk i), S , i⟫ has
successors ⟪Ai[c],ψc , S′ , i⟫, which are leaves, and ⟪ψc ,◻, λ(i , c)⟫ with
h(⟪ψc ,◻, λ(i , c)⟫) < h(⟪φ,◻, i⟫). By the induction hypothesis, Aλ(i ,c) ⊧

ψc(S(⟪ψ j ,◻, λ(i , j)⟫)) for all c ∈ ∆ i , and sincewe assume thatVerifier plays

a winning strategy, Ai[c] ⊧ ψc(S′) for all c ∈ Fini . Due to Theorem 5.10,

we conclude that Ai , S(⟪φ,◻, i⟫) ⊧ φ. Considering the initial position

⟪φ,◻,m⟫, we obtain Am , S(⟪φ,◻,m⟫) ⊧ φ, and hence Am ⊧ ∃Xφ(X).
q.e.d.

5.4.2 Subgame for the Existential First-Order Quantifier

The subgame we obtain for an existentially quantified formula ∃xφ(x) is
played as follows. Starting from the position in which the formula φ(x) is
evaluated on the m-th structure of the fixed point Am , Verifier announces

a component c in which the element satisfying φ(x) can be found and

chooses a tuple of formulae from the Dm-decomposition of φ(x). Then

it is Falsifier’s turn to challenge Verifier’s claim in one of the components

of Am . If he challenges her in the c-th component and this component is

finite, Verifier has to provide a witness from that component and exits the

subgame. If the component is infinite, the game continues in that component,

i.e. Verifier again chooses a component and a decomposition, and so on. If

Falsifier challenges Verifier in a component different from the c-th one, the

subgame is left towards an exit for model checking the respective formula

which does not contain x as a free variable anymore.

Definition 5.19. Given a system of n structure equationsD and a sentence

∃xφ(x), let Φ = {ψ ∶ qr(ψ) ≤ qr(φ), free(ψ) ⊆ {x}}. The subgame

G∃1(φ,m) is defined as follows.

◆ Positions of Verifier:

– {⟪ψ,◻, i⟫ ∶ ψ ∈ Φ, i ∈ [n]}, and
– {⟪A,ψ, c, ℓ⟫ ∶ A ∈ Str(D), ψ ∈ Φ, c ∈ [k i], c ≠ ⊺, ℓ ∈ [n]}.

◆ Positions of Falsifier:

{⟪(ψ1 , . . . ,ψk i), c, i⟫ ∶ ψc ∈ Φ, c ∈ [k i], i ∈ [n]} .
◆ Initial position: ⟪φ,◻,m⟫.
◆ Exits:

– {⟪(A, β),ψ,∎, i⟫ ∶ A ∈ Str(D), β ∶ {x} → A, ψ ∈ Φ, i ∈ [n]},
– {⟪ψ,∎, i⟫ ∶ ψ ∈ Φ, i ∈ [n]}.

102

5.4 Model Checking Game for WMSO

◆ Moves:

– ⟪ψ,◻, i⟫ V
Ð→ ⟪(ψ1 , . . . ,ψk i), c, i⟫, for each tuple (ψ1 , . . . ,ψk i)

in theDi-decomposition of ψ and each c ∈ [k i],
– ⟪A,ψ,◻, i⟫ V

Ð→ ⟪(A, x ↦ a),ψ,∎, i⟫ for some a ∈ A

– ⟪(ψ1 , . . . ,ψk i), c, i⟫
F
Ð→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟪Ac
i ,ψc ,◻, i⟫ if λ(i , c) = fin,

⟪Ad
i ,ψd ,∎, i⟫ if λ(i , d) = fin, c ≠ d,

⟪ψc ,◻, ℓ⟫ if λ(i , c) = ℓ,
⟪ψd ,∎, ℓ⟫ if λ(i , d) = ℓ, c ≠ d.

◆ F := ∅.

The intuitive meaning of the positions is the same as in the existential

set quantifier game, but we use an additional distinguished placeholder ∎

denoting that the element variable is interpreted with an element from a

different component such that it does not have to be chosen in the following.

As in the set quantifier game, the quantifier rank of the formulae in the

decomposition tuples is bounded by the quantifier rank of φ and there are

only finitely many non-equivalent formulae with fixed quantifier rank such

that Φ is finite. Furthermore, there are only finitely many possible elements

for Verifier to choose, and hence the arena of G∃1(φ,m) is finite.
Again, to reason about the correctness of the subgame, we transform

the game G∃1(φ,m) into the game Ĝ∃1(φ,m) by adding a self loop to each
exit and re-defining

F := {⟪(Ac
i , β),ψ

c
,∎, i⟫ ∶ Ac

i , β ⊧ ψ
c} ∪ {⟪ψ,∎, i⟫ ∶ Ai ⊧ ψ} .

Lemma 5.20. Verifier wins the game G∃1(φ,m) if and only if Sm(D) ⊧

∃xφ(x).

Proof. Again, we prove the correspondence of elements witnessing the truth

of the formula and winning strategies for Verifier. Note that Verifier wins

the Büchi game if and only if she has a strategy to reach an exit in F in a

finite number of steps.

(⇐) Let (A1 , . . . ,An) = S(D) and assume that Am ⊧ ∃xφ(x). We

can assume that Am is an indexed structure, and we let a be the indexed

element such that Am ⊧ φ(a). By the Decomposition Theorem, there exists

aDm-decomposition (ψ1
1 , . . . ,ψ

km
1), . . . , (ψ1

r , . . . ,ψkm
r) of φ and a number

ℓ ∈ [r] such that, for β ∶ x ↦ a, we have Am[c], β̂c ⊧ ψ̂c
ℓ for all c ∈ [km].

103

5 Compositional Model Checking of Weak MSO

φ,◻,m

(ψ1
1 , . . . ,ψ

km
1), c1 = 1,m ⋯ (ψ1

r , . . . ,ψ
km
r), cr = km ,m

V V⋯

A1
m ,ψ1

1 ,◻,m ⋯ ψkm
1 ,∎, ℓ

(A1
m , x ↦ a),ψ1

1 ,∎,m

F F⋯

V chooses
witness a

A1
m ,ψ1

r ,∎,m ψkm
r ,◻, ℓ

F F⋯

⋯

⋮

Figure 5.4. Subgame G∃1(φ,m) for checking whether Am ⊧ ∃xφ(x). On the first

level, Verifier chooses a composition tuple and a component (c i ∈ [km])
containing the witness for x, and on the second level, Falsifier chooses in

which component to challenge Verifier’s choice.

Weprove the existence of awinning strategy forVerifier by induction on

the depth of a = (a0 ,w). Let dp(a) = 1, then a = (a0 , c) is an element from

the finite componentAm[c]. Since thewitness a is chosen from component c,
Verifier wins by moving to ⟪(ψ1

ℓ , . . . ,ψ
km
ℓ), c,m⟫. If Falsifier challenges her

in component c, she wins by moving to ⟪(Ac
m , x ↦ a),ψc

ℓ ,∎,m⟫ ∈ F.
Let dp(a) > 1, i.e. a = (a0 , cw′) with w′ ≠ ε. Since a is to be found in

the c-th component (which cannot be a finite one in this case), ψc
ℓ is the only

formula of the tuple in which x occurs freely (otherwise, ψ̂c
ℓ = �), and hence,

by induction hypothesis, Verifier wins by moving to ⟪(ψ1
ℓ , . . . ,ψ

km
ℓ), c,m⟫.

Choosing a component different from c eventually leads to an exit in F
which is losing for Falsifier, so the best he can do is to challenge Verifier in

the c-th component.

(⇒) Assume that Verifier has a strategy σ to win the game from the

initial position ⟪φ(x),◻,m⟫. Since all plays won by Verifier lead to an

exit in F after finitely many steps, unravelling the game graph to the tree

Tσ(φ,m) and pruning branches that are not reachable by Verifier’s strat-

egy σ , or that start with a move by Falsifier that directly leads to an exit that

is losing for him, we obtain a finite path (since Falsifier has no choice but

to move to Verifier’s chosen component if he does not want to lose imme-

diately). Concatenating Verifier’s choices of components along this path

104

5.4 Model Checking Game for WMSO

to an index word w, we obtain, together with the final non-trivial move to

the exit ⟪(Ac
i , x ↦ a), φ,∎, i⟫, an indexed element a = (a0 , cw). Analo-

gously to the proof of Lemma 5.18, by a straightforward induction using the

Decomposition Theorem, we obtain that Am ⊧ φ(a). q.e.d.

5.4.3 The Constant Subgames

Besides the subgames for the quantifiers we need subgames for the constant

formulae ⊺ and � which are particularly simple. Both G(⊺,m) and G(�,m)
consist of only one (the initial) position p0 with a self loop and have no

exits. In G(⊺,m), we let F := {p0}, and in G(�,m), we let F := ∅. It is

straightforward to see that, as intended, Verifier wins G(⊺,m) and Falsifier

wins G(�,m).

5.4.4 Finite-Structure Subgames

To check formulae, possibly with an assignment of the free variables, in a

finite structure given by the equations, we use the common model checking

game for WMSO as sketched at the beginning of the section.

Definition 5.21. Let φ be a WMSO formula in negation normal form, and

Φ = {ψ ∶ ψ is a subformula of φ}. LetA be a finite structure, and let β be an
assignment of the free variables in φ. The positions of the game Gfin(A, β, φ)
are triples consisting of the structureA, a formula in Φ and an assignment β
interpreting its free variables. The game starts at position ⟪A, β, φ⟫, and the

possible moves are as follows.

◆ ⟪A, β, ϑ ∨ η⟫ V
Ð→ ⟪A, β, ϑ⟫ or ⟪A, β, ϑ ∨ η⟫ V

Ð→ ⟪A, β, η⟫
◆ ⟪A, β, ϑ ∧ η⟫ F

Ð→ ⟪A, β, ϑ⟫ or ⟪A, β, ϑ ∧ η⟫ F
Ð→ ⟪A, β, η⟫

◆ ⟪A, β, ∃xψ(x)⟫ V
Ð→ ⟪A, β[x ↦ a],ψ(x)⟫ for some a ∈ A,

◆ ⟪A, β,∀xψ(x)⟫ F
Ð→ ⟪A, β[x ↦ a],ψ(x)⟫ for some a ∈ A,

◆ ⟪A, β, ∃Xψ(X)⟫ V
Ð→ ⟪A, β[X ↦ U],ψ(X)⟫ for some (finite) U ⊆ A,

◆ ⟪A, β,∀Xψ(X)⟫ F
Ð→ ⟪A, β[X ↦ U],ψ(X)⟫ for some (finite) U ⊆ A.

In order to obtain a Büchi game without terminal positions, we let one of

the players, say Verifier, loop in positions with atomic or negated atomic

formulae, and define

F := {⟪A, β,ψ⟫ ∶ ψ is (negated) atomic, and A, β ⊧ ψ} .

105

5 Compositional Model Checking of Weak MSO

Lemma 5.22. Verifier wins the game Gfin(A, φ, β) if and only if A, β ⊧ φ.

5.4.5 Negation in Games

In the FO andWMSOmodel checking game it is straightforward to come

up with a move for universally quantified formulae that is dual to the move

for existentially quantified formulae by letting Falsifier choose an element

(or subset) instead of Verifier. This follows the intuition that Verifier has

to provide a witness for which the formula holds, while Falsifier, in order

to show that the formula does not hold, has to provide a suitable counter-

example. Thus, we do not have to handle negation explicitly in the game, but

instead we can restrict our attention to formulae given in negation normal

form where the only negated subformulae are atomic. In the game graph,

atoms and negated atoms correspond to terminal positions for which a

winner is declared, and hence, if the atom is negated, we can simply swap

the roles of winner and loser.

Unfortunately, when analysing the structure of the subgames we pre-

sented for existential quantification in an effort to come up with a subgame

for universal quantification, it becomes clear that we cannot simply let Falsi-

fier choose the subsets or components from which the single element should

be chosen for the following reason. Consider the game for the existential

second order quantifier. When Verifier chooses the sets (which is done

incrementally), she is, at the same time, in charge of selecting appropriate

decomposition tuples. And it is important that she can make her choice

dependent on the remaining elements of the set that she is going to choose

in the following iterations. If Falsifier were in charge of selecting the set

incrementally, Verifier would not know in advance which elements Falsifier

were going to choose next, so shemight not be able to choose the appropriate

decomposition tuple, or rather Falsifier might make his choice of elements

dependent on Verifier’s previous choices of decomposition tuples. Hence,

the existence of a winning strategy for Verifier would still guarantee that the

formula holds, but vice versa, the existence of a winning strategy for Falsifier

would not necessarily imply that the formula is false.

For this reason, we cannot restrict ourselves to check formulae in nega-

tion normal form, but we have to introduce a mechanism handling the

negation of subformulae such that we can replace a universally quantified

subformula by the negation of an existentially quantified one. Towards this,

106

5.4 Model Checking Game for WMSO

we introduce the notion of dualising a game with the intention that the dual

game should be won by Verifier if the original game is won by Falsifier and

vice versa.

Definition 5.23. Let G be one of the subgames described above. The game
dual to G, denoted G∗, is defined as follows.

◆ G∗(⊺,m) = G(�,m).

◆ G∗(�,m) = G(⊺,m).

◆ G∗fin(A, φ, β) = Gfin(A,¬φ, β).

◆ G∗∃(φ,m) is obtained from G∃(φ,m) by switching the roles of the play-
ers, i.e. Falsifier moves for Verifier, and vice versa, exits ⟪⋅⟫ are marked

as dual exits ⟪⋅⟫∗, and F∗ is the complement of F.

◆ G∗∃1(φ,m) is constructed from G∃1(φ,m) analogously.

Proposition 5.24. Verifier wins the subgame G if and only if Falsifier wins

the dual game G∗.

Proof. For the constant subgames and the finite-structure subgames, the

claim follows from the definition and Lemma 5.22, respectively.

Considering the subgames for the existential quantifiers, we argue using

the games Ĝ∃ and Ĝ∃1 as defined above. Recall that Ĝ∃(φ,m) is defined as

G∃(φ,m) but has self loops on the exits and

F := {⟪Ac
i ,ψ

c
, S , i⟫ ∶ Ac

i ⊧ ψ
c(S)}

∪ {⟪φ[X ← ∅],◻, i⟫ ∶ Si(D) ⊧ φ[X ← ∅]}

such that Verifier wins if she has a strategy to reach an exit in F, and Falsifier
wins if he has a strategy to reach an exit not in F or if he can force Verifier

into a loop on the inner positions. In the dual game Ĝ∗∃ the assignment of

the players to positions is switched, and F∗ is defined as the complement

of F. Thus, assuming that Verifier wins Ĝ∃, it is obvious that now Falsifier

wins Ĝ∗∃ since he has a strategy to reach an exit not in F∗, and if Falsifier has

a winning strategy in Ĝ∃, then Verifier wins Ĝ
∗
∃ playing this strategy by either

reaching an exit in F∗ or enforcing a loop on the inner positions which are

now contained in F∗. q.e.d.

107

5 Compositional Model Checking of Weak MSO

Procedure 5.4. ENNF(φ)

case φ is a literal return φ
case φ = ¬ψ return ENNF(NNF(¬ψ))
case φ = ψ ∧ ϑ return ENNF(ψ) ∧ ENNF(ϑ)
case φ = ψ ∨ ϑ return ENNF(ψ) ∨ ENNF(ϑ)
case φ = ∃xψ(x) return ∃x ENNF(ψ(x))
case φ = ∃Xψ(X) return ∃X ENNF(ψ(X))
case φ = ∀xψ(x) return ¬∃x ENNF(¬ψ(x))
case φ = ∀Xψ(X) return ¬∃X ENNF(¬ψ(X))

5.4.6 Combining the Subgames

Due to the lack of a subgame for universal quantification, we consider the

following normal form.

Definition 5.25. AWMSO formula φ is in existential negation normal form
(ENNF) if it does not contain subformulae of the form ∀xφ(x) or ∀Xφ(X)
and if negation only occurs in front of atomic formulae and existential

quantifiers.

Lemma 5.26. Every WMSO formula can be transformed effectively into an

equivalent WMSO formula in existential negation normal form.

Proof. Procedure 5.4 provides a recursive transformation of a WMSO for-

mula φ into existential negation normal form. Indeed, the transformed

formula cannot contain universal quantifiers since they are replaced by ex-

istential ones, and due to the handling of negated subformulae, negations

can eventually only occur before atoms and existential quantifiers. Using

that each WMSO formula has an equivalent negation normal form, the

equivalence of φ to its existential negation normal form ENNF(φ) provided
by Procedure 5.4 follows by a straightforward induction. q.e.d.

Definition 5.27. Given a formula φ in ENNF, and a system of n structure

equationsD, the model checking game G(φ,m), form ∈ [n], is constructed
inductively as follows.

108

5.4 Model Checking Game for WMSO

◆ φ = ∃Xψ(X): Construct G∃(ψ,m) and merge each exit of the form

⟪Ac
i ,ψc , S , i⟫ with the initial vertex of Gfin(A

c
i ,ψc , β[X ↦ S]), and

each exit of the form ⟪φ[X ← ∅],◻, i⟫ with the initial vertex of the

gameG(ENNF(φ[X ← ∅]), i). Note that in the latter case, the formula

φ[X ← ∅] does not contain X as a free variable anymore since each

atom of the form y ∈ X is replaced by �.

◆ φ = ∃xψ(x): Construct G∃1(ψ,m) and merge each exit of the form

⟪Ac
i ,ψc , β ∶ x ↦ a,∎, i⟫ with the initial vertex of Gfin(A

c
i ,ψc , β), and

each exit of the form ⟪ψ,∎, i⟫ with the initial vertex of the game

G(ENNF(ψ), i). As above, we can assume that the formula ψ does

not contain x as a free variable anymore (otherwise Verifier’s choice of

the decomposition tuple would be bad) since the formula speaks about

a component that x is not interpreted in according to Verifier’s claim.

◆ φ = ¬∃Xψ(X) or φ = ¬∃xψ(x): Construct the dual game G∗∃(φ,m) or
G∗∃1(φ, β,m), respectively, and proceed as in the cases above. However,

merge the dual exits of G∗∃(φ,m) or G∗∃1(φ,m) with the initial vertices

of the respective dualised games.

◆ φ = ψ ∨ ϑ: The game G(φ,m) consists of the initial position ⟪φ,◻,m⟫,
from which Verifier moves to the initial position of either G(ψ,m) or
G(ϑ ,m).

◆ φ = ψ ∧ ϑ: Analogous to the previous case, but it is Falsifier who moves

to the initial position of G(ψ,m) or G(ϑ ,m).
◆ φ = �: as already described in Section 5.4.3, G(�,m) consists of only
one (initial) position with a self loop, and F ∶= ∅.

◆ φ = ⊺: G(⊺,m) consists of only one (initial) position p0 with a self-loop,
and F ∶= {p0}.

The game construction continues until all exits are replaced by the appropri-

ate subgames. The set F is obtained by taking the union of all sets F of the

subgames. Note that only the subgames Gfin, G(⊺, i) and G(�, i) contribute
to F.

The case distinction is complete since we never have to construct a

game G(φ,m) for an atomic formula φ with free variables. In the formulae

at those exits that lead into subgames of the form G(φ,m), the previously
quantified free variable is eliminated. Only those exits leading to plain

WMSO model checking games for finite structures handle formulae with

free (and interpreted) variables.

109

5 Compositional Model Checking of Weak MSO

Let us remark that the formulae in the exits of a subgame have either a

smaller complexity than the formula at the initial position in terms of quan-

tifier rank or the number of free variables, or the exit is the initial position

for a model checking game on a finite structure. Hence, the subgames are

linked in form of a DAG, and loops can only occur inside a subgame.

Theorem 5.28. Let φ be a WMSO sentence, letD be a system of n structure

equations, and let S(D) = (A1 , . . . ,An). ThenAm ⊧ φ if and only if Verifier

has a winning strategy in the Büchi game G(φ,m).

Proof. As remarked above, due to the special structure of the game graph,

any infinite play either loops in one of the subgames or by reaching an

(essentially terminal) vertex with a self loop in G(⊺, i), G(�, i) or some

Gfin(A, φ, β). Hence, we can prove the statement by induction over the

structure of formulae and use the results we have proved about the isolated

subgames.

Let φ = �. Then Falsifier has a winning strategy in G(�,m) since F = ∅,
so no position in F is seen infinitely often. If φ = ⊺, Verifier has a winning
strategy in G(⊺,m) since, by definition, every position seen infinitely often

is in F.
Let φ = ψ∨ ϑ, andAm ⊧ φ. ThenAm ⊧ ψ orAm ⊧ ϑ, and hence, by the

induction hypothesis, Verifier has a winning strategy in the game G(ψ,m)
or G(ϑ ,m). So she also has a winning strategy in G(φ,m) by moving to the

appropriate initial position of G(ψ,m) or G(ϑ ,m). On the other hand, if

she has a winning strategy in G(φ,m), then she must also have a winning

strategy in at least one of G(ψ,m) or G(ϑ ,m) because these are the only two
possible moves at the beginning. Hence, by induction hypothesis, Am ⊧ ψ
or Am ⊧ ϑ, and thus also Am ⊧ ψ ∨ ϑ = φ. The case φ = ψ ∧ ϑ is analogous.

Letψ = ∃Xφ(X), and assume thatAm ⊧ ∃Xφ(X). By Lemma 5.18, Ver-

ifier has a strategy to win the game Ĝ∃(φ,m), i.e. in the subgame G∃(φ,m),
she has a strategy to reach an exit ⟪Ac

i ,ψc , S , i⟫ such that Ac
i ⊧ ψc(S) or

an exit ⟪φ[X ← ∅],◻, i⟫ such that Ai ⊧ φ[X ← ∅] in finitely many steps.

In the first case, she has a strategy to win the game Gfin(A
c
i ,ψc , X ↦ S)

by Lemma 5.22, and in the latter case, she has a strategy to win from

⟪φ[X ← ∅],◻, i⟫ by the induction hypothesis since φ[X ← ∅] is of lower

complexity than ψ. Conversely, assume that Verifier has a winning strategy

in G(φ,m). Since none of the positions in the subgame G∃(φ,m) is in F, she
must not force the play into an infinite loop as she would lose then. Hence,

110

5.5 Unbounding Quantifier

following her strategy, against any counter-strategy played by Falsifier, she

will reach an exit of the form ⟪Ac
i ,ψc , S , i⟫ or ⟪φ[X ← ∅],◻, i⟫ fromwhere

she has a strategy to win the game Gfin(A
c
i ,ψc , X ↦ S) or G(φ[X ← ∅], i),

respectively. By Lemma 5.22 and the induction hypothesis, this implies

that Ac
i ⊧ ψc(S) and Ai ⊧ φ[X ← ∅], and finally Lemma 5.18 implies that

Am ⊧ ψ. The case ψ = ∃xφ(x) is analogous.
Let ψ = ¬∃Xφ(X) (analogously for ψ = ¬∃xφ(x)). In this case, since

G(¬∃Xφ(X),m) = G∗(∃Xφ(X),m), by Proposition 5.24 Verifier has a

winning strategy in G(¬∃Xφ(X),m) if and only if Falsifier has a winning

strategy in G∗(∃Xφ(X),m) if and only if (by induction hypothesis) Am /⊧

∃Xφ(X) if and only if Am ⊧ ¬∃Xφ(X). q.e.d.

5.5 Unbounding Quantifier

In contrast to many commonly used quantifiers, such as “there exists exactly

one x”, that do not increase the expressive power of MSO and are usually

considered as “syntactic sugar”, the so-called unbounding quantifier we con-
sider in the following cannot be expressed in plain MSO. In particular, the

formula UXφ states that the size of finite sets X satisfying φ is unbounded,

i.e.

UXφ(X) ≡ for all n ∈ N ∃Xφ(X) with X finite and ∣X∣ ≥ n .

First introduced by Bojańczyk [Boj04], MSOwith this quantifier was proved

to be decidable on trees with very restricted quantification patterns only.

Recently, only a technical analysis of max-automata allowed to show that

satisfiability of WMSO with the unbounding quantifier is decidable on the

class of all labellings of (ω, <) [Boj09]. We prove thatWMSO+U is decidable

on all inductive structures, which is a more general result as far as the class

of structures is concerned, but at the same time less general as we allow only

regular labellings of the structures. For the proof, we only need to modify

the construction of the model checking game presented above. Again, we

fix a systemD of n equations and let S(D) = (A1 , . . . ,An).

Definition 5.29. A family U = {S i ∶ i ∈ N} of finite sets is called unbounded
in a component Am[c] if {i ∶ Am[c] ∩ S i ≠ ∅} is infinite.

111

5 Compositional Model Checking of Weak MSO

The following lemma is a consequence of the fact that a system of

structure equations only contains a finite number of structures.

Lemma 5.30. Let φ(X) be aWMSO+U formulawith a single free variable X.
Let D be a system of n structure equations, S(D) = (A1 , . . . ,An), and let

U = {S i ∶ (Am , S i) ⊧ φ(X), ∣S i ∣ ≥ i} be a family of sets witnessing that

Am ⊧ UXφ(X). Then U is unbounded in some component Am[c].

Proof. For each i ∈ N, let S i be a set with more than i elements satisfy-

ing φ(S i). The tree obtained from the prefix closure of {w ∶ (s,w) ∈ ⋃i S i}
(w is the index of the element w.r.t. Am) is a finitely branching tree with

arbitrarily long paths (since the depth of the sets S i is unbounded) such
that, for each node v, the component Am[v] contains some element from

a set S i . By König’s Lemma, this tree has an infinite path α = cα1 ∈ ∆
ω
D ,

with ∆D = ⋃ℓ ∆ℓ , and since each S i is finite, elements of infinitely many S i
are reachable from any node on this path. In particular, U is unbounded

in Am[c]. In general, for any Am[w], where w is a prefix of α = wcα′, the
family U is unbounded in the component Am[wc]. q.e.d.

The above lemma justifies the following extension of the procedure

splitk to handle formulae of the form φ = UXψ (where X−c denotes X
without X c):

splitk(φ) = ⋁
c=1, . . . ,k

∃X−cUX csplitk(ψ)[X ←
k
⋃
i=1

X i] .

The unbounding quantifier distributes over disjunctions, and the definition

of TNF and the conversion procedure for the unbounding quantifier is the

same as for the existential second-order quantifier. Thus, the Decomposition

Theorem holds for WMSO+U as well.

We construct a model checking game for WMSO+U formulae in the

same way as forWMSO formulae by handling the unbounding quantifier us-

ing the subgame for an existential set quantifier. However, it is not sufficient

that Verifier has a winning strategy in the constructed game in order for a

formula to hold, but instead she must have a family of winning strategies that

allow her to loop arbitrarily often through particular cycles in the subgame

before reaching an exit.

112

5.5 Unbounding Quantifier

Definition 5.31. The subgame GU(φ,m) is defined as G∃(φ,m) but Falsi-
fier’s positions of the form ⟪(ψ1 , . . . ,ψn), S , i⟫ where S ≠ ∅ are considered

to be especially marked.

Again, to reason about the correctness of the subgame for the unbound-

ing quantifier, we consider the game ĜU(φ,m) obtained from GU(φ,m) by
adding self loops to the exits and letting

F := {⟪Ac
i ,ψ

c
, S , i⟫ ∶ Ac

i ⊧ ψ
c(S)}

∪ {⟪φ[X ← ∅],◻, i⟫ ∶ Si(D) ⊧ φ[X ← ∅]} .

Furthermore, we let Tσ(φ,m) denote the unravelling of the game graph

from position ⟪φ,◻,m⟫ where all branches that are not chosen by Verifier’s

strategy σ are pruned.

Lemma 5.32. Am ⊧ UXφ(X) if and only if for each n ∈ N, Verifier has a
winning strategy σn such that Tσn(φ,m) contains at least nmarked positions.

Proof. (⇒) Let M be the maximum number of elements in the universe of

all structures in Str(D) and assume that Am ⊧ UXφ(X). Thus, for each

n ∈ N there is a set Sn with ∣Sn ∣ ≥ n such that Am , Sn ⊧ φ(X). Following
the same arguments as in the proof of Lemma 5.18, each Sn gives rise to a
winning strategy σn for Verifier, namely “choose the upcoming elements

of Sn .” Consider the strategy σn⋅M . Since σn⋅M chooses elements from Sn⋅M ,
and at eachmarked position atmostM of those, it follows from ∣Sn⋅M ∣ ≥ n ⋅M
that there are at least n marked positions in Tσn⋅M(φ,m).

(⇐) Given a winning strategy σ , we construct, as in the proof of

Lemma 5.18, a set Sσ satisfying φ. Consider a strategy σn with at least n
marked positions in Tσn(φ,m). Since each marked position corresponds to

a choice of a non-empty subset and since these subsets are disjoint, ∣Sσn ∣ ≥ n.
Hence, Am ⊧ UXφ(X) as we have assumed the existence of a winning

strategy for each n ∈ N. q.e.d.

The existence of such a family of strategies can be decided using a tech-

nique applied by Colcombet and Löding in the context of cost functions

[CL10, Appendix]. The idea is to consider a Muller game G̃U(φ,m) derived
from ĜU(φ,m) that is constructed such that, if Verifier has a winning strat-

egy in G̃U(φ,m), she has a family of winning strategies in ĜU(φ,m) with
the desired property.

113

5 Compositional Model Checking of Weak MSO

Definition 5.33. The arena of G̃U(φ,m) is obtained from the arena of

ĜU(φ,m) by removing all positions from which Falsifier wins if playing

according to the rules of themodel checking subgame Ĝ∃(φ,m), and further
removing all exits except for those of the form ⟪ψ[X ← ∅],◻, i⟫. That is,

the arena of G̃U(φ,m) consists of that part of the winning region in the

subgame Ĝ∃(φ,m) on which Verifier can loop but still leave via particular

exits. The priority assignment Ω ∶ V → {0, 1, 2} is defined as follows.

◆ Falsifier’s vertices of the form ⟪(ψ1 , . . . ,ψn), S , i⟫ where S ≠ ∅ (i.e. the

marked positions in GU(φ,m)) are assigned priority 1;

◆ exits and positions from where Verifier has a strategy to reach an exit

are assigned priority 2;

◆ the remaining positions are assigned priority 0.

The Muller winning objective for Verifier is F = {{0, 1, 2}, {1, 2}}.

Given aWMSO+Ugame and its correspondingMuller game, we obtain

the following relation between the winning strategies.

Lemma 5.34. Verifier has a winning strategy in the Muller game G̃U(φ,m)
if and only if there exists a family (σn)n∈N of winning strategies in ĜU(φ,m)
satisfying the condition in Lemma 5.32.

Proof. Let σ̃ be a winning strategy for Verifier in G̃U(φ,m), and let n be

arbitrary. We claim that the strategy σn , to initially copy the moves of σ̃ until

at least n positions with priority 1 have been visited and then use her strategy

to reach the next exit and move to some ⟪ψ[X ← ∅],◻, ℓ⟫, is a winning
strategy for Verifier in ĜU(φ,m).

Playing according to σ̃ ensures that vertices with priority 1, i.e. vertices

that are marked in ĜU(φ,m), are visited infinitely often. Furthermore, as

also vertices with priority 2 are visited infinitely often, after any number

of visits to vertices with priority 1, Verifier has a strategy to reach a vertex

with priority 2, hence it is possible to enforce reaching some exit. Finally,

since all positions in G̃U(φ,m) are in Verifier’s winning region of Ĝ∃(φ,m),
she can win from position ⟪ψ[X ← ∅],◻, ℓ⟫ while Tσn(φ,m) contains at
least n marked positions.

On the other hand assume that Verifier has no winning strategy in the

Muller game G̃U(φ,m). By finite-memory determinacy of Muller games,

Falsifier has awinning strategy σF using only finitememory. Assume towards

114

5.6 Conclusion

a contradiction that there exists a family (σn)n∈N of winning strategies for

Verifier in ĜU(φ,m) with the desired properties. Since these strategies will

never leave the winning region of Verifier in the game Ĝ∃(φ,m), they are
also suitable to play on ĜU .

We can assume that, when playing according to some strategy σn , Veri-
fier wins while visiting at least n marked nodes, i.e. by collecting at least n
elements for the satisfying assignment, and finally moving to an exit, other-

wise Falsifier would lose early. Let m be the size of the memory of Falsifier’s

winning strategy σF , and let N ≥ m ⋅ ∣G̃U ∣ (where the size of G̃U is measured

by the number of positions of the game graph). Then the play consistent

with σN against σF contains a loop in the sense that some node is visited

twice such that the memory state of Falsifier’s strategy is exactly the same.

On the other hand, σN is a winning strategy for Verifier in ĜU(φ,m),
so she has a strategy to reach an exit after visiting at least N marked vertices,

and hence the loop contains at least one vertex with priority 2. But this

implies that Verifier can enforce playing this loop ad infinitum in the Muller

game G̃U(φ,m) such that the set of priorities seen infinitely often is either

{0, 1, 2} or {1, 2} which are both in her winning set and contradicts the

assumption that σF is a winning strategy for Falsifier. q.e.d.

The subgameGU(φ,m) can be integrated in a completemodel checking

game exactly as the subgames G∃(φ,m).

5.6 Conclusion

The characterisation of the model-checking problem for WMSO on induc-

tive structures by a finite Büchi game allows for new algorithmic approaches

tomodel checking. On the one hand, the Büchi game could be solved directly,

on the other hand, it is also possible to follow a more modular approach

and implement a solver that is based on solving the individual subgames

and calling itself recursively for checking the formulae at the exits of the

subgame, which corresponds to the approach we took for proving the cor-

rectness. Since the subgames are in fact reachability games in which only

loops must be avoided, this approach seems to be even simpler.

The merits of such a new algorithmic approach to model checking are

two-fold. On the one hand, as was our main motivation, it avoids encoding

structures into the binary tree. On the other hand, due to the modularity,

115

5 Compositional Model Checking of Weak MSO

the algorithm is not forced to run in a bottom-up fashion like automata-

based algorithms, but it can possibly simplify the occurring formulae at

any point. This can be a strong advantage in contrast to the automaton

construction where the structure of the subformulae is hidden in the state

space and transitions. Hence, a purely automata-based technique can only

benefit from advances in the methods available for complementing and

determinising non-deterministic tree automata.

However, also the presented approach cannot circumvent the non-

elementary lower complexity bound. But as there are instances that are hard

for automata-based techniques but easy for our approach, and vice versa,

the method can complement the existing techniques.

In addition to the pure algorithmic value, our method could provide

new insights into the composition method and might help to understand

the algebraic structure of tree languages definable in weak MSO. Similar to

the presented modification of the game that yields a decision procedure for

WMSO+U, the game might be extended to capture other quantifiers and

maybe richer fragments of MSO.

116

bibliography

[Alo86] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–
96, 1986.

[AM85] Noga Alon and Vitali D. Milman. λ1, isoperimetric inequalities

for graphs, and superconcentrators. Journal of Combinatorial
Theory, Series B, 38(1):73–88, 1985.

[BK95] David A. Basin and Nils Klarlund. Hardware verification using

monadic second-order logic. In Proceedings of the 7th Inter-
national Conference on Computer Aided Verification, CAV ’95,
volume 939 of LNCS, pages 31–41. Springer, 1995.

[BKV+81] Manuel Blum, Richard M. Karp, Oliver Vornberger, Christos H.

Papadimitriou, and Mihalis Yannakakis. The complexity of test-

ing whether a graph is a superconcentrator. Information Process-
ing Letters, 13(4/5):164–167, 1981.

[Boj04] Mikołay Bojańczyk. A bounding quantifier. In Proceedings of the
13th EACSL Annual Conference on Computer Science Logic, CSL
2004, volume 3210 of LNCS, pages 41–55. Springer, 2004.

[Boj09] Mikołay Bojańczyk. Weak MSO with the unbounding quantifier.

In Proceedings of the 26th International Symposium on Theoretical
Aspects of Computer Science, STACS 2009, volume 09001 of LIPIcs,
pages 159–170. Schloss Dagstuhl (IBFI), 2009.

[BS05] Michael Benedikt and Luc Segoufin. Towards a characterization

of order-invariant queries over tame structures. In C.-H. Luke

117

Bibliography

Ong, editor, Proceedings of the 14th EACSL Annual Conference on
Computer Science Logic, CSL 2005, volume 3634 of Lecture Notes
in Computer Science, pages 276–291. Springer-Verlag, 2005.

[BS09] Michael Benedikt and Luc Segoufin. Towards a characterization

of order-invariant queries over tame graphs. Journal of Symbolic
Logic, 74(1):168–186, 2009.

[Büc60] J. Richard Büchi. Weak second-order arithmetic and finite au-

tomata. Zeitschrift für mathematische Logik und Grundlagen der
Mathematik, 6:66–92, 1960.

[Büc62] J. Richard Büchi. On a decisionmethod in restricted second order

arithmetic. In International Congress on Logic, Methodology and
Philosophy of Science, pages 1–11. Stanford University Press, 1962.

[CL10] Thomas Colcombet and Christof Löding. Regular cost functions

over finite trees. In Proceedings of the 25th Annual IEEE Sympo-
sium on Logic in Computer Science, LICS 2010, pages 70–79. IEEE
Computer Society, 2010.

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs I:

Recognizable sets of finite graphs. Information and Computation,
85(1):12–75, 1990.

[Cou96] Bruno Courcelle. The monadic second-order logic of graphs

X: Linear orderings. Theoretical Computer Science, 160:87–143,
1996.

[CR80] Stephen A. Cook and Charles Rackoff. Space lower bounds for

maze threadability on restricted machines. SIAM Journal on
Computing, 9(3):636–652, 1980.

[EF99] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory.
Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 2

edition, 1999.

[EFT94] Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas.

Mathematical Logic. Undergraduate texts in mathematics.

Spinger-Verlag, 2nd edition, 1994.

118

Bibliography

[EI95a] Kousha Etessami and Neil Immerman. Reachability and the

power of local ordering. Theoretical Computer Science, 148(2):261–
279, 1995.

[EI95b] Kousha Etessami and Neil Immerman. Tree canonization and

transitive closure. In Proceedings of the 10th Annual IEEE Sym-
posium on Logic in Computer Science, LICS 1995, pages 331–341,
1995.

[EI00] Kousha Etessami and Neil Immerman. Tree canonization and

transitive closure. Information and Computation, 157(1–2):2–24,
2000.

[EJ91] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-

calculus and determinacy (extended abstract). In Proceedings of
the 32nd Annual Symposium on Foundations of Computer Science,
FoCS1991, pages 368–377. IEEE Computer Society Press, 1991.

[EKM98] Jacob Elgaard, Nils Klarlund, and Anders Møller. MONA 1.x:

new techniques forWS1S andWS2S. In Proceedings of the 10th In-
ternational Conference on Computer-AidedVerification, CAV 1998,
volume 1427 of LNCS, pages 516–520. Springer-Verlag, June/July
1998.

[Elg61] Calvin C. Elgot. Decision problems of finite automata design and

related arithmetics. Transactions of the American Mathematical
Society, 98:21–51, 1961.

[Fag74] Ronald Fagin. Generalized first-order spectra and polynomial-

time recognizable sets. In Richard M. Karp, editor, Complexity of
Computation, volume 7 of SIAM-AMS Proceedings, pages 43–73.
AMS, 1974.

[FV59] Solomon Feferman and Robert Lawson Vaught. The first-order

properties of algebraic systems. FundamentaMathematica, 47:57–
103, 1959.

[GH82] Yuri Gurevich and Leo Harrington. Trees, automata and games.

In Proceedings of the 14th Annual ACM Symposium on Theory of
Computing, STOC 1982, pages 60–65. ACM Press, 1982.

119

Bibliography

[GKL+07] Erich Grädel, PhokionG. Koalitis, Leonid Libkin, MaartenMarx,

Joel Spencer, Moshe Y. Vardi, Yde Venema, and Scott Weinstein.

Finite Model Theory and Its Applications. Texts in Theoretical

Computer Science. Springer, 2007.

[GM95] Erich Grädel and Gregory L. McColm. On the power of de-

terministic transitive closures. Information and Computation,
119:129–135, 1995.

[Gro96] Martin Grohe. Arity hierarchies. Annals of Pure and Applied
Logic, 82(2):103–163, 1996.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors.

Automata, Logics, and Infinite Games, volume 2500 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[HJJ+95] J.G. Henriksen, Jakob L. Jensen, M. Jørgensen, Nils Klarlund,

B. Paige, T. Rauhe, and A. Sandholm. Mona: Monadic second-

order logic in practice. In Tools and Algorithms for the Con-
struction and Analysis of Systems, First International Workshop,
TACAS ’95, LNCS 1019, 1995.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander

graphs and their applications. Bulletin of the American Mathe-
matical Society, 43:439–561, 2006.

[HS08] Martin Hofmann and Ulrich Schöpp. Pure pointer programs

with iteration. In Michael Kaminski and SimoneMartini, editors,

Proceedings of the 17th EACSL Annual Conference on Computer
Science Logic, CSL 2008, volume 5213 of Lecture Notes in Computer
Science, pages 79–93. Springer, 2008.

[HS10] Martin Hofmann and Ulrich Schöpp. Pure pointer programs

with iteration. ACMTransactions on Computational Logic, 11(4):1–
23, 2010.

[Imm86] Neil Immerman. Relational queries computable in polynomial

time. Information and Control, 68(1–3):86–104, 1986.

[Imm87] Neil Immerman. Languages that capture complexity classes.

SIAM Journal of Computing, 16(4):760–778, 1987.

120

Bibliography

[Imm88] Neil Immerman. Nondeterministic space is closed under com-

plementation. SIAM Journal of Computing, 17(5):935–938, 1988.

[JJKS97] Jakob L. Jensen, Michael E. Jørgensen, Nils Klarlund, and

Michael I. Schwartzbach. Automatic verification of pointer pro-

grams using monadic second-order logic. In Proceedings of the
ACM Conference on Programming Language Design and Imple-
mentation, PLDI ’97, pages 226–236, 1997.

[Lap98] Denis Lapoire. Recognizability equals monadic second-order de-

finability for sets of graphs of bounded tree-width. In Proceedings
of the 15th Annual Symposium on Theoretical Aspects of Computer
Science, STACS 1998, pages 618–628, 1998.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

[Mak04] Johann A. Makowsky. Algorithmic uses of the feferman-vaught

theorem. Annals of Pure and Applied Logic, 126(1–3):159–213,
2004.

[Mar73] Grigorĭı Aleksandrovich Margulis. Explicit constructions of

concentrators. Problemy Peredachi Informatsii, 9(4):71–80,
1973. Translation in: Problems of Information Transmission

10, Plenum, N.Y., 1975.

[Mar75] Donald A. Martin. Borel determinacy. Annals of Mathematics,
102:363–371, 1975.

[McN93] Robert McNaughton. Infinite games played on finite graphs.

Annals of Pure and Applied Logic, 65(2):149–184, 1993.

[Nur00] Juha Nurmonen. Counting modulo quantifiers on finite struc-

tures. Information and Computation, 160(1-2):62–87, 2000.

[Ott00] Martin Otto. Epsilon-logic is more expressive than first-order

logic over finite structures. Journal of Symbolic Logic, 65(4):1749–
1757, 2000.

[Pin73] Mark Semenovich Pinsker. On the complexity of a concentrator.

In Proceedings of the 7th International Telegraphic Conference, ITL
1973, pages 318/1–318/4, 1973.

121

Bibliography

[Rab69] Michael O. Rabin. Decidability of second-order theories and

automata on infinite trees. Transactions of the American Mathe-
matical Society, 141:1–35, 1969.

[Rei05] Omer Reingold. Undirected st-connectivity in log-space. In

Harold N. Gabow and Ronald Fagin, editors, Proceedings of the
37th Annual ACM Symposium on Theory of Computing, STOC
2005, pages 376–385. ACM, 2005.

[RVW02] OmerReingold, Salil Vadhan, andAviWigderson. Entropywaves,

the zig-zag graph product, and new constant-degree expanders.

The Annals of Mathematics, 155(1):157–187, 2002.

[SH08] Ulrich Schöpp and Martin Hofmann. Pointer programs and

undirected reachability. Electronic Colloquium on Computational
Complexity (ECCC), 15(090), 2008.

[She75] Saharon Shelah. The monadic second order theory of order.

Annals of Mathematics, 102:379–419, 1975.

[Tho97] Wolfgang Thomas. Ehrenfeucht games, the compositionmethod,

and the monadic theory of ordinal words. In Structures in Logic
and Computer Science, volume 1261 of Lecture Notes in Computer
Science, pages 118–143. Springer-Verlag, 1997.

[Tra61] Boris A. Trakhtenbrot. Finite automata and the logic of monadic

predicates. Dokl. Akad. Nauk SSSR, 140:326–329, 1961.

[Var82] Moshe Y. Vardi. The complexity of relational query languages.

In Proceedings of the 14th Annual ACM Symposium on Theory of
Computing, STOC 1982, pages 137–146. ACM, 1982.

122

index

A ≡L B, 15

A ≡Mr B, 26

AM , 27

(A, β), 11
β̂c , 87

β[x ↦ a], 11
D[τ], 10
∆(G), 53

DTC
k
, 13

G∃(φ,m), 98
G∃1(φ,m), 102
K<, 17

L ⊆ L′, 15

lcm(M), 9
Mod(φ), 15
N, 9
N+, 9
[n], 9
[n]0, 9
Ord[τ], 10
φA, 11

Rdet, 13

Str[τ], 9
Strfin[τ], 9

TC
k
, 13

TC(R), 12
∣X∣ ≡ ∣Y ∣ (mod M), 9

canonisation, 67

— function, 67

definable —, 67

capturing (a complexity class), 17

cliquey grid, 35

horizontally coloured —, 35

colour type (of a column), 40

coloured k-column, 40

Decomposition Lemma, 91, 93

Decomposition Theorem, 87, 112

descriptive complexity theory, 17

deterministic part (of a relation), 13

disjoint sumwith connections, 78, 80

Dm-decomposition, 87, 90

domain, 10

edge expansion ratio, 52

Ehrenfeucht-Fraïssé, 26

— game, 27

even, 15, 23, 47, 72

123

Index

existential negation normal form,

108

expander graph, 51

formula

model, 11

game, 17

arena, 17

Büchi —, 18, 19

determinacy, 18

dual —, 107

infinite —, 18

infinity set, 19

initial position, 17

Muller —, 18, 19

parity —, 18, 19

play, 18

priority, 18

strategy, 18

winning condition, 17

winning strategy, 18

global relation, see query

inductive fixed point, 79

inductive structure, 78, 79

infinite binary tree, 80

infinite list of lists, 80

interpretation, 15

admissibility condition, 16

canonical interpreted structure,

16

domain formula, 15

quantifier-free —, 37

two-sorted structures, 16

interpretation (of variables), 10

locally ordered graph, 48

one-way, 48

two-way, 48

logic

CMSO, 24

DTC, 12

expressive power, 15

FO, 10

MSO, 11

SO, 11

TC, 12

WMSO, 12, 78

model class, 10

normal formula, 88

order-invariance, 23

partial isomorphism, 27

twofold —, 27

partitioned structure, 83

power set structure, 27

powering, 54

quantifier rank, 83

query, 15

rank r/mod M-equivalence, 26

rank r/mod M-CMSO type, 28

restricted variable, 82

rotation map, 48

spectral expansion ratio, 52

spectral gap, 52

Splitting Lemma, 91–93

structure, 9

canonical two-sorted –, 14

relational, 9

two-sorted, 10

124

Index

universe, 9

system of structure equations, 79

term, 10

counting —, 14

threshold t equal (mod M), 37
type normal form, 88

USTCON, 51

zig-zag product, 54, 55

125

	Introduction
	Preliminaries
	Structures
	Logics
	Interpretations
	Descriptive Complexity Theory
	Games

	Order Invariance and Local Orderings
	Order-Invariance vs. Counting in MSO
	Counting MSO
	The Ehrenfeucht-Fraïssé method for
	on disjoint unions of structures
	The Separating Example
	Conclusion

	Local Orderings
	Locally Ordered Graphs
	Reingold's Algorithm
	Defining Reachability in DTC
	Canonisation of locally ordered undirected graphs
	Discussion

	Compositional Model Checking
	Compositional Model Checking of Weak MSO
	Inductive Structures
	Formulae with Restricted Variables
	Decomposing Formulae
	Model Checking Game for WMSO
	Unbounding Quantifier
	Conclusion

	Bibliography
	Index

