
DOI: 10.1007/s00224-004-1147-5

Theory Comput. Systems OF1–OF20 (2004) Theory of
Computing

Systems
© 2004 Springer Science+Business Media, Inc.

Fixed-Point Logics and Solitaire Games∗

Dietmar Berwanger and Erich Grädel

Mathematical Foundations of Computer Science,
Aachen University of Technology,
D-52056 Aachen, Germany
{berwanger,graedel}@ cs.rwth-aachen.de

Abstract. The model-checking games associated with fixed-point logics are parity
games, and it is currently not known whether the strategy problem for parity games
can be solved in polynomial time. We study Solitaire-LFP, a fragment of least fixed-
point logic, whose evaluation games are nested soltaire games. This means that on
each strongly connected component of the game, only one player can make nontrivial
moves. Winning sets of nested solitaire games can be computed efficiently.

The model-checking problem for Solitaire-LFP is PSPACE-complete in general
and PTIME-complete for formulae of bounded width. On finite structures (but not
on infinite ones), Solitaire-LFP is equivalent to transitive closure logic.

We also consider the solitaire fragment of guarded fixed-point logics. Due to
the restricted quantification pattern of these logics, the associated games are small
and therefore admit more efficient model-checking algorithms.

1. Introduction

Fixed-point logics play an important role in many areas of logic. LFP, the extension
of first-order logic by least and greatest fixed points, is of fundamental importance in
finite model theory, descriptive complexity, and databases. The modalµ-calculus Lµ is a
similar extension of propositional modal logic. It relates to LFP in much the same way as
multimodal logic relates to first-order logic. In terms of expressive power, it subsumes a
variety of logics used in verification, in particular, LTL, CTL, CTL∗, PDL, and also many

∗ This research has been partially supported by the European Community Research Training Net-
work “Games and Automata for Synthesis and Validation” (GAMES) (Contract HPRN-CT-2002-00283), see
www.games.rwth-aachen.de.

OF2 D. Berwanger and E. Grädel

logics used in other areas of computer science, for instance, game logic and description
logics. Both LFP and Lµ have a rich theory, and are well-behaved in model-theoretic
and also, to a large extent, in algorithmic terms.

Nevertheless, there are still important open problems concerning their complexity.
The most prominent one is whether the model-checking problem for the modal µ-
calculus or for LFP-formulae of bounded width can be solved in polynomial time. This
problem is equivalent to an algorithmic problem in the theory of infinite games, namely,
the question whether winning sets in parity games can be computed in polynomial time.
Parity games are two-person games on finite or infinite game graphs that admit infinite
plays and where each position is assigned a natural number, called its priority. The winner
of an infinite play is determined according to whether the least priority seen infinitely
often during the play is even or odd. Parity games arise as the natural model-checking
games for fixed-point logics. Priorities of game positions correspond to the alternation
level of fixed-point formulae. It is open whether winning sets and winning strategies for
parity games can be computed in polynomial time. The best algorithms known today
are polynomial in the size of the game, but exponential with respect to the number of
priorities.

In this article we have a closer look at a class of parity games that can be solved
efficiently, and at the fixed-point formulae that are associated with them. Nested solitaire
games are parity games where on each strongly connected component, only one player
can make nontrivial choices. As we will show, the winning sets of a nested solitaire game
can be computed in time that is linear in the product of the number of priorities with the
size of the game graph.

We define Solitaire-LFP, a fragment of least fixed-point logic, whose model-checking
games are nested solitaire games, and we analyse the algorithmic properties and the ex-
pressive power of this fragment. A corresponding fragment of the modal µ-calculus has
already been studied in [8], and has been shown to be equivalent to the logic ECTL∗.
For Solitaire-LFP, it turns out that the model-checking problem is PSPACE-complete in
the general case (for formulae of unbounded width) and PTIME-complete for formulae of
bounded width. We further prove that on finite structures, Solitaire-LFP is equivalent to
transitive closure logic (TC). To establish this result we exploit the solitaire-structure of
the model-checking game and the fact that TC-formulae are equivalent to stratified lin-
ear Datalog programs. We construct for every formula in Solitaire-LFP a stratified linear
Datalog program which defines the winning positions in the associated model-checking
game. A further consequence of this proof is that every formula in Solitaire-LFP of width
k (of arbitrary alternation level) is equivalent, on finite structures, to an alternation-free
fixed-point formula of width at most 2k.

The tractability of model checking via games depends not only on the complexity
of solving the games but also on their size. Typically, the evaluation game for a for-
mula contains distinct positions for every possible variable assignment to each of its
subformulae. As a consequence, the size of a game associated to a formula ψ of width
k and a structure with n elements may be of the order |ψ | · nk . In applications where
the structures are big, this is inconvenient. One is therefore interested in fragments of
fixed-point logics for which the size of the games is considerably smaller, ideally linear
in both the size of the formula and the size of the structure.

Fixed-Point Logics and Solitaire Games OF3

A reasonably expressive family of logics for which this is the case is the family
of guarded logics, see Section 4. Guarded fragments of first-order logic, second-order
logic, or fixed-point logics are defined by restricting quantification so that, semantically
speaking, each subformula can simultaneously refer only to elements that are “very close
together” or “guarded”. In this way guarded logics generalise propositional modal logics,
where quantification proceeds only along edges, to relational structures of arbitrary
vocabulary, still retaining the good balance between expressiveness and algorithmic
manageability (see [10]).

In game-theoretic terms, guarded quantification limits the number of possible moves
in the evaluation games and thus leads to smaller game graphs. Depending on the con-
ditions imposed on guard formulae, one obtains logics with different levels of “guard-
edness”. We consider guarded fragments of least fixed-point logic with two notions of
guardedness. For the simplest variant, where the guards are just atoms, we obtain games
that grow linearly with the size of the structure. Consequently, model checking for the
solitaire fragment of this guarded fixed-point logic can be performed in linear time. For
a more liberal variant, clique-guarded fixed-point logic, the size of the game depends on
the size of cliques in the Gaifman graph of the structure which is itself bounded by the
tree width of the structure.

2. Least Fixed-Point Logic

Leastfixed-point logic, denoted LFP, extends first-order logic by least and greatest fixed
points of definable relational operators. We briefly recall some basic definitions here.
For a more extensive introduction to LFP, refer to [12].

Every formula ψ(R, x), where R is a relation symbol of arity k and x is a tuple of
k variables, defines, for any structure A of appropriate vocabulary, an update operator
F : P(Ak) → P(Ak) on the class of k-ary relations over the universe A of A, namely,
F : R �→ {a : (A, R) |= ψ(R, a)}. If ψ is positive in R, that is, if every occurrence
of R falls under an even number of negations, this operator is monotone in the sense that
R ⊆ R′ implies F(R) ⊆ F(R′). It is well known that every monotone operatore has
a least fixed point and a greatest fixed point, which can be defined as the intersection,
respectively the union, of all fixed points, but which can also be constructed by transfinite
induction. For the least fixed point, the stages are defined by X0 := ∅, Xα+1 := F(Xα),
and Xλ := ⋃

α<λ Xα for limit ordinals λ. By the monotonicity of F , the sequence of
stages increases until it reaches the least fixed point. The greatest fixed point is constructed
in a dual way, starting with Ak as the initial stage and taking intersections at limit
ordinals.

Formally, LFP is defined by adding to the syntax of first-order logic the following
fixed-point formation rule: Ifψ(R, x) is a formula with a relational variable R occurring
only positively and a tuple of first-order variables x, and if t is a tuple of terms (such that
the lengths of x and t match the arity of R), then

[lfpRx . ψ](t) and [gfpRx . ψ](t)

are also formulae, binding the variables R and x.

OF4 D. Berwanger and E. Grädel

The semantics of least fixed-point formulae in a structure A, providing interpre-
tations for all free variables in the formula, is the following: A |= [lfpRx . ψ](t) if tA

belongs to the least fixed point of the update operator defined by ψ on A. Similarly for
greatest fixed points.

Note that in formulae [lfpRx . ψ](t) one may allow ψ to have other free variables
besides x, which are called parameters. However, every LFP-formula can easily be
transformed into an equivalent one without parameters, at the expense of increasing
the arity of fixed-point variables. In this article we only consider fixed-point formulae
without parameters.

The duality between least and greatest fixed point implies that for any formula ψ ,

[gfpRx . ψ](t) ≡ ¬[lfpRx .¬ψ[R/¬R]](t).

Using this duality together with de Morgan’s laws, every LFP-formula can be brought
into negation normal form, where negation applies to atoms only.

The model checking problem for a logic L is to establish for a given formula
ψ ∈ L and an appropriate finite structure A, whether A |= ψ . The complexity of model
checking problems can be measured in different ways. In general, both the structure and
the formula are considered as inputs and we speak about the combined complexity of L.
However, in many instances it makes sense to fix either the formula or the structure and
measure the complexity in terms of the other input, thus obtaining the notions of data
complexity and expression complexity. We say that the data complexity of L is complete
for a complexity class C if the model-checking problem is in C for every fixed formula
ψ ∈ L, and if it is C-hard for some fixed formulaψ ∈ L (and similarly for the expression
complexity).

For general LFP-formulae the model-checking complexity is well known [14], [21].

Theorem 2.1. The combined complexity and the expression complexity of LFP is
EXPTIME-complete, and the data complexity is PTIME-complete.

Note that the bounds for expression and combined complexity take into account only
the length |ψ | of the input formula. It turns out that the critical parameter responsible for
the EXPTIME-completeness is actually the width of a formula, i.e., the maximal number
of free first-order variables in its subformulae. Fortunately, in many applications we
only need formulae of small width. In particular, the modal µ-calculus can be translated
to LFP-formulae of width two. For LFP-formulae of bounded width, better complexity
bounds apply.

Proposition 2.2. The model-checking problem for LFP-formulae of bounded width
(and for the modal µ-calculus) is contained in NP ∩ co-NP and PTIME-hard.

It is open whether this problem can be solved in polynomial time. Positive results
have been obtained for fragments of LFP. One such partial result involves the alternation
depth, i.e., the number of genuine alternations between the least and greatest fixed points
in a formula; in the special case when no such alternations occur, the formula is called
alternation free. For LFP-formulae of bounded width and bounded alternation depth the
model-checking problem can be solved in polynomial time.

Fixed-Point Logics and Solitaire Games OF5

The fragments of bounded alternation depth in LFP induce a strict semantical hi-
erarchy [4], [19]. On finite structures, this remains true for the modal µ-calculus (since
it has the finite model property) but not for LFP. Every LFP-formula is equivalent, over
finite structures, to an alternation-free one, indeed to a formula with a single application
of an lfp-operator to a first-order formula [14]. However, this result does not help to
improve the model-checking complexity, since the proof collapses d nested k-ary fixed
points to one of width dk, and the complexity of LFP is exponential in the formula
width.

2.1. Model-Checking Games

Model-checking problems, for almost any logic, can be formulated as the problem of
deciding winning positions in the appropriate evaluation games. For fixed-point logics
like LFP or Lµ, the evaluation games are parity games. A parity game is given by a
transition system G = (V, V0, E, �), where V is a set of positions with a designated
subset V0, E ⊆ V × V is a transition relation, and� : V → N assigns to every position
a priority. The number of priorities in the range of � is called the index of G. A play
of G is a path v0, v1, . . . formed by the two players starting from a given position v0.
If the current position v belongs to V0, Player 0 chooses a move (v,w) ∈ E and the
play proceeds from w. Otherwise, her opponent, Player 1, chooses the move. When no
moves are available, the player in turn loses. In case this never happens the play goes
on infinitely and the winner is established by looking at the sequence �(v0),�(v1), . . .

If the least priority appearing infinitely often in this sequence is even, Player 0 wins the
play, otherwise Player 1 wins.

Let V1 := V \V0 be the set of positions where Player 1 moves. A positional strategy
for Player i in G is a function f : Vi → V which indicates a choice (v, f (v)) ∈ E for
every position v ∈ Vi . (It is called positional, because it does not depend on the history
of the play, but only on the current position.) Given a starting position v0, a strategy
f for Player i is a winning strategy if he wins every play from v0 in which he moves
according to f . More generally, a strategy is winning on a set W if it is winning from
every position v0 ∈ W . The Forgetful Determinacy Theorem for parity games [7] states
that these games are always determined (i.e., from each position one of the players has
a winning strategy) and, in fact, positional strategies always suffice.

Theorem 2.3 (Forgetful Determinacy). In any parity game the set of positions can be
partitioned into two sets W0 and W1 such that Player 0 has a positional winning strategy
on W0 and Player 1 has a positional winning strategy on W1.

We call W0 and W1 the winning sets of Player 0 and, respectively, Player 1 and
the pair (W0,W1) the winning partition or solution of G. Since positional strategies are
small objects and since it can be checked efficiently whether a strategy is winning, the
question whether a given position is winning for Player 0 can be decided in NP∩ co-NP.
In fact, it is known [16] that the problem is in UP∩co-UP. The best known deterministic
algorithms to compute winning partitions of parity games have running times that are
polynomial with respect to the size of the game graph, but exponential with respect to
the index of the game [17].

OF6 D. Berwanger and E. Grädel

Theorem 2.4. The winning partition of a parity game G = (V, V0, E, �) of index d
can be computed in space O(d · |E |) and time

O

(
d · |E | ·

(|V |
�d/2�

)�d/2�)
.

Consider a structure A and an LFP-sentence ψ which we may assume to be in
negation normal form, without parameters, and well-named, in the sense that every
fixed-point variable is bound only once.

The model-checking game G(A, ψ) is a parity game whose positions are formulae
ϕ(a) such that ϕ(x) is a subformula of ψ , and a is a tuple of elements of A, interpreting
the free variables of ϕ. The initial position is ψ .

Player 0 (Verifier) moves at positions associated to disjunctions and to formulae
starting with an existential quantifier. From a position ϕ ∨ ϑ she moves to either ϕ or
ϑ and from a position ∃y ϕ(a, y) she can move to any position ϕ(a, b) for b ∈ A. In
addition, Verifier is supposed to move at atomic false positions, i.e., at positions ϕ of
form a = a′, a �= a′, Ra, or ¬Ra (where R is not a fixed-point variable) such that
A |= ¬ϕ. However, positions associated with these atoms do not have successors, so
Verifier loses at atomic false positions. Dually, Player 1 (Falsifier) moves at conjunctions
and universal quantifications, and loses at atomic true positions. In addition, there are
positions associated with fixed-point formulae [fpT x . ϕ(T, x)](a) and with fixed-points
atoms T x, for fixed-point variables T . At these positions there is a unique move (by
Falsifier, say) to the formula defining the fixed point. For a more formal definition, recall
that asψ is well-named, for any fixed-point variable T inψ there is a unique subformula
[fpT x . ϕ(T, x)](a). From position [fpT x . ϕ(T, x)](a) Falsifier moves to ϕ(T, a), and
from T b he moves to ϕ(T, b).

The priority labelling assigns even priorities to gfp-atoms and odd priorities to lfp-
atoms. Further, if T, T ′ are fixed-point variables of different kind with T ′ depending
on T (which means that T occurs free in the formula defining T ′), then T -atoms get
lower priority than T ′-atoms. All remaining positions, not associated with fixed-point
variables, receive highest priority. As a result, the number of priorities in the model-
checking games equals the alternation depth of the fixed-point formula plus one. For
more details and explanations, and for the proof that the construction is correct, see, e.g.,
[12] and [20].

Theorem 2.5. Let ψ be an LFP-sentence and let A be a relational structure. Then
A |= ψ if, and only if, Player 0 has a winning strategy for the parity game G(A, ψ).

For sentences ψ of width k, the game G(A, ψ) can be constructed in linear time
with regard to its size O(|A|k · |ψ |). According to Theorem 2.4, we obtain the following
complexity bounds for model checking LFP via the associated parity game.

Proposition 2.6. For a finite structure A and an LFP-sentence ψ of width k and al-
ternation depth d , the model-checking problem can be solved in space O(d · |A|k · |ψ |)

Fixed-Point Logics and Solitaire Games OF7

and time

O

(
d2 ·

(|A|k · |ψ |
�(d + 1)/2�

)�(d+3)/2�)
.

Note that, if both the alternation depth and the width of the formulae are bounded, the
algorithm runs in polynomial time. As mentioned above, the model-checking problem is
EXPTIME-complete for formulae of unbounded width, even if there is only one application
of an LFP-operator. The important unresolved case concerns LFP-formulae with bounded
width, but unbounded alternation depth. This includes theµ-calculus, since every formula
of Lµ can be translated into an equivalent LFP-formula of width two. In fact, the following
three problems are algorithmically equivalent, in the sense that if one of them admits a
polynomial-time algorithm, then all of them do:

(1) Computing winning sets in parity games.
(2) The model-checking problem for LFP-formulae of width at most k, for any

k ≥ 2.
(3) The model-checking problem for the modal µ-calculus.

3. A Tractable Case

The so far unresolved question whether fixed-point logics admit efficient model-checking
algorithms, and the correspondence between parity games and fixed-point logics suggests
that one may identify algorithmically simple fragments of fixed-point logics by studying
games of restricted shape that can be solved efficiently. A promising example for the
effectivity of this direction is the correspondence between alternation-free formulae and
dull games. To define these games we call a cycle in a game graph even (or odd) if the
least priority occurring on it is thus.

Definition 3.1. A parity game is dull if even and odd cycles are disjoint. A game is
called weak if priorities cannot decrease along transitions.

Weak games and dull games are closely related notions. Observe that every weak
game is also dull. Conversely, any dull game can be transformed in linear time into an
equivalent weak game, by changing only the priorities, not the game graph. Kupferman et
al. [18] established (using different terminology) that dull games can be solved in linear
time and that they emerge as model-checking games for alternation-free Lµ-formulae.
Actually, dull games correspond in general to the alternation-free fragment of LFP (see
[2]). As a consequence, the problem of checking a model A against an alternation-free
LFP-formula ψ of width k can be solved in time O(|ψ | · |A|k). If ψ is a formula of the
modal µ-calculus or guarded fixed-point logic, the complexity depends only linearly on
the size of the structure.

OF8 D. Berwanger and E. Grädel

3.1. Solitaire Games

Instead of restricting reachable priorities, we can take a different approach to render
games easy, namely, by restricting the interaction between the players. The simplest
case is given by solitaire games.

Definition 3.2. A parity game is called solitaire if all nontrivial moves are performed
by the same player.

In a soltaire game where only Player 0 makes nontrivial moves, his winning set
consists of those positions from which a terminal position in V1 or an even cycle is
reachable. Consequently, each strongly connected component of a solitaire game is
completely included in the winning set of one of the two players.

The positions from which terminal positions in V1 are reachable, can be computed
in linear time using depth-first search. Hence, we may restrict our attention to games G
without terminal positions. Without loss of generality, we can assume that all positions
belong to Player 0.

In the simplest setting, when only priorities 0 and 1 occur in G, the winning set
of Player 0 is the set of nodes from which a nontrivial strongly connected component
containing at least one position of priority 0 is reachable. By partitioning the game graph
into its strongly connected components the solution of G can be computed in linear time.

Games of higher index can be solved by reduction to several instances of games of
the above kind. For every even priority i occurring in the game G, let Gi be the restriction
of G to positions of priority j ≥ i where the priority i is replaced by 0 and all positions
of priority j > i receive priority 1. Note that if Player 0 wins from a position v in some
game Gi , than he also wins from v in the original game G. Conversely, Player 0 wins in
G only if he can reach a winning position v in some Gi . Hence, we can solve G by first
computing the winning positions of Player 0 for each Gi . The winning set of Player 0
in G comprises all strongly connected components from which one of these winning
positions is reachable.

To summarise, our method involves two reachability tests, one at the beginning, to
handle terminal positions, and one at the end; between these, for every even priority, the
solution of a solitaire game with only two priorities is computed. Each of these steps
requires only linear time with respect to the size of the game graph.

Proposition 3.3. The solution of a solitaire game G = (V, V0, E, �) of index d can
be computed in time O(d · (|V | + |E |)).

A significant feature of parity games in general is that their main complexity resides
in strongly connected components. Indeed, as pointed out in [2], the partial solutions of
subgames induced in a game by strongly connected components can be propagated to
obtain the global solution with only linear overhead.

Definition 3.4. A parity game is called nested solitaire if each strongly connected
component induces a solitaire game.

Fixed-Point Logics and Solitaire Games OF9

Observe that in a nested solitaire game both players may perform nontrivial moves.
To solve a nested solitaire gameGwe can proceed as follows. First, we decompose the

game graph into its strongly connected components. Note that in any terminal component
C , that is, a strongly connected component with no outgoing edges, a position is winning
in G iff it is also winning in the subgame induced by C . As a solitaire game, this subgame
can be solved efficiently, providing a partial solution for the winning sets W0 and W1 inG.

Next, we extend the obtained partial solution by assigning to W0 the positions v ∈ V0

with some successor already in W0, and v ∈ V1 with all successors already in W0; the
partial solution for W1 propagates dually. Let G ′ be the subgame induced by the positions
that remained unassigned after the propagation process. In the case where there are no
such positions, we are done. Otherwise, we reiterate the procedure for G ′, which is again
a nested solitaire game.

By adapting an algorithm from [3], the strongly connected components of the game
graph can be maintained during the propagation process in linear time. For details, see
also [2].

Theorem 3.5. A nested solitaire game G = (V, V0, E, �) of index d can be solved in
time O(d · (|V | + |E |)).

Notice that any positional strategy can be presented as a solitaire game. In the
automata-theoretic view, a solitaire game where all nontrivial moves are perfomed by
Player 1 corresponds to a deterministic parity tree automaton whose emptiness problem
is linear time reducible to the nonemptiness problem of a one-letter nondeterministic
parity word automaton.

3.2. Solitaire Formulae

Given that nested solitaire games can be treated efficiently, the question arises whether
these games correspond to a natural fragment of fixed-point logic. Note that in a model-
checking game, Player 0 makes choices at positions corresponding to disjunctions or ex-
istential quantifications, whereas Player 1 makes nontrivial choices at conjunctions and
universal quantifications. Hence we obtain solitaire model-checking games for formulae
where either ∧ and ∀ (or, equivalently, ∨ and ∃) do not appear, and negations are only ap-
plied to atomic formulae. However, these formulae are of very limited expressive power.

In order to understand which formulae lead to nested solitaire games, observe that
all cycles in model-checking games arise by regeneration of fixed-point variables. Thus,
to guarantee that a nontrivial move ϕ → ϕ′ leaves the current strongly connected com-
ponent, we have to ensure that ϕ and ϕ′ do not depend on a common fixed-point variable.
However, according to the rules of the game, a fixed-point variable that is free in ϕ′ must
be free already in ϕ. In contrast, if ϕ′ has no free fixed-point variables, then no position
with ϕ will be reachable from positions with ϕ′.

We say that an LFP-formula is closed if it does not contain free fixed-point variables.

Definition 3.6. The solitaire fragment of LFP, denoted Solitaire-LFP, consists of those
formulae where negation and universal quantification apply to closed formulae only, and
conjunctions to pairs of formulae of which at least one is closed.

OF10 D. Berwanger and E. Grädel

As an example, the following Solitaire-LFP formula on graphs defines the set of
positions that lay on a cycle:

ϕ(x) = [lfp Ruv . Euv ∨ ∃w(Euw ∧ Rwv)](x, x).

Using this formula, we may define the set of positions from which there is a path passing
through infinitely many positions that are not located on a cycle:

[gfp T x . [lfp Sx . ∃y(Exy ∧ (Sy ∨ (¬ϕ(y) ∧ T y)))](x)](x).

Note that the definition of Solitaire-LFP is not closed under transformation of for-
mulae into negation normal form. However, when speaking of a solitaire formula ψ
we tacitly assume that ψ is the presentation in negation normal form of a formula
complying with the above definition. Under this proviso, a straightforward induction
over closed subformulae shows that Solitaire-LFP indeed corresponds to nested solitaire
games.

Proposition 3.7. The model-checking games associated with Solitaire-LFP formulae
are nested solitaire games.

We remark that the solitaire fragment of Lµ has been studied under the name L2

in [8].

3.3. Complexity

As the model-checking games of Solitaire-LFP are nested solitaire, we obtain the fol-
lowing deterministic complexity bound as a direct consequence of Theorem 3.5.

Proposition 3.8. The model-checking problem for a structure A and a solitaire LFP-
sentence ψ of width k and alternation depth d can be solved in time O(d · |ψ | · |A|k).

In terms of major complexity classes, the following results can be established.

Theorem 3.9. The expression and combined complexity of Solitaire-LFP is PSPACE-
complete, and the data complexity is NLOGSPACE-complete.

Proof. For the upper bounds, we present a recursive nondeterministic procedure
Eval(A, ψ)which, given a structure A and a closed (instantiated) Solitaire-LFP-formula
ψ , decides whether A |= ψ . For convenience, we assume that in conjunctions the first
formula is always closed. Further, let G(ψ) denote the set of gfp-variables in ψ .

In the given form, the algorithm below may produce nonterminating computations.
To prevent this, we can enforce rejection when the iteration count of the main loop
exceeds 2 · |ψ | · |A|k , where k is the width of ψ . Maintaining such a counter requires
space O(log|ψ | + k · log|A|) for each recursion level.

Up to the handling of fixed points, this algorithm is a variant of a common method
for first-order evaluation. Essentially, the procedure Eval assumes the role of Verifier

Fixed-Point Logics and Solitaire Games OF11

function Eval(A, ψ)
guess a formula witness ∈ {Ra : R ∈ G(ψ)} ∪ {⊥}
seen witness := false
do

if ψ is an atom then
return A |= ψ

if ψ = ¬ϑ then
return ¬Eval(A, ϑ) (* ϑ is a closed formula *)

if ψ = ϕ1 ∨ ϕ2 then
guess i ∈ {1, 2}; ψ := ϕi

if ψ = ϑ ∧ ϕ then
if ¬Eval(A, ϑ) then return false else ψ := ϕ

if ψ = ∃xϕ then
guess b ∈ A; ψ := ϕ[x �→ b]

if ψ = ∀xϕ then
r := true
for all b ∈ A do r := r ∧ Eval(A, ϕ[x �→ b])
return r

if ψ = [fpT x.ϕ](c) then
ψ := ϕ(c)

if ψ = T a (a fixed-point atom) then
if (seen witness ∧ T a = witness) then return true (* even cycle found *)
if (seen witness ∧ T does not depend on witness) then return false
if (¬seen witness ∧ T a = witness) then seen witness := true
ψ := ϕT (c) (where ϕT is the formula defining T)

repeat

in the model-checking game G(A, ψ), in the sense that it nondeterministically guesses
her moves at disjunctions and existential quantifications. The correctness is proved by
induction over the closed subformulae of ψ ; the only interesting cases are fixed-point
variables.

We can argue in terms of the model-checking game. Assume that Verifier has a
strategy to prove A |= ψ . Then, at the starting position of the game, G(A, ψ) she can
ensure that the play either reaches an even cycle or it descends into a subgame G(A, ϕ),
with ϕ a closed subformula of ψ . The latter case is covered by the induction hypothesis.
For the former, let T a be a position of lowest priority on the cycle. Guessing this position
as a witness at the first step of the algorithm will lead to acceptance (even cycle found)
within less than 2 · |ψ | · |A|k iterations, which are enough to see any game position twice.

For the other direction, if A �|= ψ , then any recursive call Eval(A, ϕ) would lead
to rejection by induction hypothesis, as ϕ must be a closed subformulae of ψ . On the
other hand, the program cannot accept at the top level either, since for any guess of a
greatest fixed-point atom T a as a witness, each cycle in G(A, ψ) that contains T a also
contains positions of lower priority, i.e., associated to variables that do not depend on T .
Thus, T a cannot be regenerated without regenerating one of these first, at which point
the procedure rejects.

OF12 D. Berwanger and E. Grädel

Now we consider the space requirement. During evaluation of a formulaψ of width
k, the recursion depth does not exceed the nesting depth of a closed subformulae in ψ ,
which is itself bounded by |ψ |. At each recusion level a pointer to ψ , together with
an assignment consisting of k pointers to elements of A, is stored. Hence, overall the
algorithm requires space O(|ψ | · (log|ψ | + k log|A|).

The lower bounds follow immediately from the efficient translation of transitive
closure logic into Solitaire-LFP and Proposition 3.10 in the following section.

3.4. Expressive Power

Transitive Closure Logic. A semantic fragment of LFP that is well-behaved in terms of
complexity is transitive closure logic, TC, which extends first-order logic by a constructor
for forming the transitive closure of definable relations. Syntactically, if ϕ(x, y) is a
formula in variables x, y, and s, t are terms, the tuples x, y, s, and t being all of the same
length, then

[tcx,yϕ(x, y)](s, t)

is a also a TC-formula. Its meaning can be expressed in terms of LFP as

[lfpT xy . ϕ(x, y) ∨ ∃z(T xz ∧ ϕ(z, y)](s, t).

Observe that any TC-formula translates into an alternation-free LFP-formula of the
same width. The model-checking complexity of TC is well-understood [13], [15], [21].

Proposition 3.10. The model-checking problem for TC is PSPACE-complete in the gen-
eral case and PTIME-complete for formulae of bounded width. The data complexity is
NLOGSPACE-complete.

Linear Stratified Datalog. Transitive closure logic can be naturally characterised in
terms of the database query language Datalog. A Datalog rule is an expression of the
form H ← B1, . . . , Br where H , the head of the rule, is an atomic formula Ru1 · · · us ,
and B1, . . . , Br , the body of the rule, is a collection of literals (i.e., atoms or negated
atoms). The relation symbol R is called the head predicate of the rule. A basic Datalog
program � is a finite collection of rules such that none of its head predicates occurs
negated in the body of any rule. The predicates which appear only in the bodies of
the rules are called input predicates. Given a relational structure A over the vocabulary
of the input predicates, the program computes, via the usual fixed-point semantics, an
interpretation for the head predicates.

A stratified Datalog program is a sequence � = (�0, . . . ,�r) of basic Datalog
programs, called the strata of �, such that each of the head predicates of � is a head
predicate in precisely one stratum�i and is used as a body predicate only in higher strata
�j for j ≥ i . More precisely,

(i) if a head predicate of stratum �j occurs positively in the body of a rule of
stratum �i , then j ≤ i , and

(ii) if a head predicate of stratum�j occurs negatively in the body a rule of stratum
�i , then j < i .

Fixed-Point Logics and Solitaire Games OF13

The semantics of a stratified program is defined stratum per stratum. The body
predicates of a stratum �i are either input predicates of the entire program � or they
are head predicates of lower strata. Hence, once the lower strata are evaluated, we can
compute the interpretation of the head predicates of �i as in the case of basic Datalog.
For details, consult [1].

A stratified Datalog program is linear if in the body of each rule there is at most
one occurrence of a head predicate of the same stratum (but there may be arbitrarily
many occurrences of head predicates from lower strata). Linear programs suffice to
define transitive closures, so it follows by a straightforward induction that TC ⊆ Linear
Stratified Datalog. The converse is also true (see [6] and [9]).

Proposition 3.11. Linear Stratified Datalog is equivalent to TC.

Observe that the translation from transitive closure logic into LFP given in Section 2
involves only solitaire formulae. Consequently, Solitaire-LFP subsumes TC.

Lemma 3.12. TC ⊆ Solitaire-LFP.

It follows from well-known results that the converse is not true in general. A simple
example is the solitaire formula [gfpT x . ∃y(Exy ∧ T y)](x) expressing that there is an
infinite path from x . It is known that this query is not even expressible in the infinitary
logic L∞ω (otherwise, well-founded linear orders would be axiomatizable in L∞ω). Even
restricted to countable structures this query is not expressible in TC. However, on finite
structures the converse does hold.

Theorem 3.13. On finite structures, Solitaire-LFP ≡ TC.

To prove this, we exploit the solitaire-structure of the model-checking game and
the fact that TC-formulae are equivalent to stratified linear Datalog programs. For every
formula ψ ∈ Solitaire-LFP, we construct a stratified linear Datalog program �ψ which
defines the winning positions in the associated model-checking game.

More precisely, the construction proceeds by induction along the following lines:

(a) For every subformula ϕ(x), we introduce a head predicate Wϕ . On any finite
structure A, the program evaluates the atom Wϕ(a) to true if, and only if, Verifier
has a winning strategy from position ϕ(a).

(b) Further, the program contains auxiliary head predicates RϕT , for each gfp-
formula [gfp T x . ϑ](x) in ψ and every subformula ϕ depending on T . On any
finite A, the program evaluates RϕT (a, b) to true if, and only if, in the game
G(A, ψ) there is a path π from position ϕ(a) to position ϑ(b) which does not
pass through any position of priority less than�(T) and, moreover, π is reliable
for Verifier in the following sense: at every position v ∈ π at which Falsifier has
a choice (this can only be at positions corresponding to conjunctions), the single
move which does not follow π leads to a subgame in which Verifier wins. Note
that RϑT (a, a) implies that Verifier has a strategy to reach a cycle of minimal
priority �(T), unless she wins by other means.

OF14 D. Berwanger and E. Grädel

We remark that the following construction is standard up to the treatment of the
gfp-formulae via the reachability predicates RϕT .

(1) If ϕ(x) is a literal (¬)Px, the program �ϕ consists of the single rule

Wϕ(x) ← ϕ(x).

(2) For ϕ = ¬η, �ϕ is obtained by adding to �ϑ a new stratum with the rule

Wϕ(x) ← ¬Wη(x).

Note that this is well-defined since η does not contain free fixed-point variables.
(3) For ϕ = η ∨ ϑ , the program �ϕ consists of �η ∪�ϑ together with the rules

Wϕ(x) ← Wη(x), Wϕ(x) ← Wϑ(x)

and, if applicable,

RϕT (x, y) ← RηT (x, y), RϕT (x, y) ← RϑT (x, y).

(4) For ϕ = ϑ ∧η, we can assume that ϑ does not contain free fixed-point variables.
Now �ϕ is �ϑ ∪�η augmented with the rules

Wϕ(x) ← Wϑ(x),Wη(x)

and, if applicable,

RϕT (x, y) ← Wϑ(x), RηT (x, y).

Note that Wϑ does not depend on Wϕ , so the program is indeed linear.
(5) For ϕ = ∃zη(x, z), we obtain �ϕ by adding to �η the rules

Wϕ(x) ← Wη(x, z), and RϕT (x, y) ← RηT (xz, y)

for the appropriate gfp-variables T .
(6) For ϕ = ∀zη(x, z), the subformula η does not contain free fixed-point variables.

We construct �ϕ by adding to �η the rule

Lϕ(x) ← ¬Wη(x, z)

and, in a new stratum,

Wϕ(x) ← ¬Lϕ(x).

(7) For fixed-point definitions ϕ = [fp T x . ϑ](x), and likewise for the predicates
ϕ = T x, we construct �ϕ by adding to �ϑ the rule

Wϕ(x) ← Wϑ(x)

and, for all gfp-variables T ′ on which T depends (hence, �(T ′) ≤ �(T)),

RϕT ′(x, y) ← RϑT ′(x, y).

In case ϕ is a gfp-definition ϕ = [gfp T x . ϑ](x), the program �ϕ additionally contains
the rule

Wϕ(x) ← RϑT (x, x);

Fixed-Point Logics and Solitaire Games OF15

if it is a gfp-atom ϕ = T x, we add

RϕT (x, x).

It is readily seen that the solitaire structure of ψ implies that �ψ is indeed a linear
stratified program. It remains to prove the following.

Lemma 3.14. For every solitaire formula ψ(x) and every finite structure A we have
that A |= ψ(a) iff �ψ evaluates on A the atom Wψ(a) to true.

Proof. We show that the truth values for Wϕ(a) and RϕT (a, b) defined by �ψ on A

indeed have the game theoretic meaning described by items (a) and (b) above.
A winning play for Verifier in G(ψ,A) from a position ϕ(a) must either lead in

finitely many steps to a literal (¬)Pb that is true in A, or it must lead to a gfp-atom T b
from which it cycles without hitting any priority smaller than �(T). It is not difficult to
see that the rules of �ψ ensure a strategy for precisely this.

The rules for cases (1)–(6) reduce the winning conditions Wϕ and the reachability
conditions RϕT in the obvious way to the immediate subformulae of ϕ (i.e., to the
positions after the next move).

In case (7) the rules do the same forϕ = [fpT x . ϑ](x) and, in addition, they take into
account the moves from T a back to ϑ(a). To win from T a, Verifier must win from ϑ(a).

If a least-fixed point atom T a is regenerated infinitely often, then the play is lost
(unless a gfp-variable of smaller priority is also regenerated infinitely often). Most im-
portantly, the additional rules for gfp-formulae take care of the possibility to win by
forcing an appropriate cycle. For ϕ(x) = [gfpT x . ϑ](x), the rule Wϕ(x) ← RϑT (x, x)
ensures that Wϕ(b) is evaluated to true if Verifier can force a reliable cycle that contains
ϑ(b) and on which no priority smaller than �(T) is seen. Together with the other rules
this further implies that Verifier also wins from positions where she can force a play that
eventually hits such a cycle.

This completes the proof of Theorem 3.13.

4. Small Model Checking Games for Guarded Logics

As we observed in Section 2, the parameter responsible for the high complexity of LFP
model checking in the general case is the formula width. This parameter also has a major
influence on the size of evaluation games. Already for first-order formulae of width k, the
size of the corresponding model-checking game is O(|A|k |ψ |), as typically all possible
assignments ρ : {x1, . . . , xk} → A need to be taken into account. In this section we
consider guarded logics that have model-checking games of much smaller size.

Syntactically, guarded logics are based on a restriction of first-order quantification
to the form ∃y(α(x, y) ∧ ψ(x, y)) or ∀y(α(x, y) → ψ(x, y)) where quantifiers may
range over a tuple y of variables, but are “guarded” by a formula α that contains all the
free variables of the formula ψ that is quantified over. These guard formulae are of a
simple syntactic form. In the following we consider guarded fragments of LFP where
the guards are either atoms or clique-formulae.

OF16 D. Berwanger and E. Grädel

The guarded-fragment GF of first-order logic is defined inductively as the closure
of atomic formulae under Boolean connectives and the following quantification rule: For
every formula ψ(x, y) ∈ GF and every atom α(x, y) such that all variables that are free
in ψ are also free in α, the formulae ∃y(α(x, y) ∧ ψ(x, y)) and ∀y(α(x, y) → ψ(x, y))
belong to GF.

Guarded fixed-point logic µGF extends GF by the following fixed-point formation
rule: Let T be a k-ary relation symbol, let x be a k-tuple of distinct variables, and let
t be a k-tuple of terms; if ψ(T, x) is a formula with no other free first-order variables
than those in x, in which T occurs only positively and is not used in guards, then we can
build the formulae

[lfpT x . ψ](t) and [gfpT x . ψ](t).

The semantics of guarded fixed-point logic is the same as for LFP. We sometimes use
the notation (∃y . α)ψ and (∀y . α)ψ for guarded formulae. Obviously, µGF generalizes
the modal µ-calculus Lµ and also the µ-calculus with inverse modalities. Hence, the
algorithmic problems for µGF, even for formulae with two variables, are at least as hard
as for Lµ.

For some applications it is too restrictive to allow only atoms as guards (for instance,
temporal operators like until cannot be expressed in GF). A natural and very powerful
generalisation of guarded logics is based on the notion of clique guardedness.

Let A = (A, R1, . . . , Rm) be a relational structure. A set X ⊆ A is guarded in A if
X = {a} or if there is a tuple a ∈ Ri (for some i ≤ m) such that X = {a : a in a}. A set
X ⊆ A is clique guarded in A if for any two elements a, a′ of X there exists a guarded
set containing both a and a′. (To put it differently, X induces a clique in the Gaifman
graph of A.) A tuple a ∈ Ak is (clique) guarded if a ∈ Xk for some clique guarded
set X .

Note that for each finite vocabulary τ and each k ∈ N, there is a positive existential
first-order formula clique(x1, . . . , xk) such that, for every τ -structure A and every k-tuple
a ∈ Ak , we have A |= clique(a) ⇐⇒ a is clique guarded in A. The clique-guarded
fragment CGF of first-order logic and the clique-guarded fixed-point logic µCGF are
defined in the same way as GF and µGF, but with the clique-formulae as guards. Hence,
the quantification rule for CGF and µCGF is the following: if ψ(x, y) is a formula of
CFG or µCGF, then

∃y(clique(x, y) ∧ ψ(x, y)) and ∀y(clique(x, y) → ψ(x, y))

belong to CGF, provided that all free variables in ψ are also free in clique.
In practice, one will not spell out the clique-formulae explicitly. One possibility is

not to write them down at all, i.e., to take the usual (unguarded) first-order syntax and
to change the semantics of quantifiers so that only clique-guarded tuples are considered.
Another common option is to use guards which imply a clique-formula, i.e., any formula
of the form γ (x, y) := ∃zβ(x, y, z)where β is a conjunction of atoms such that each pair
of variables from free(γ) occurs together in at least one conjunct ofβ. As we want to keep
our complexity results independent of these coding issues, we do not take into account
the length of clique guards at all. See [11] for background on clique-guarded logics and
their relations to other notions such as the loosely guarded or packed fragments.

Fixed-Point Logics and Solitaire Games OF17

Let A be a structure and let ψ be a guarded formula. Then, at any position
(∃y . α(a, y))ϕ(a, y) in the model-checking game G(A, ψ), Verifier should move to a
position ϕ(a, b) where b satisfies A |= α(a, b), otherwise she would lose immediately.
The same hold for Falsifier at positions

(∀y . α(a, y)
)
ϕ(a, y). On that account we can

narrow the possible moves at quantifications to cover only positions where the guards
are satisfied. Further, the game can be restricted to the set of positions reachable from
the initial position ψ . The construction of this game is straightforward and can be done
in linear time with respect to its size.

Towards an accurate estimation of game sizes, besides the length and the width
of the given formula ψ , a relevant notion is the closure cl(ψ), that is, the set of its
subformulae. The size of a finite relational structure A = (A, R1, . . . , Rm) is defined
as ‖A‖ = |A| + ∑m

i=1 ri |Ri | where ri is the arity of Ri (i.e., the number of structure
elements plus the sum of the length of all tuples in its relations).

Proposition 4.1. Given a sentence ψ ∈ µGF and a finite structure A, the associated
parity game G(A, ψ) is of size O(‖A‖ · |ψ |).

Proof. It suffices to prove that |E | = O(‖A‖ · |ψ |).
Let H(ψ) be the syntax tree ofψ , with back edges from fixed-point atoms T x to the

defining formula ϕ(T, x). Obviously, H(ψ) has not more than |ψ | edges. We claim that
for every edge ϕ → ϕ′ of H(ψ) there exist at most ‖A‖ edges of form ϕ(a) → ϕ′(a′)
in the game graph G(A, ψ).

We consider several cases. First, let ϕ = (Qx . α)ϕ′ where Q stand for a quantifier.
In that case an edge ϕ(a) → ϕ(a′) can exist only if there exists an assignment ρ such
that A |= α[ρ] which maps the free variables of ϕ and ϕ′ respectively to a and a′. Since
guards are atomic formulae the number of assignments satisfying a guard is bounded
by ‖A‖.

In all other cases, i.e., ifϕ is not a quantified formula, then any fixed positionϕ(a) has
at most two outgoing edges ϕ(a) → ϕ′(a′). Hence, it suffices to show that for each such
ϕ ∈ H(ψ) there exist at most ‖A‖ reachable positions ϕ(a) in the game graph. Without
loss, we may assume that fixed-point variables occur inside their defining formulae only
under the scope of a quantifier. Formulae ϕ that are not inside a quantifier are sentences
and occur only once. For all other formulae ϕ(x) there is a uniquely determined least
subformula of ψ that strictly contains ϕ and has the form (Qy . α)ϑ(z). Moreover, the
free variables x of ϕ are contained in z. Then a position ϕ(a) is reachable if, and only
if, a position ϑ(c) is reachable, such that the assignment z �→ c extends the assignment
x �→ a. Note that ϑ and α are uniquely determined by ϕ, and the position ϑ(c) is
reachable only if A |= α[ρ] for some ρ that extends the assignment z �→ c. By the same
argument as above it follows that the number of reachable positions ϕ(a) is bounded by
‖A‖. This completes the proof.

According to Theorem 2.4, we obtain the following complexity bounds for model
checking µGF via the associated parity game.

Proposition 4.2. Given a structure A and a µGF-sentence ψ of alternation depth d

OF18 D. Berwanger and E. Grädel

the model-checking problem can be solved in space O(d · ‖A‖ · |ψ |) and time

O

(
d2 ·

(‖A‖ · |ψ |
�(d + 1)/2�

)�(d+3)/2�)
.

Note that inµGF, the formula width is implicitly bounded by the arity of the relation
symbols. (On graphs, for instance, GF and µGF are actually two-variable logics.) How-
ever, even when we compare the obtained complexity for µGF with the corresponding
result for LFP-formulae of bounded width in Proposition 2.6, the difference is significant.

In contrast to µGF, we can write formulae of unbounded width in µCGF. As a
consequence, the model-checking problem for µCGF is as hard as for LFP in terms
of major complexity classes. To prove this, one takes input structures with a complete
binary guard relation, so that all tuples in the structure become clique guarded.

Proposition 4.3. The combined complexity and the expression complexity of µCGF is
EXPTIME-complete, and the data complexity is PTIME-complete.

However, as we will see, for formulae of bounded width, the complexity of µCGF
levels off between µGF and LFP.

By the definition of clique guardedness, for a tuple x of variables appearing free in
a subformula of ψ , the value of any assignment ρ(x) induces a clique in the Gaifman
graph of A. The number and size of cliques in this graph can be bound by parameters
derived from its tree decomposition.

Definition 4.4. A tree decomposition of width l of some structure B is a tree labelled
with subsets of at most l + 1 elements of B, called blocks, such that (1) every guarded
set in B is included in some block and (2) for any element a ∈ B the set of blocks which
contain a is connected. The tree width of B is the minimal width of a tree decomposition
of B.

For a comprehensive presentation of the notions of tree decomposition and width
see, e.g., Chapter 12 of [5].

Lemma 4.5. Given a structure A of tree width l, the number of clique-guarded assign-
ments in A for a tuple of k variables is bounded by (l + 1)k · |A|.

Proof. Let T be a tree decomposition of width l of the structure A and thus also of
its Gaifman graph. A simple graph-theoretic argument [11] shows that cliques are not
disbanded by tree decompositions, that is, every clique of the Gaifman graph is contained
in some decomposition block. Consequently, every clique-guarded set in A, in particular
ρ(x), is contained in some block of T . Since we can assume without loss that |T | ≤ |A|,
the number of clique-guarded k-tuples in A, and with it the number of clique-guarded
assignments, is bounded by (l + 1)k · |A|.

By a similar analysis as in the case of µGF we obtain the following estimates.

Fixed-Point Logics and Solitaire Games OF19

Proposition 4.6. Given a µCGF-sentence ψ of width k and a finite structure A of tree
width l, the size of the associated parity game G(A, ψ) is bounded by O(lk |A| · |cl(ψ)|).

This means that for structures of small tree width µCGF-games are considerably
smaller than LFP-games. Especially, for a fixed clique-guarded sentence ψ , the size of
the game G(A, ψ) for structures A of bounded tree width grows linearly with the size of
A, while it grows polynomially with degree k when ψ is an unguarded LFP-formula of
width k. This difference is also reflected in the model-checking complexity.

Proposition 4.7. For a structure A of tree width l and a µCGFsentence ψ of width
k and alternation depth d , the model-checking problem can be solved in space O(d ·
lk |A| · |cl(ψ)|) and time

O

(
d2 ·

(
lk |A| · |cl(ψ)|
�(d + 1)/2�

)�(d+3)/2�)
.

Finally, we interpret these results for the guarded solitaire formulae, that is, formulae
of µGF and µCGF formed according to Definition 3.6.

Proposition 4.8. The model-checking problem for a structure A of tree width l and a
solitaire µCGF-sentence ψ of width k and alternation depth d , can be solved in time
O(d · lk |A| · |cl(ψ)|). In particular, for ϕ ∈ µGF the problem can be solved in time
O(d · ‖A‖ · |ψ |).

References

[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Addison-Wesley, Reading, MA, 1995.
[2] D. Berwanger and E. Grädel, Games and model checking for guarded logics, in Proceedings of LPAR

2001, Lecture Notes in Computer Science vol. 2250, Springer-Verlag, Berlin 2001, pp. 70–84.
[3] R. Bloem, H. Gabow, and F. Somenzi, An algorithm for strongly connected component analysis in

n log n symbolic steps, in Formal Methods in Computer Aided Design, Lecture Notes in Computer
Science, vol. 1954, Springer-Verlag, Berlin, 2000, pp. 37–54.

[4] J. Bradfield, The modal µ-calculus alternation hierarchy is strict, Theoretical Computer Science, 195
(1998), 133–153.

[5] R. Diestel, Graph Theory, Springer-Verlag, Berlin 1997.
[6] H.-D. Ebbinghaus and J. Flum, Finite Model Theory, 2nd edn., Springer-Verlag, Berlin, 1999.
[7] A. Emerson and C. Jutla, Tree automata, mu-calculus and determinacy, in Proceedings of the 32nd

IEEE Symposium on Foundations of Computer Science, 1991, pp. 368–377.
[8] A. Emerson, C. Jutla, and P. Sistla, On model checking for theµ-calculus and its fragments, Theoretical

Computer Science, 258 (2001), 491–522.
[9] E. Grädel, On transitive closure logic, in Proceedings of the 5th Workshop on Computer Science

Logic, CSL 91, Bern 1991, Lecture Notes in Computer Science, vol. 626, Springer-Verlag, Berlin, 1991,
pp. 149–163.

[10] E. Grädel, Why are modal logics so robustly decidable?, in Current Trends in Theoretical Computer
Science, World Scientific, Singapore, 2001, pp. 393–498.

[11] E. Grädel, Guarded fixed point logic and the monadic theory of trees, Theoretical Computer Science,
288 (2002), 129–152.

OF20 D. Berwanger and E. Grädel

[12] E. Grädel, Finite model theory and descriptive complexity, In Finite Model Theory and Its Applications,
Springer-Verlag, Forthcoming.

[13] E. GRÄDEL AND M. OTTO, On logics with two variables, Theoretical Computer Science, 224 (1999),
73–113.

[14] N. Immerman, Relational queries computable in polynomial time, Information and Control, 68 (1986),
86–104.

[15] N. Immerman, Languages that capture complexity classes, SIAM Journal on Computing, 16 (1987),
760–778.

[16] M. Jurdziński, Deciding the winner in parity games is in UP ∩ Co-UP., Information Processing Letters,
68 (1998), 119–124.

[17] M. Jurdziński, Small progress measures for solving parity games, in STACS 2000, 17th Annual Sympo-
sium on Theoretical Aspects of Computer Science, Proceedings, Lecture Notes in Computer Science,
vol. 1770, Springer-Verlag, Berlin, 2000, pp. 290–301.

[18] O. Kupferman, M. Vardi, and P. Wolper, An automata-theoretic approach to branching-time model
checking, Journal of the ACM, 47 (2000), 312–360.

[19] Y. Moschovakis, Elementary Induction on Abstract Structures, North-Holland, Amsterdam, 1974.
[20] C. Stirling, Bisimulation, model checking and other games, Notes for the Mathfit Instructional Meeting

on Games and Computation, Edinburgh, 1997.
[21] M. Vardi, The complexity of relational query languages, in Proceedings of the 14th ACM Symposium

on the Theory of Computing, 1982, pp. 137–146.

Received November 5, 2002, and in revised form March 21, 2003, and in final form March 31, 2003.
Online publication September 13, 2004.

