
Dynamic Definability

Erich Grädel
Mathematische Grundlagen der Informatik,

RWTH Aachen University
graedel@logic.rwth-aachen.de

Sebastian Siebertz
Logik und Semantik, TU Berlin

sebastian.siebertz@tu-berlin.de

ABSTRACT
We investigate the logical resources required to maintain
knowledge about a property of a finite structure that un-
dergoes an ongoing series of local changes such as insertion
or deletion of tuples to basic relations. Our framework is
closely related to the Dyn-FO-framework of Patnaik and Im-
merman and the FOIES-framework of Dong, Libkin, Su and
Wong, and also builds on work of Weber and Schwentick.
We assume that the dynamic process starts with an arbi-
trary, nonempty structure, but in contrast to previous work,
we assume that, in general, structures are unordered. We
show how to modify known dynamic algorithms for symmet-
ric reachability, bipartiteness, k-edge connectivity and more,
to work also without an order and with dynamic processes
starting at an arbitrary graph. A history independent dy-
namic system (also called deterministic or memoryless) is
one that maintains all auxiliary information independent of
the update order. In 1997, Dong and Su posed the problem
whether there exist history independent dynamic systems
with FO-updates for symmetric reachability or bipartiteness.
We give a positive answer to this question. We further show
that there is a history independent system for tree isomor-
phism with FO+C-updates. On the other hand we show
that on unordered structures first-order logic is too weak to
maintain enough information to answer the equal cardinality
query and the tree isomorphism query dynamically.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Model Theory—Finite Model
Theory, Definability Theory ; F.1.m [Models of Compu-
tation]: Miscellaneous—Dynamic Complexity, Incremental
Computation; H.2.4 [Systems]: Relational Databases

General Terms
Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0791-8/12/03 ...$10.00

Keywords
Finite Model Theory, Dynamic Complexity, DynFO, FOIES

1. INTRODUCTION
We are interested in some arbitrary but fixed query on a

finite structure A which is subject to an ongoing sequence
of local changes, and after each change the answer to the
query should remain available. As an example, consider a
database application. A relational database is basically a
finite relational structure A and a fundamental query is the
transitive closure of one of its relations. However, in reality
a database is a dynamic object. Elements are constantly
inserted in and deleted from the database and relations be-
tween elements change by insertion and deletion of tuples.
Further, the query of interest usually does not need to be an-
swered only once, but again and again. It thus lies at hand to
maintain auxiliary relations that provide information about
computations already performed on previous stages of A. In
the context of databases, such relations are called material-
ized views. Other typical examples for applications where
this dynamic view is appropriate are modeling of operating
systems, embedded systems and many more.

Dynamic algorithms (i.e. algorithms maintaining dynamic
data structures) for concrete problems have been studied for
over three decades and many sophisticated techniques have
been developed. A general theory of dynamic complexity
providing structural results was first introduced by Miltersen
et al. [19] and Patnaik and Immerman [20]. Motivated by the
success of the descriptive approach to traditional complex-
ity theory, Patnaik and Immerman [20] provided a descrip-
tive approach to dynamic complexity theory. Their setting,
called Dyn-FO, is designed to handle classes of structures,
and auxiliary data consists of relations over the universe of
the structures. In particular, no high level data structures
are used and only a polynomial amount of auxiliary space
is available. Weber and Schwentick [21] provide an elegant
generalization to this setting which clarifies the role of pre-
computation. The initialization of the auxiliary structure
and all updates are handled by logical interpretations. This
allows for an analysis with well-known methods from finite
model theory, and furthermore, all results obtained are read-
ily usable for relational databases. A similar formalism for
database applications, called FOIES, is defined and studied
by Dong, Libkin, Su and Wong [8, 2, 4].

The complexity of a property in the descriptive context
is measured by the power of logics required to express the
property. Dynamic systems with low update costs, such as
systems with updates expressed in first-order logic (FO) or

first-order logic with counting (FO+C) are of special inter-
est. The expressive power of these logics corresponds ex-
actly to the power of relational calculus or SQL on relational
databases, and to the circuit complexity classes AC0 or TC0

on ordered structures [17, 16, 1]. Many properties that are
not expressible in FO or FO+C in the classical static con-
text can indeed be handled with FO or FO+C updates in the
dynamic context. Examples for such properties are reach-
ability in acyclic directed graphs [8], reachability in undi-
rected graphs, k-edge connectivity and bipartiteness [20].
Structural results about dynamic classes have been provided
for ordered structures, including suitable reduction concepts
[20, 15, 21] and complete problems [15].

In this paper, we adapt the descriptive setting of Weber
and Schwentick [21], i.e. we consider finite relational struc-
tures where auxiliary data consists of relations over the do-
main of the input structure. Initialization of the auxiliary
structure and all updates are handled by logical interpreta-
tions. On ordered structures all considered logics correspond
to well known complexity classes. In contrast to [20] and [21]
we do, however, not assume that the given structures are or-
dered. It is a well known fact in finite model theory that the
relationship between computational complexity and logical
definability is much less tight on unordered finite structures
compared to ordered ones. On ordered structures most of
the major complexity classes can be precisely characterized
by logics that either extend first-order by suitable operators
such as transitive closure, fixed points etc., or by appropriate
restrictions of, say, second-order logic. We refer to [11] for
background on results of this kind and on the open problems
concerning the relationship between logics and complexity
classes.

On unordered structures, precise logical characterizations
are known only for complexity classes such as NP and above.
In particular it is major open problem whether there exist
logics that capture Ptime or Logspace on the class of all
finite structures. Thus, our focus on unordered finite struc-
tures means that our study is more about dynamic definabil-
ity rather than dynamic complexity. There are many results
on the power of dynamic systems on ordered structures, or
equivalently on structures where the dynamic process starts
with an empty structure (so that an ordering can be recov-
ered from the sequence of insertions), but only few results
on unordered structures when starting the dynamic process
on structures with non-empty relations. It is our main in-
terest to investigate whether these results also hold in the
unordered setting. We show that many upper bounds for
concrete problems indeed carry over to the unordered set-
ting. Some dynamic systems from the literature directly
translate into our setting. For instance the construction in
[8] for reachability in acyclic directed graphs does not make
use of an ordering at all. However, other known results on
dynamic complexity crucially rely on the availability of an
ordering such as the ones in [20, 7] concerning reachability in
undirected graphs. We shall show how the undirected reach-
ability query can be handled in the unordered setting. We
shall establish a suitable reduction concept which is slightly
more complicated than in the ordered setting. It will fol-
low by a reduction from reachability that bipartiteness, k-
vertex disjoint paths, k-edge connectivity and clique cover-2
are maintainable in the unordered setting as well.

In the setting of Dong and Su [6] the auxiliary relations for
a structure A are restricted to be independent of the order

of the updates that lead to A. We call a dynamic system
with this property history independent (in [6] it is called
deterministic and in [20] memoryless). The advantage of
history independent dynamic systems in the unordered set-
ting is that, in contrast to non history independent systems,
they can deal with any fixed number of updates at the same
time and thus allow for a simpler reduction concept. It was
posed as an open question in [6] whether there is a history
independent dynamic system with FO-updates for reacha-
bility in undirected graphs or bipartiteness. We shall give
a positive answer to that question. We shall further show
how to modify the algorithm of Etessami [12] to handle tree
isomorphism with FO+C-updates in a history independent
fashion.

Providing lower bounds on the power of dynamic systems
on ordered structures amounts to providing lower bounds
for a general model of computation. It was shown by Etes-
sami [12] that this is also the case when the dynamic process
starts with an empty structure, as order and arithmetic can
be built incrementally. Thus proving lower bounds in the
ordered setting is probably beyond reach. In [7, 9] a strict
hierarchy based on the arity of allowed auxiliary relations is
established, but no lower bounds on systems with auxiliary
relations of arbitrary arity are known. The situation is dif-
ferent when the dynamic process starts with a non-empty
unordered structure. We shall show that in our unordered
setting neither equal cardinality nor tree isomorphism can
be handled with FO-updates. Our method is similar to that
of [7] using Ehrenfeucht-Fräıssé games. The unmaintainabil-
ity of equal cardinality induces a separation of the dynamic
complexity class Dyn(FO+C,FO) from Dyn(FO+C,FO+C).
The separation on ordered structures, i.e. the separation of
classes with AC0-updates from classes with TC0-updates, is
a major open problem in dynamic complexity theory. Our
result implies that there is no history independent FOIES
for equal cardinality and tree isomorphism. The former was
already shown in [6], the latter is the first result of nonex-
istence of a history independent FOIES for a query over
non-unary input vocabulary. We also show that the auxil-
iary relations used by our dynamic system to maintain the
transitive closure of an undirected graph do not suffice to
maintain the transitive closure of a directed graph.

2. DYNAMIC DEFINABILITY CLASSES
In this section we fix our notation and define dynamic

problems, dynamic definability classes and dynamic reduc-
tions. We give the formal definitions along the lines of an
example, the dynamic symmetric reachability problem.

All considered structures are finite over finite vocabularies
that contain only relation and constant symbols. Let τ =
{R1, . . . , Rk, c1, . . . , cs} be a signature. Denote by Fin(τ)
all finite τ -structures and by Finn(τ) all τ -structures with
n elements. For a τ -structure A over universe A we write
A = (A,RA

1 , . . . , R
A
k , c

A
1 , . . . , c

A
s) . For simplicity we assume

that the universe A of a structure A ∈ Fin(τ) is [n] :=
{0, . . . , n − 1}. A decision problem on τ -structures is a
Boolean query on τ -structures, i.e. a class S of τ -structures,
such that if A ∼= B then A ∈ S ⇔ B ∈ S. A query S is defin-
able in a logic L if there is a sentence ϕ of L(τ) such that for
every A ∈ Fin(τ) we have A ∈ S ⇔ A |= ϕ. If ϕ(x1, . . . , xk)
is a formula with k free variables we write ϕA for the k-
ary relation {(a1, . . . , ak) ∈ Ak : A |= ϕ(a1, . . . , ak)}. We
focus mostly on first-order logic FO and its well known ex-

tensions with transitive closure operators FO+TC or infla-
tionary fixed-point operators IFP, as well as their counting
extensions FO+C, FO+TC+C and IFP+C. We assume fa-
miliarity with these logics, modern treatments of the above
topics can be found in [11, 10, 18]. We write x for a finite
sequence (x1, . . . , xk) and usually leave it to the context to
determine the length of a sequence.

Each decision problem S together with a set of operations
induces the dynamic problem of whether a sequence of op-
erations applied to a structure A produces a structure with
the desired property S. Thus, the elements of a dynamic
problem D are pairs (A, w), consisting of a structure A and
a sequence w of operations, such that the structure result-
ing from A after applying w is in S. For each vocabulary
τ = {R1, . . . , Rk, c1, . . . , cs} we consider a set Σcan(τ) of op-
eration symbols, together with an associated set ∆can(τ) of
operations. Σcan(τ) contains the symbols

• InsertR for each relation symbol R ∈ τ with associated
operations InsertR(a) ∈ ∆can(τ), where a ∈ Nk for
k = arity(R),

• DeleteR for each relation symbol R ∈ τ with associated
operations DeleteR(a) ∈ ∆can(τ), where a ∈ Nk for
k = arity(R) and

• Setc for each constant symbol c ∈ τ with associated
operations Setc(a) ∈ ∆can(τ) for a ∈ N

with the following semantics. If any of the parameters of an
operation is not in the universe of the structure, the opera-
tion has no effect. Otherwise, an insert or delete operation
adds the given tuple to the corresponding relation or deletes
the given tuple, respectively. A set operation sets the corre-
sponding constant to be the given element. The operations
are called the canonical operations for τ . On undirected
graphs we define the semantics of the canonical operations
InsertE(a, b) (DeleteE(a, b)) such that they insert (delete)
both the edge (a, b) and (b, a) to (from) the given graph.

For a sequence w = δ1 . . . δm ∈ ∆∗can(τ) of operations and
a structure A, we define w(A) to be the result of subsequently
applying the operations to A, and A if w = ε. For a class C
of structures denote by w(C) the class {w(A) : A ∈ C}.

Definition 2.1. Let S be a Boolean query on τ -structures.
The dynamic problem D(S) associated with S is the set of
pairs D = (A, w) where A ∈ Fin(τ) and w ∈ ∆∗can(τ) is an
update sequence with w(A) ∈ S. The query S is called the
underlying static problem of D(S).

We want to handle dynamic problems by incremental eval-
uation systems. These systems allow auxiliary relations over
the universe of the input structure A. Thus, we are limited
to a polynomial amount of auxiliary space and in particu-
lar, no high level data structures are used. Given A, the
auxiliary relations are initialized by a logical interpretation
in an expressive logic such as IFP or IFP+C. Each update
should be handled fast, making use of the auxiliary data. In
our context this means the updates are handled by logical
interpretations in a simple logic, such as FO or FO+C.

Example: Symmetric Reachability. The static reacha-
bility problem on undirected graphs, SymmReach, consists
of all undirected graphs G with distinguished vertices s and
t such that t is reachable in G from s. The canonical oper-
ations are the insertion and deletion of undirected edges as

well as setting of s and t to specific vertices of the graph.
For an operation sequence w call w(G) the graph that re-
sults from applying all insert and delete operations from w
to G and call w(s) and w(t) the constants that result from
applying the corresponding set operations to s and t. A pair
(G, w), is in D(SymmReach) if w(t) is reachable from w(s)
in w(G). We want to stress again that contrary to previ-
ous results from [7, 20] we assume no order on the nodes
and an initialization by purely logical means. This exam-
ple is meant to show that difficulties arise when no order
is present. We define an incremental evaluation system for
SymmReach that initializes and maintains two ternary re-
lations F and R with the following properties. After the
initialization we have Fxyz if and only if (y, z) is an edge in
G and lies on a shortest path from x to some other vertex.
For each vertex x, Fxyz induces an acyclic directed graph
Fx. At all times during the update process it will hold for
each vertex x that Fx is acyclic and connected, and a vertex
z is reachable from x if and only if x = z or there exists an
edge (y, z) with (y, z) ∈ Fx. Also it holds at all times that
Rxyz expresses that in Fx vertex z is reachable from vertex
y. F and R can be initialized by formulae in inflationary
fixed point logic.

Fxyz :=[ifpGuv.(u = x ∧ Euv)∨
∃t(Gtu ∧ (Euv ∧ ¬∃sGsv ∧ x 6= v)]yz.

Rxyz :=[ifpHuv.(u = v ∨ Fxuv ∨ ∃w(Huw ∧Hwv))]yz.

Stage 1 of the fixed-point iteration for F contains the edges
that lead to direct successors of vertex x, F1 = {(x, v) ∈ E}.
Stage Fi+1 additionally contains those edges that lead from
Fi to a vertex which which was not reachable so far. That
is, each stage Fi is the set {(u, v) ∈ E : there is a shortest
path from x to v in G of length ≤ i which goes along edge
(u, v)}.

We now want to update the predicates F and R by first-
order formulae whenever an update to G occurred. We have
to agree on how updates are presented to the incremental
evaluation system. Either we assume that an update is ex-
plicitly given, e.g. presented in the form InsertE(a, b). In this
case the update formula for an insert has two free variables
which are interpreted as a, b when the update occurs. Or we
assume that the incremental evaluation system gets only the
information that an insert operation occurred, i.e. that the
edge relation E was updated. In this case we have to main-
tain an additional relation Eold which is always interpreted
as the edge relation as it was before the update and changes
are existentially quantified. We assume the second possibil-
ity, as we want to stress the unordered nature of an update,
e.g. when an undirected edge {a, b} is inserted to G, we do
not want to use the implicit order induced by the presenta-
tion of the update, but really treat the edge as undirected.
The first approach is mostly used in the Dyn-FO framework
by [20] and [21], whereas the second approach was used for
example in [7].

Handling insert operations is rather simple. Let {a, b}
be the undirected edge that is inserted by the update. If
neither a nor b are reachable from x, no edge is inserted into
Fx, as Fx is supposed to remain connected. If both a and
b are reachable, again no edge is added to Fx as no new
reachability information is introduced. Thus Fx remains

x x x
a

b

u′

u

a) An undirected input graph with
some dedicated node x.

b) The corresponding auxiliary
graph Fx.

c) Deletion of an undirected edge
{a, b}.

x
a

b

u′

u

x
a

b

u′

u

x
a

b

d) Reachability in Fx is definable
after the deletion of (a, b) as it re-
sults from an acyclic graph.

e) The edges of graph Sx which
have to be reversed are marked
bold.

f) The resulting graph F ′x. Note
that F is history dependent, paths
in F ′x may not be shortest paths af-
ter an update.

Figure 1: Visualization of the initialization and deletion step for symmetric reachability

acyclic. If only one of a or b is reachable, (a, b) or (b, a)
is inserted, respectively. Assume that (a, b) is inserted (a
is reachable from x and b is not reachable from x). Then
the vertices of Fx and Fb form disjoint sets and the edges
of Fb are added to Fx. Observe that Fx remains cyclefree
and connected, and y is reachable from x if and only if there
is a path from x to y in Fx. We obtain the newly updated
predicates F ′ and R′ as follows. Note that the predicate F
is history dependent.

F ′xyz :=Fxyz ∨ ∃a∃b((a 6= b ∧ Eab ∧ ¬Eoldab)∧
(Rxxa ∧ ¬Rxxb ∧ ((y = a ∧ z = b) ∨ Fbyz))).

R′xyz :=Rxyz ∨ ∃a∃b((a 6= b ∧ Eab ∧ ¬Eoldab)∧
(Rxxa ∧ ¬Rxxb ∧ ((Rxya ∧Rbbz) ∨Rbyz))).

Handling delete operations is more complicated. Let {a, b}
be the edge deleted by the update. To maintain the predi-
cates with the desired properties we make use of a result of
[8]. In acyclic directed graphs, we can maintain the transi-
tive closure of the graph with no additional auxiliary rela-
tions but the transitive closure itself. Let

Pxyz ≡Rxyz∧

[¬(∃a∃b(a 6= b ∧ Eoldab ∧ ¬Eab ∧ Fxab))∨

(∃a∃b((a 6= b ∧ Eoldab ∧ ¬Eab ∧ Fxab)∧
∃u∃v(Rxyu ∧Rxua ∧ Fxuv ∧ ¬Rxva∧
Rxvz ∧ (v 6= b ∨ u 6= a))))].

Pxyz expresses reachability in Fx after the deletion of an
edge. If neither (a, b) nor (b, a) exists in Fx then reachability
does not change. If on the other hand one of the edges (a, b)
or (b, a) exists in Fx then Pxyz expresses reachability in Fx
after the deletion of (a, b) or (b, a), respectively. See [8] for a
proof that the above formula correctly updates the transitive
closure in the acyclic graph Fx after the deletion of an edge.

We now update the predicate F as follows. All edges
(y, z) from Fx with Pxxy and (y, z) 6= (a, b) remain in Fx.
Furthermore it holds that every vertex which was reachable
in Fx before the deletion of (a, b) is also reachable after the
deletion (via a different path) if the following holds. From b
some vertex u is reachable in Fx before the deletion of (a, b),
which is either reachable also after the deletion of (a, b), or
connected to a vertex v reachable after the deletion of (a, b)
via an edge {u, v} which is not represented by an edge in
Fx. In this case the path from b to u in Fx can be reversed
and then leads from u to b. Possibly the edge (v, u) has to
be inserted. We define a graph Sx containing all edges that
have to be reversed, and the edge (u, v) if it is needed, by
the formula

Sxyz ≡∃a∃b((a 6= b ∧ Eoldab ∧ ¬Eab ∧ Fxab)∧
[(Fxyz ∧ Pxby ∧ ¬Pxxy ∧ ∃u∃v(¬Pxxu∧
Pxyu ∧ Pxxv ∧ Euv)) ∨ (¬Fxyz ∧ ¬Fxzy∧
¬Pxxy ∧ Pxxz ∧ Pxby ∧ Eyz)]).

The edges of Sx are marked bold in Figure 1e). The edges of
Sx form an acyclic graph and adding the reversed edges of Sx
to Fx does not introduce cycles in Fx. There may be paths
of Fx attached to Sx that do not lead to reachable vertices.
These are accessed in another way if Sx is nonempty and

they have to be deleted if Sx is empty.

F ′xyz :=(¬(∃a∃b(a 6= b ∧ Eoldab ∧ ¬Eab)) ∧ Fxyz)∨

∃a∃b(a 6= b ∧ Eoldab ∧ ¬Eab∧
[(Fxyz ∧ ¬Fxab ∧ ¬Fxba)∨
(Fxyz ∧ Pxxy ∧ Pxxz ∧ (y, z) 6= (a, b))∨
(Fxzy ∧ Sxyz)∨
(Fxyz ∧ ¬Pxxy ∧ ¬Pxxz ∧ ∃u∃v(Sxuv)∧
¬Sxyz)]).

R′xyz :=(¬(∃a∃b(a 6= b ∧ Eoldab ∧ ¬Eab)) ∧Rxyz)∨

∃a∃b(a 6= b ∧ Eoldab ∧ ¬Eab∧
[(Rxyz ∧ ¬Fxab ∧ ¬Fxba)∨
(Fxab ∧ Pxyz ∧ (y, z) 6= (a, b))∨
(Fxab ∧ ∃u∃v(Pxxv ∧ Sxuv∧

((Pxyv ∧ Pxzu) ∨ (Pxyu ∧ Pxzy)∨
(Pxyv ∧ ∃w(Pxwu∧
∃t(Fxwt ∧ ¬Sxwt ∧ Pxtz)))∨

(Pxyu ∧ ∃w(Pxwy∧
∃t(Fxwt ∧ ¬Sxwt ∧ Pxtz))))))]).

Finally we can query whether t is reachable from s by the
FO-formula Rsst.

Interpretations. For symmetric reachability we used
IFP-formulae to initialize several auxiliary relations over the
universe of the structure. Updates were handled by a set of
FO-formulae and finally the query answer was obtained by a
single FO-formula. To group the initial formulae and update
formulae we use the concept of logical interpretations.

Definition 2.2. Let L be a logic and σ, τ relational vo-
cabularies. A k-dimensional L(σ, τ)-interpretation is given
by a sequence J of L(σ)-formulae consisting of a domain
formula δ(x), for each relation symbol R ∈ τ (of arity r) a
formula ϕR(x1, . . . , xr), and for each constant symbol c ∈ τ
a formula ϕc(x), where all tuples x, xi have length k. All
formulae may involve parameters. An L(σ, τ)-interpretation
induces a mapping from σ-structures to τ -structures. For a
τ -structure B and a σ-structure A, we say that J interprets
B in A, in short J (A) = B, if there exists a bijective map
h : δA → A, called the coordinate map, such that

• for every relation RB of B and all a1, . . . , ar ∈ δA

A |= ϕR(a1, . . . , ar)⇔ (h(a1), . . . , h(ar)) ∈ RB,

i.e. h−1(RB) = (δA)r ∩ ϕA
R and

• for every constant cB of B and all a ∈ δA

A |= ϕc(a)⇔ h(a) = cB,

i.e. h−1(cB) = δA ∩ ϕA
c .

We call an interpretation simple if it is one-dimensional
and δ(x) is true for all x.We say that an interpretation has
constant domain on a class D of structures if δB1 = δB2 for
all B1,B2 ∈ D which have the same universe.

Each L(σ, τ)-interpretation induces a mapping from L(τ)-
formulae to L(σ) formulae. For a τ -formula ϕ we write
J (ϕ) for the interpreted formula. It holds that that J (A) |=
ϕ⇔ A |= J (ϕ).

Example: Bipartiteness. We use a logical interpretation
to reduce the bipartiteness problem in undirected connected
graphs to the connectivity problem in undirected graphs.
More precisely, we give a first-order interpretation J with
parameters such that for each undirected connected graph
G = (V,E) it holds that G is bipartite if and only if J (G, a, b)
is not connected for all distinct a, b ∈ V . The interpretation
is two-dimensional, i.e. not simple, but has constant domain.

Let G = (V,E) be an undirected connected graph. For
each node v ∈ V create two copies va and vb. For each edge
{u, v} ∈ E we introduce two edges {ua, vb} and {ub, va}.
Then J (G) is not connected if and only if G is bipartite.
This is due to the fact that a graph is bipartite if and only
if it contains no odd cycles. Formally the interpretation is
defined by

• δ(x1, y1, x2, y2, a, b) := (x1 = a ∨ x1 = b) ∧ (x2 = a ∨
x2 = b) ∧ y1 = y1 ∧ y2 = y2,

• ϕE(x1, y1, x2, y2, a, b) := (x1 = a ∧ x2 = b ∧ Ey1y2) ∨
(x1 = b ∧ x2 = a ∧ Ey1y2).

Incremental Evaluation Systems. An Incremental
Evaluation System (IES) for a dynamic problem D(S) con-
sists of a set of logical interpretations and an additional log-
ical sentence ϕ. Given an initial structure A, the IES defines
auxiliary relations over the universe of A by an interpreta-
tion called the initial interpretation. Formally, it defines a
structure B of vocabulary σ = τ ∪̇τ ′, where τ ′ is the aux-
iliary vocabulary. After the initialization, each update in
the operation sequence changes B � τ as defined by the
operation. Internally, it induces a change of B � τ ′ by a
corresponding logical interpretation. Thus the IES defines
a mapping from τ -structures to σ-structures. This mapping
should be a many-one reduction from S to the class S ′ of
σ-structures which is defined by the given sentence ϕ, i.e.
A ∈ S ⇔ B ∈ S ′ ⇔ B |= ϕ.

Given a τ structure A and a τ ′-structure A′ with the same
τ ∩τ ′-reduct (and thus in particular with the same universe)
we write AtB for their joint expansion to a (τ∪τ ′)-structure.

Definition 2.3. Let L1 and L2 be logics. Dyn(L1,L2) is
the class of all dynamic problems D(S), where S is a Boolean
query on τ -structures, for which there exist

• an L2-definable class S ′ of τ ∪ τ ′-structures where τ ′

is disjoint from τ ,

• a simple L1(τ, τ ∪ τ ′)-interpretation J (the initial in-
terpretation),

• simple L2(τ ∪ τ ′, τ ∪ τ ′)-interpretations J insR , J delR ,
J setc for each operation symbol InsertR, DeleteR and
Setc, respectively, (the update interpretations)

such that for all sequences w of operations of D(S) the
following hold:

If |w| = 0 then B0 := J (A) ∈ S ′ ⇔ A ∈ S.
If |w| = i + 1, w = vδ where δ is an update with corre-

sponding update interpretation Jδ and Bi is the result of the
dynamic process of applying v to A, then

Bi+1 := Jδ(w(A) t (Bi � τ
′)) ∈ S ′ ⇔ w(A) ∈ S.

Such a system of interpretations is called an (L1,L2)-IES
for D(S).

To stress the difference between the power of logics on
ordered and unordered structures we use notions from com-
plexity theory whenever we are in the context of ordered
structures. For example we say that equal cardinality is in
Dyn(TC0,AC0) to state that the equal cardinality query al-
lows for IES with an FO+C initialization and FO updates on
ordered structures. On unordered structures we will show
that equal cardinality 6∈ Dyn(L,FO) for any logic L.

We now discuss dynamic reductions which allow us to
show containment of many problems in a particular dynamic
class without constructing IES from scratch. A dynamic re-
duction has the property that if a dynamic problem D2 has
an (L1,L2)-IES and D1 is reducible to D2 via a suitable re-
duction, then D1 has an (L1,L2)-IES as well. The main idea
of a dynamic reduction is the following. Most natural logics
that we consider are closed under composition. Thus, if a
change to an instance A1 of D1 induces a bounded number
of changes to an instance A2 of D2, the update formulae for
D2 can be composed to obtain a single update formula for
D1. We present the details.

Let D1 = D(S1) and D2 = D(S2) be dynamic problems
such that S1 is L1-reducible to S2 via interpretation Jr.
Let D2 ∈ Dyn(L1,L2) with an (L1,L2)-IES with initial in-
terpretation Ji. On input A1 for D1 we can first create a
corresponding instance A2 := Jr(A1) of D2. Assume L1 is
closed under L1-interpretations. Then we can combine the
interpretations Ji and Jr to define all required auxiliary
structures to maintain property S2 on A2.

Each (τ, τ ′)-interpretation J with constant domain in-
duces a mapping hJ from Fin(τ) ×∆can(τ) to a set of op-
erations from ∆can(τ ′) by

hJ (A, δ) ={InsertR(a) : R ∈ τ ′,J (A) 6|= Ra,J (δ(A)) |= Ra}
∪{DeleteR(a) : R ∈ τ ′,J (A) |= Ra,J (δ(A)) 6|= Ra}
∪{Setc(a) : J (A) 6|= c = a,J (δ(A)) |= c = a}.

We call the elements of hJ (A, δ) the updates induced by δ on
A under interpretation J . We say that J has the bounded
expansion property if |hJ (A, δ)| < k for some fixed k ∈ N
and each A ∈ Fin(τ) and each δ ∈ ∆can(τ).

Given an interpretation with the bounded expansion prop-
erty, each update to A1 induces only a constant number of
updates to A2. All induced changes can thus be existen-
tially quantified in a single formula. A difficulty arises in
the unordered setting which is caused by the way in which
the induced updates are accessed. We demonstrate this dif-
ficulty by an example.

Example 2.4. The dynamic algorithm of Patnaik and Im-
merman [20] for symmetric transitive closure maintains a
spanning forest of the given graph as auxiliary relation. This
auxiliary relation depends on the update history. Assume
that a problem D1 reduces to symmetric transitive closure
and the insertion of a tuple induces the insertion of a bounded
number of edges. The induced updates are obtained via ex-
istential quantification and are handled by a first-order for-
mula which looks similar to the following: ∃x1∃y1(Ex1y1 ∧
¬Eoldx1y1 ∧ (ϕupdate(x1, y1) ∧ ∃x2∃y2(. . .))). By the nature
of logics, when evaluating this formula, the updates are per-
formed in parallel in all possible orders. The resulting auxil-
iary structure is thus the union of all auxiliary structures one
obtains when performing those updates in some order. As a
consequence, the forest structure of the auxiliary relation is
possibly not maintained.

We observe that in general the updates hJ (A1, δ) to A2

induced by an update δ to A1 obtained by purely logical
means form a set, and not a sequence of updates. However,
the auxiliary structure built in the IES for D2 may depend
on the order in which the updates occur. If no order on
the updates is definable there is no way to update the aux-
iliary relations correctly. We therefore further require that
an order should be definable on the induced updates.

Let J be an L2-interpretation with the bounded expan-
sion property inducing the mapping hJ . Assume that fur-
thermore there is an L2-formula ϕ< defining for each (A, δ)
a partial order on A which is linear restricted to those el-
ements actually appearing in hJ (A, δ). Let (A, w) be an
instance of D1. We write h<J (w) for the sequence of updates
that is obtained in the natural way by bringing the induced
updates in the lexicographical order induced by <. Note
that h<J (w) may depend on A.

We call a tuple (Jr,J , ϕ<) suitable for D1 and D2 if for
all A

(A, w) ∈ D1 ⇔ (Jr(A), h<J (w)) ∈ D2.

In this case, if L2 is closed under L2-interpretation, we
can react to each update of A with a sequence of updates on
the instance of D2. The updates are obtained by existential
quantification on the changes induced by J and are ordered
as defined by ϕ<.

Finally, the query formula ϕ for D1 is the interpretation
of D2’s query formula.

Definition 2.5. Let L1,L2 be logics and τ, τ ′ vocabular-
ies. Let D1 = D(S1) and D2 = D(S2) be two dynamic prob-
lems. A dynamic (L1,L2)-reduction is a triple (Jr,Ju, ϕ<)
where Jr is an L1(τ, τ ′)-interpretation, Ju is an L2(τ, τ ′)-
interpretation and ϕ< is an L2-formula so that (Jr,Ju, ϕ<)
is suitable for D1 and D2. We write D1 ≤(L1,L2) D2.

For logics L1 and L2 that are closed under L1- and L2-
interpretations, respectively, we obviously have that if D2 ∈
Dyn(L1,L2) and D1 ≤L1,L2 D2, then D1 ∈ Dyn(L1,L2).

Notice that the reduction of bipartitness to symmetric
reachability given above is a dynamic reduction when we
define vertices (a, u) to be smaller than (b, v) for all u, v ∈ V .

Theorem 2.6. The following problems reduce to undirec-
ted reachability and thus are in Dyn(IFP,FO).

1. Bipartiteness,

2. Clique cover-2 (CC-2): Given: An undirected graph
G = (V,E). Problem: Can G be covered by two cliques?

3. Deterministic reachability: Given: A directed graph
G = (V,E) and two vertices s and t. Problem: Is
there a deterministic path from s to t?

4. k-vertex disjoint paths (k-PATHS) for fixed k ∈ N:
Given: An undirected graph G = (V,E) and two desig-
nated vertices s, t. Problem: Are there k vertex disjoint
paths from s to t?

5. k-edge connectivity for fixed k ∈ N. Given: undirected
graph G and two designated vertices s and t. Problem:
are there k edge disjoint paths from s to t?

Proof. For Bipartiteness we use the interpretation from
the bipartiteness example and ask whether for every v ∈ V
there is no path from va to vb.

For Clique cover-2, we simply note that G can be covered
by two cliques if and only if the complement of G is not
bipartite.

Deterministic reachability: Let G′ be the undirected graph
that results from G when removing all edges leaving t, re-
moving all edges leaving a vertex of degree ≥ 2 and then
making the remaining edges undirected. G′ is definable via

ϕi(x, y) =(Exy ∧ x 6= t ∧ ∀z(Exz → z = y))

∨ (Eyx ∧ y 6= t ∧ ∀z(Eyz → z = y)).

When an update occurs, the following changes are induced
by it. Inserting an edge (a, b) either inserts the undirected
edge {a, b} if there is no other edge (a, c), or deletes the edge
{a, c} if it is present. Deleting an edge (a, b) either deletes
{a, b} or inserts an edge {a, c} if (a, c) is now the unique
edge leaving a. Setting t to a different node may induce two
changes. If a unique edge leaves the old node t, this edge is
reinserted. If a unique edge leaves the new t, it is deleted.
We define an order by arbitrary defining elements of an edge
that is inserted as smaller than elements of an edge that is
deleted.
k-vertex disjoint paths: By Menger’s Theorem, for any

graph G = (V,E) and vertices s, t ∈ V , the k-PATHS in-
stance (G, s, t) has a positive answer if and only if for all
v1, . . . , vk−1 ∈ V \{s, t}, the reachability problem (G′, s, t)
has a positive answer, where G′ is the graph obtained by
deleting vertices v1, . . . , vk−1 from G. We maintain nk−1

copies of the graph together with all required auxiliary data
to maintain undirected reachability in a (k−1) + 2-ary rela-
tion keeping copies of the graphs with deleted vertices and
two (k − 1) + 3-ary relations saving the relations F and R
for each copy. Insert and delete operations induce a corre-
sponding operation only if the affected edge is not incident
with one of the deleted vertices. As all graphs are indepen-
dent of each other, the reduction is not bounded first-order
but bounded first-order in each component and can thus be
used. The query formula asks whether for all graphs the
vertex t is reachable from s.
k-edge connectivity: For any graph G and vertices s, t,

the k-edge connectivity instance has a positive answer if
and only if for all k − 1 edges e1, . . . , ek−1 the reachabil-
ity instance G′, s, t has a positive answer, where G′ is the
graph obtained by deleting the edges e1, . . . , ek−1. Since k
is constant, we universally quantify over k − 1 edges and
then check for a path in G′ by composing the formula for
undirected reachability (for a single deletion) k−1 times.

There has been much research on reduction concepts re-
specting dynamic classes. The main difference to the con-
cept appropriate for our setting results from the fact that
reductions in the literature have to deal with ordered classes
only, whereas our reductions have to work in the more gen-
eral, purely logical setting. Patnaik and Immerman [20] con-
sider bounded expansion first-order reductions, that is first-
order interpretations such that each tuple in a relation of the
input structure affects at most a constant number of tuples
in the output structure. This easily generalizes to bounded
expansion L-reductions for any logic L. They further intro-
duce bounded expansion reductions with pre-computation,
which allow a polynomial pre-computation. Our setting is
very similar to that of [21]. The approach in [21] of dealing
with the initial structure with a strong logic first and han-
dling the updates with a simpler logic directly carries over

to the reduction concept. Both settings are restricted to or-
dered structures and thus evade the problem of providing an
order on the updates (there is always the order provided by
the structure). Note that in [15] and [21] the reduction does
not depend on the structure it is working on. Each operation
on the instance of D1 must induce a unique set of operations
on the instance of D2. Thus the reduction of deterministic
reachability to symmetric reachability in Theorem 2.6 is not
a valid reduction in their setting. In [15] Hesse and Immer-
man present complete problems for dynamic ordered classes
in a setting which is different but still closely related to ours.

Dong et. al do not explicitly define a reduction concept.
In [6] they state that generally IES are not scalable, i.e. in
general, IES cannot deal with a fixed bounded number of
updates at the same time. The reason for this is that there
is possibly no definable order on the updates. To overcome
this, they introduce deterministic IES, where the order of
updates is not relevant. We discuss this concept in the next
section.

3. HISTORY INDEPENDENT DYNAMIC
SYSTEMS

An Incremental Evaluation System is called history inde-
pendent (deterministic in [6] and memoryless in [20]) if the
auxiliary relations maintained in the dynamic process are
independent of the order of the updates but depend only
on the structure that results from the updates. The aux-
iliary relations are at all times described by the formulae
that are used to initialize the dynamic process. The refined
notion obtained by separating initial logic and update logic
gives a good insight on the complexity of the auxiliary re-
lations. The main motivation to study history independent
IES is that they allow for a simpler reduction concept and
can deal with any fixed number of updates happening at the
same time. No order has to be definable on the induced
changes of an operation as any order of applying changes
yields the same auxiliary relations.

It was posed as an open question by [6] whether there is
a history independent incremental system with FO-updates
for reachability in undirected graphs or bipartiteness. We
give a positive answer.

Definition 3.1. Let L1 and L2 be logics and let I be an
(L1,L2)-IES for a dynamic problem. Let J be the initial
interpretation of I. The IES is called history independent,
if for all update sequences w = vδ of length i > 0, where δ is
an update with corresponding update interpretation Jδ and
Bi is the result of the dynamic process of applying v to A
we have

Bi+1 = J (w(A)) = Jδ(w(A) t (Bi � τ
′)).

Theorem 3.2. Reachability on symmetric graphs is in his-
tory independent Dyn(IFP,FO).

Proof. Let G = (V,E) be a graph. The IES maintains
shortest paths and ’numbers’ up to the diameter of G. These
numbers are realized by tuples of elements, where a tuple
(x, y) stands for the length of a shortest path between x
and y and it represents ∞ if no path exists. Write |xy| for
(x, y) if it appears in this context. We also maintain equality,
addition and order on the numbers. We use = and < in infix
notation and use + as a function even though it is internally
treated as a relation. The predicate Fuvxy means (u, v) lies

on a shortest path from x to y and we have Fvvvv for all
vertices v.

Initialization. We present the initialization on an empty
graph via a first-order interpretation. Obviously, the above
described relations are IFP-definable when starting with an
arbitrary graph. When starting the dynamic process with an
empty graph, there are only the numbers 0 represented by
tuples (a, a) for all elements a, and ∞ represented by (a, b)
for elements a 6= b. The numerical predicates are initialized
such that the following holds: 0 = 0, ∞ = ∞, 0 < ∞,
0 + 0 = 0, 0 +∞ = ∞, ∞ + 0 = ∞ and ∞ +∞ = ∞. We
thus have

|x1y1| = |x2y2| ⇔ (x1 = y1 ∧ x2 = y2) ∨ (x1 6= y1 ∧ x2 6= y2)

|x1y1| < |x2y2| ⇔ x1 = y1 ∧ x2 6= y2.

|x1y1|+ |x2y2| = |x3y3| ⇔ (x1 = y1 ∧ x2 = y2 ∧ x3 = y3)∨
((x1 6= y1 ∨ x2 6= y2) ∧ x3 6= y3).

Fuvxy ≡ u = v = x = y.

InsertE. Assume that the undirected edge {a, b} is in-
serted into the graph. We describe all necessary updates
that have to be performed by formulae ϕ1, ϕ2 and ϕ3 which
we then compose to the update formula for the predicate F .
For all times and all vertices v we want that Fvvvv holds.
This is guaranteed by ϕ1 = (u = v = x = y).

Inductively, we may assume that |xy| is the length of a
shortest path from x to y. If it holds that |xa|+ 1 + |by| ≥
|xy|, then one does not obtain a shorter path by walking the
new edge {a, b} in direction (a, b). Analogously, if |xb|+ 1 +
|ay| ≥ |xy| it is no shortcut to walk the edge in direction
(b, a). If using neither direction introduces a shortcut, we
keep the path by formula ϕ2. Note that evaluating |xa| +
1+ |by| ≥ |xy| requires that at least one edge (c, d) is already
available to represent the number 1. The newly added edge
(a, b) may represent any number or ∞ at this point.

ϕ2 = (∃c∃d(Eoldcd ∧ (Fuvxy ∧ |xa|+ |cd|+ |by| ≥ |xy|
∧ |xb|+ |cd|+ |ay| ≥ |xy|))).

If on the other hand |xa|+ |by| < |xy|, then |xa|+ 1 + |by| ≤
|xy| and there is a new path of minimal length, possibly
of the same length as an existing path of minimal length.
Old paths of the same length are kept by ϕ2. Observe that
|xa| + |by| < |xy| implies that there are paths from x to
a and from b to y, since ∞ 6< ∞. For the new path, we
concatenate shortest paths from x to a, the edge (a, b) and
shortest paths from b to y. Clearly, paths created that way
are shortest paths, especially no circles are created and only
one of (a, b) or (b, a) is used. The new paths are created by
ϕ3.

ϕ3 = (Fuvxa ∨ (u = a ∧ v = b) ∨ Fuvby) ∧ |xa|+ |by| < |xy|.

Finally we obtain the new predicate F via

F ′uvxy ≡ ϕ1 ∨ ∃a∃b(Eab ∧ ¬Eoldab ∧ (ϕ2 ∨ ϕ3))

Note that quantification in the form ∃a∃b(Eab∧¬Eoldab∧ϕ)
results in interpreting {a, b} once as (a, b) and once as (b, a).

This can be seen as calculating the new shortest in parallel
and then choosing the right direction.

A comment on evaluating sums of numbers is in place.
Numbers are only available up to the length of a longest
shortest path. Thus a sum a1 + . . .+ ak may not exist as a
number and cannot be evaluated. But all such terms appear
only in equations or inequalities of the form a1 + . . .+ ak =
b1 + . . . + bs or a1 + . . . + ak < b1 + . . . + bs and can be
rewritten, e.g.

a+ b > c+ d⇔
(a < c ∧ b > d ∧ ∃e∃f(a+ e = c ∧ d+ f = b ∧ f > e)∨
(a < d ∧ b > c ∧ . . .

To update the arithmetic predicates we have to check whether
a tuple |xy| changes its meaning. From the update formula
for shortest paths above we know that a tuple |xy| either
keeps its value or changes its value to |xa|+ 1 + |by|. We be-
gin with updating the equality predicate. Again we handle
the occuring situations by several subformulae which will be
composed to obtain the new predicate.

We can express 0 = 0 without accessing any predicates by
the formula η1 := (x1 = y1 ∧ x2 = y2). We use the newly
updated predicate F ′ to express ∞ =∞ in formula η2:

η2 = ∀u1∀v1∀u2∀v2(¬(u1 = v1 = x1 = y1)→ ¬F ′u1v1x1y1∧
¬(u2 = v2 = x2 = y2)→ ¬F ′u2v2x2y2).

We use formulae η3 to η6 to replace numbers by their new
meaning if necessary. η3 handles the case that |x1y1| and
|x2y2| keep their value. η4 deals with the case that only
|x1y1| changes its value while |x2y2| keeps its value. η5 is
analogous for the case that only |x2y2| changes its value. η6
deals with the case that both distances change. Note that
if there is no edge present in the graph, all equalities are
described by η1 and η2.

η3 =
∧

i∈{1,2}

|xiyi| ≤ |xia|+ |cd|+ |byi|∧

|xiyi| ≤ |xib|+ |cd|+ |ayi| ∧ |x1y1| = |x2y2|.

η4 =|x1y1| > |x1a|+ |cd|+ |by1|∧
|x2y2| ≤ |x2a|+ |cd|+ |by2|∧
|x2y2| = |x1a|+ |cd|+ |by1|.

η5 =|x2y2| > |x2a|+ |cd|+ |by2|
∧ |x1y1| ≤ |x1a|+ |cd|+ |by1|∧
|x1y1| = |x2a|+ |cd|+ |by2|.

η6 =|x1y1| > |x1a|+ |cd|+ |by1|
∧ |x2y2| > |x2a|+ |cd|+ |by2|∧
|x1a|+ |by1| = |x2a|+ |by2|.

Finally we obtain the update formula for equality as

|x1y1| =′|x2y2| ⇔ η1 ∨ η2 ∨ ∃a∃b(Eab ∧ ¬Eoldab

∧ [∃c∃d(Eoldcd ∧ (η3 ∨ η4 ∨ η5 ∨ η6))])

Order is changed similarly to equality. We have a formula
ψ1 which says 0 < i for all i 6= 0 and a formula ψ2 which

says i <∞ for all i ∈ N.

ψ1 = (x1 = y1 ∧ x2 6= y2).

ψ2 = ∃u1∃v1∀u2∀v2(F ′u1v1x1y1 ∧ ¬F ′u2v2x2y2).

Formula ψ3 deals with the case that {a, b} is inserted to the
empty graph, that is it says |ab| = 1 <∞.

ψ3 = ¬∃c∃d(Eoldcd ∧ (x1 = a ∧ y1 = b ∧ ¬∃u∃vF ′uvx2y2)).

We do not explicitely spell out ψ4 as it is very similar to η3
to η6 above. We combine the formulae to obtain the updated
order predicate.

|x1y1| <′ |x2y2| ⇔ ψ1 ∨ ψ2 ∨ ∃a∃b(Eab ∧ ¬Eoldab ∧ (ψ3 ∨ ψ4)).

Finally we give the update formula for addition. We ex-
press 0 + 0 = 0 with formula ϑ1, ϑ2 says 0 + ∞ = ∞,
∞+ 0 =∞ and ∞+∞ =∞.

ϑ1 = (x1 = y1 ∧ x2 = y2 ∧ x3 = y3).

ϑ2 = ∀u1∀v1∀u3∀v3(¬(u1 = v1 = x1 = y1)→ ¬F ′u1v1x1y1∧
¬(u3 = v3 = x3 = y3)→ ¬F ′u3v3x3y3)∨

∀u2∀v2∀u3∀v3(¬(u2 = v2 = x2 = y2)→ ¬F ′u2v2x2y2∧
¬(u3 = v3 = x3 = y3)→ ¬F ′u3v3x3y3).

Formula ϑ3 deals with the case that no edge was present
when {a, b} was inserted, we have 0 + |ab| = |ab| and |ab|+
0 = |ab|.

ϑ3 = ¬∃c∃d(Eoldcd∧
(x1 = y1 ∧ x2 = a ∧ y2 = b ∧ x3 = a ∧ y3 = b)∨
(x2 = y2 ∧ x1 = a ∧ y1 = b ∧ x3 = a ∧ y3 = b)).

When edges are present, addition is defined by ϑ4 similar as
above by replacing numbers by their new meaning if neces-
sary. The update formula for addition is

|x1y1|+′ |x2y2| =|x3y3| ⇔ ϑ1 ∨ ϑ2∨

∃a∃b(Eab ∧ ¬Eoldab ∧ (ϑ3 ∨ ϑ4)).

DeleteE. Key to handling deletions of edges is the avail-
ability of the arithmetic predicates. With their help we
can determine new shortest paths after the deletion of an
edge. Shortest paths from a vertex x induce a corresponding
acyclic graph Gx defined by (y, z) ∈ Gx ⇔ ∃uFyzxu∧y 6= z,
that is (y, z) is an edge of Gx if it lies on a shortest path from
x to some vertex u. We will need the transitive closure Rx
of Gx for each x as an intermediate relation. Rx is implicit
in F since we have Rxyz ≡ ∃u(Fuyxy∧Fuyxz) which holds
true if z is reachable from y in Gx. As Gx is acyclic for each
x we can express Rx after the deletion of any edge again by
the result of [8].

Maintenance of the auxiliary relations is based on the fol-
lowing combinatorial arguments. For each pair u, v of ver-
tices, if there is a path from u to v in Gx for some x, then this
path is a shortest path from u to v. Note that there may not
exist a path from u to v in Gx for every x even though u and
v are connected in G. When deleting {a, b}, we first delete
(a, b) or (b, a) from Gx for every x using the result of [8].
Assume that (a, b) is deleted. Denote the graph obtained by

deleting (a, b) by G′x. Denote the vertices which are reach-
able from x in G′x by R′x and those which are no longer
reachable by N ′x. All paths remaining in G′x are shortest
paths between the corresponding vertices. Again we have
to find alternative paths if a vertex is still reachable in G
but not in G′x after the deletion of (a, b). The interesting
case is again when b is no longer reachable in Gx after dele-
tion of (a, b). Every vertex which was reachable before the
deletion of (a, b) is also reachable after the deletion if the
following holds. From b a vertex u is reachable in Gx before
the deletion of (a, b), which is either (1) reachable after the
deletion of (a, b) or (2) connected to a vertex v reachable
after the deletion of (a, b) via edge (u, v) which is not in Gx.
The above conditions then spell (1) from b a vertex of R′x is
reachable or (2) from b a vertex w in N ′x is reachable which
is connected to a vertex from R′x via an edge in E.

Assume that after the deletion of (a, b) no path from x to b
exists in G′x, thus new paths have to be defined. Let y ∈ N ′x
and let π be a shortest path from x to y in G. On π there is
a first visit of a vertex w in N ′x. We show that from w the
path runs straight to y without leaving N ′x and in particular
without using edge (a, b) or (b, a). Assume otherwise, that
is, after w there is another visit of a vertex z in R′x. Then π
from x to z is as short as some path from x to z in G′x and
thus π is minimal from x to z without using (a, b). As w is
not reachable after the deletion of (a, b), there is a shorter
path from x to w via (a, b) than π from x to w. Then this
path from x via (a, b) to w and π from w to z is a shorter
path from x to z than π is from x to z, a contradiction to
z ∈ R′x.

Thus a shortest path from x to y is the concatenation of a
minimal path from x to a vertex v ∈ R′x which is connected
to a vertex w ∈ N ′x and a minimal path from this w to y. To
find a new path we want to use the path of minimal length
of all paths of this form. Analogous to the argumentation
above, we show that all paths of this form are valid, that is,
no such path uses (a, b) or (b, a) and thus proposes a shortest
path which no longer exists.

We obtain the following update formula for F . Write
Rxyz as an abbreviation for the predicate obtained by ap-
plying the formula for reachability in acyclic graphs from [8]
to ∃u(Fuyxy ∧ Fuyxz).

F ′uvxy ≡(Fuvxy ∧Rxxy∨
(¬Rxxy ∧ ∃r∃s(Rxxr ∧ ¬Rxxs ∧ Ers∧

(Fuvxr ∨ (u = r ∧ v = s) ∨ Fuvsy)∧
∀r′∀s′(Rxxr′ ∧ ¬Rxxs′ ∧ Er′s′ →
|xr|+ |sy| ≤ |xr′|+ |s′y|)))).

For the arithmetic predicates we observe that we can pro-
ceed exactly as for the insert operations: Determine in FO
whether the length of a path changes and define its new
length as in the update formula for F above as min{|xv| +
1 + |wb| : v ∈ R′x, w ∈ N ′x, Evw} and 0 if no such w exists.
The query formula is ϕ = ∃x∃yFxyst.

We adapt the idea of using pairs of vertices as numbers to
modify the algorithm of Etessami [12] and obtain a history
independent IES with first-order plus counting updates for
dynamic tree isomorphism. Tree isomorphism is defined for
structures of vocabulary (E1, E2, c1, c2), where E1 and E2

are binary and c1, c2 are constants. (A,E1, E2, c1, c2) is a
positive instance of the tree isomorphism problem if the tree

induced by E1 rooted at c1 and the tree induced by E2

rooted at c2, respectively, are isomorphic.

Theorem 3.3. Tree isomorphism is contained in the class
Dyn(IFP+C,FO+C).

Proof. The dynamic algorithm of Etessami [12] uses the
following auxiliary relations which can be initialized with
IFP+C: path(x, y) denoting the reflexive transitive closure
of the edge relation, dist(x, y, d) denoting distances in the
forest, restricted to finite distances. This relation is mod-
ified such that it uses numbers and arithmetic as in our
incremental evaluation system for symmetric reachability.
onpath(x, y, z) means path(x, y) and z is on the unique short-
est path from x to y and T-ISO(x, x′, y, y′) means that the
subtrees rooted at x′ and y′ in the trees rooted at x and
y, respectively, are isomorphic. All auxiliary relations sat-
isfy the above specifications throughout the dynamic process
and are thus history independent.

When the dynamic process starts with an empty structure
or is applied to ordered structures, the need for counting can
be completely eliminated. Etessami uses a further relation
sibling-iso-count to dynamically maintain the count of iso-
morphic siblings. This cannot be done in the unordered
setting, as there may not be enough types of element tu-
ples to represent the required numbers. We will show in the
next section that the above bounds for tree isomorphism are
optimal.

Recall definition 2.5 of a dynamic reduction. We called a
triple (Jr,J , ϕ<) suitable for dynamic problems D1 and D2

if for all A

(A, w) ∈ D1 ⇔ (Jr(A), h<J (w)) ∈ D2,

where h<J (w) denotes the sequence of updates that is ob-
tained by bringing the induced updates in the lexicographi-
cal order < induced by ϕ<. As history independent IES do
not depend on the update order we do no longer require that
an order has to be definable on the updates. A tuple (Jr,J)
is suitable for D1 and D2 if for all A, all update sequences
w and any linear order < on A

(A, w) ∈ D1 ⇔ (Jr(A), h<J (w)) ∈ D2.

Definition 3.4. Let L1,L2 be logics and τ, τ ′ vocabular-
ies. Let D1 = D(S1) and D2 = D(S2) be dynamic prob-
lems. A history independent (L1,L2)-reduction from D1 to
D2 is a tuple (Jr,Ju) of an L1(τ, τ ′)-interpretation Jr and
an L2(τ, τ ′)-interpretation Ju with the bounded expansion
property such that (Jr,Ju) is suitable for D1 and D2. We

write D1 ≤det
(L1,L2)

D2.

Theorem 3.5. Let L1 and L2 be closed under L1- and
L2-interpretations, respectively. Let D2 be in history inde-

pendent Dyn(L1,L2) and D1 ≤det
L1,L2

D2. Then D1 is in
history independent Dyn(L1,L2).

Corollary 3.6. All properties from Theorem 2.6 are in
history independent Dyn(IFP,FO).

4. NON-DEFINABILITY RESULTS FOR DY-
NAMIC PROBLEMS

In the following section we first show that the above aux-
iliary relations used to maintain the transitive closure of

an undirected graph with first-order updates do not suffice
to maintain the transitive closure of a directed graph with
first-order updates. To show this we use a technique which
was already used in [3, 5] to show that the transitive clo-
sure cannot be maintained with help of only the transitive
closure itself and additional unary relations. The idea is to
use the update-formulae of an assumably existing IES on a
graph where all auxiliary relations are already first-order de-
finable, modify this graph by performing definable updates
and obtain as a result of the combined formulae a first-order
formula defining the transitive closure of a graph on which
the transitive closure is known to be undefinable.

We then show that the equal cardinality query is not in
Dyn(L,FO) for any logic L, whatever auxiliary relations are
used. The reason for this is the inability of logics to define
sufficiently many numbers in the initialization step on highly
symmetric structures. Thus no IES can keep track of the
difference between sufficiently large structures. It follows
that tree isomorphism is not in Dyn(L,FO) for any logic L,
as equal cardinality reduces to it via (FO,FO)-reductions.

Theorem 4.1. There is no incremental evaluation sys-
tem with first-order updates for the transitive closure of a
graph using the same auxiliary relations as for the symmetric
transitive closure in Theorem 3.2 together with an arbitrary
number of unary auxiliary relations.

Proof. Assume towards a contradiction that there is an
IES for the transitive closure using the same formulae as
in Theorem 3.2 to initialize its auxiliary relations, together
with k formulae to initialize k additional unary auxiliary
relations. Consider a structure consisting of two large dis-
joint cycles together with two additional elements which
are connected in one direction via an edge, i.e. the struc-
ture G = (V,E) where V = {1, . . . , 2n, 2n + 1, 2n + 2} and
E = {(i, i+ 1) : 1 ≤ i < n, n+ 1 ≤ i < 2n}∪{(n, 1), (2n, n+
1)} ∪ {(2n + 1, 2n + 2)} for sufficiently large n. It follows
from a simple locality argument that reachability between
vertices on the cycles is not first-order definable. We de-
fine via first-order logic the graph G′ with additional edges
{(i, 2n + 1) : 1 ≤ i < 2n} ∪ {(2n + 2, i) : 1 ≤ i < 2n}.
On G′ all auxiliary relations from Theorem 3.2 are first-
order definable, as the maximal distance of two vertices is
three. Also there are only finitely many ways to define a
coloring of the graph by logical means, as there are only 3
isomorphism types of single elements. Thus, there is an FO-
interpretation which initializes all auxiliary relations on G′
as the IFP-initialization for the IES would have done. We
now use the update-interpretation for deletes to delete the
edge (2n+1, 2n+2), which is definable in FO, from G′. From
this, one can easily define the transitive closure of the origi-
nal graph G. Concatinating those first-order formulae yields
a first-order formula which defines the transitive closure of
the vertices on the cycles, a contradiction.

Theorem 4.2. Equal cardinality of unary relations is not
in Dyn(L,FO) for any logic L.

Proof. We consider structures of vocabulary τ = (U1, U2)
and show that we cannot dynamically maintain whether
|U1| = |U2|. Assume there is an IES which uses k auxiliary
relations. Via a dynamic reduction with two parameters we
can pass to an IES with a single auxiliary relation of larger
arity. Without loss of generality we may thus assume that
we have an IES (Ji,J insR ,J delR , ϕq) based on the single aux-
iliary relation R of arity r. The interpretations J insR and

J delR consist of a single formula ϕins and ϕdel, respectively.
We want to show that there are two initial structures on
which the dynamic process proceeds in a very similar way
if the same update sequence is applied to both structures.
The resulting structures are in fact mq-equivalent, where
mq is the quantifier rank of ϕq and thus ϕq agrees on both
structures. But the structures are chosen in a way that they
disagree on the number of elements that need to be inserted
to U2 to satisfy |U1| = |U2| . We thus obtain a contradiction,
proving that no IES for equal cardinality exists.

Let mi be the quantifier rank of ϕins and let m = r +
1 + max{mi,mq}. For a sequence w of updates and a τ -
structure A we write Aw for w(A).

Our first observation is that the atomic type of an element
determines its behavior as long as it was not part of an
update operation. Call the set of elements that were part of
an update operation the accessed domain of a structure.

Claim 4.3. Let τ be a vocabulary that contains unary
predicates only. Let w be a sequence of operations and let
(a1, . . . , ar) ∈ Ar such that a = (ai1 , . . . , ait) are not in
the accessed domain. Let b = (bi1 , . . . , bit) not in the ac-
cessed domain be of the same atomic type as a (w.r.t. the
input relations). Then (a1, . . . , ar) ∈ RAw if and only if
(a1, . . . , ar)[ai1/bi1 , . . . , ait/bit] ∈ RAw .

Proof. It is easily shown via induction on the length of
w that the mapping which swaps aij ∈ a with bij ∈ b is an

automorphism of (Aw, R
Aw).

Thus, the initial auxiliary relation of any structure of
unary signature is characterized by the set of atomic types of
the tuples it contains. Call atpA(RA) := {atp(a) : A |= Ra}
the atomic type of a relation RA. As there are only finitely
many atomic types of tuples, the number of relation types
is finite, too.

We conclude that there is M ∈ N such that there are
two structures A,B with A = B = {1, . . . , 3M}, UA

1 =
{1, . . . , nA}, UB

1 = {1, . . . , nB} for some nA, nB with m <
nA < nB ≤ M , UA

2 = UB
2 = ∅, such that the initial aux-

iliary relations RA and RB have the same type. All sizes
are chosen such that update and query formula cannot dis-
tinguish between the two structures. Intuitively, a formula
of quantifier rank q cannot distinguish between the number
of witnesses of some element type, if there are more than q
witnesses.

Claim 4.4. Let A, B and m be as described above. Let
w be the sequence of insert operations inserting the elements
2M + 1, . . . , 2M + nA into U2 in their natural order. Then
(Aw, R

Aw) and (Bw, R
Bw) are m-equivalent.

Proof. Denote by wi the prefix of length i of w. We
show via induction on i that the identity mapping on U =
{1, . . . , nA,M, M+1, . . . , 3M} is a partial isomorphism from
(Awi , R

Awi) to (Bwi , R
Bwi).

The statement holds for i = 0 as both A and B have more
than m elements of each atomic 1-type, A and B have the
the same initial relation type and by Claim 4.3.

Now assume the statement for some 1 < i < n and el-
ement 2M + i + 1 is inserted into U2. We have to show
that RAwi+1 a ⇔ RBwi+1 a for all a ∈ Ur. Recall that
RAwi+1 and RBwi+1 are defined by ϕins of quantifier-rank
qi. We introduce a new constant c, which is interpreted as

2M + i+1 in both structures and show that (Av, R
Av , cA, a)

and (Bv, R
Bv , cB, a) are qi-equivalent for all a ∈ Ur. This

proves the statement. In the qi-round Ehrenfeucht-Fräıssé
game, the duplicator can exactly copy all moves on U . On
all other parts she can place her pebbles inside U according
to atomic type with respect to the input relations. This is
possible by the choice of the structure sizes (m ≥ qi+r+1).
To see that this is a winning strategy, we may move peb-
bles outside U to elements of the same type with respect
to the input relations by Claim 4.3 without changing the
atomic type of the pebbled elements. We move them such
that we obtain the identity mapping on U , which is a partial
isomorphism by assumption.

The proof of the claim is analogous to the proof in the
induction step of the above statement.

We have thus shown that the dynamic process runs very
similarly on structures of different sizes. To finally show that
the equal cardinality query is not maintainable we choose
two structures A,B as above. Applying the operation w to
both structures yields two mq-equivalent structures. Thus
the dynamic algorithm produces the same answer on both
structures. But as the sizes of UA

1 and UB
1 differ, Aw satisfies

the equal cardinality query and Bw does not.

Corollary 4.5. FO+C 6⊆ Dyn(L,FO) for any logic L.

Corollary 4.6. Tree isomorphism is not in Dyn(L,FO)
for any logic L.

Proof. Equal cardinality reduces to tree isomorphism
via a dynamic (FO,FO)-reduction with parameters a1, a2.
Create two trees of depth 1, where each node v with Uiv is
attached to root ai.

Our notion of a history independent (L,FO)-IES is closely
related to the notion of deterministic FOIES from [6]. If
there is a history independent (L,FO)-IES for a query then
there is a deterministic FOIES for the query. If on the other
hand there is a deterministic FOIES for a query there is a
history independent (L∞,ω,FO)-IES for the query. Thus if
there is no (L,FO)-IES for a query for any logic L, there is
no deterministic FOIES either.

Corollary 4.7. For equal cardinality and for tree iso-
morphism there are no deterministic FOIES.

It was shown by Etessami [12] that an order and arith-
metic can be built on all elements that were part of an up-
date operation. Especially when the dynamic process starts
with the empty structure, order and arithmetic are available
on all relevant parts of the structure. In this case tree iso-
morphism is dynamically maintainable. It was shown in [13]
that FO+TC+C does not suffice to express tree isomorphism
and Corollary 4.6 shows that FO updates do not suffice to
maintain sufficient information in the dynamic setting. Thus
the bounds from Theorem 3.3 on unordered structures are
in a sense optimal.

It is open whether the need for counting quantifiers can be
eliminated completely when starting with the empty struc-
ture or when dealing with ordered structures. In other
words it is open whether ACC0 ⊆ Dyn(C,AC0) or TC0 ⊆
Dyn(C,AC0) for any complexity class C.

5. CONCLUSION AND FUTURE WORK
We adapted the dynamic setting of [21] to work on un-

ordered structures and investigated whether the known re-
sults transfer to this setting. We showed that many of the
known incremental evaluation systems for dynamic problems
can be translated to work in the unordered setting. These
include reachability in symmetric graphs, bipartiteness, k-
vertex disjoint path and more. We even provided history
independent incremental evaluation systems for all of the
above problems. We showed how to modify the algorithm
of [12] to handle tree isomorphism in a history independent
fashion with FO+C-updates after an IFP+C-initialization.
Furthermore we were able to show several lower bounds
based on the restrictions imposed by purely logical initializa-
tion. These include the impossibility of handling the equal
cardinality query and the tree isomorphism query with FO-
updates.

The query that, for its practical relevance, receives most
attention in the literature is the transitive closure of a di-
rected graph. It is widely believed that it is not possible to
maintain this property with FO-updates, yet a proof of this
conjecture remains a major open problem. We believe that,
especially in the context of history independent IES, a first
step towards solving the problem is to better understand the
(logical) complexity of required auxiliary relations. As tran-
sitive closure is expressible in Datalog, it is an interesting
question whether auxiliary relations initialized with Data-
log suffice to maintain it with FO-updates. We conjecture
that they do not and preservation properties for Datalog
may help to establish this result. Other candidate logics
that do not allow the construction of the auxiliary relations
we used to maintain the symmetric transitive closure are
Datalog(6=) and stratified linear Datalog (which is equivalent
to FO+TC). The result of Hesse [14] showed that the tran-
sitive closure is maintainable with TC0-updates on ordered
structures but this result does not translate to the unordered
setting. It is open whether FO+C or even FO+STC-updates
suffice to maintain the transitive closure in the unordered
setting.

Lots of focus has been on the canonical updates which re-
sult in small changes to the considered structures. We think
that it is interesting to consider updates that are induced
by first-order formulae. On the one hand one can consider
formulae which induce updates directly to the structure, i.e.
consider updates that change all tuples with the property
defined by the formula. On the other hand one can perform
canonical updates to one structure and consider the changes
that are induced on a first-order interpreted structure. For
example the transitive closure over a general formula can be
read as the transitive closure over the edge relation of an
interpreted graph. When considering the transitive closure
over a formula which does not have the bounded-expansion
property, as required for dynamic reductions, a single up-
date to the original graph induces many changes on the in-
terpreted graph. An IES cannot quantify all the changes at
once, a fact which can possibly be used to prove that the
transitive closure over arbitrary formulae is not maintain-
able.

6. REFERENCES
[1] David A. Mix Barrington, Neil Immerman, and

Howard Straubing. On uniformity within NC. Journal

of Computer and System Sciences, 41(3):274–306,
1990.

[2] Guozhu Dong, Leonid Libkin, and Limsoon Wong.
Incremental recomputation in local languages.
Information and Computation, 181:2003, 2001.

[3] Guozhu Dong and Jianwen Su. Increment
boundedness and nonrecursive incremental evaluation
of datalog queries. In In LNCS 893: Proceedings of 5th
International Conference on Database Theory, pages
397–410. Springer-Verlag, 1995.

[4] Guozhu Dong and Jianwen Su. Incremental and
decremental evaluation of transitive closure by
first-order queries. Inf. Comput., 120(1):101–106, 1995.

[5] Guozhu Dong and Jianwen Su. Space-bounded FOIES
(extended abstract). In PODS ’95: Proceedings of the
fourteenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages
139–150, New York, NY, USA, 1995. ACM.

[6] Guozhu Dong and Jianwen Su. Deterministic FOIES
are strictly weaker. Annals of Mathematics and
Artificial Intelligence, 19(1-2):127–146, 1997.

[7] Guozhu Dong and Jianwen Su. Arity bounds in
first-order incremental evaluation and definition of
polynomial time database queries. In Journal of
Computer and System Sciences, volume 57, pages
289–308, 1998.

[8] Guozhu Dong, Jianwen Su, and Rodney Topor.
First-order incremental evaluation of datalog queries.
In Annals of Mathematics and Artificial Intelligence,
pages 282–296. Springer-Verlag, 1993.

[9] Guozhu Dong and Louxin Zhang. Separating auxiliary
arity hierarchy of first-order incremental evaluation
using (3k+1)-ary input relations. Technical report,
International Journal of Foundations of Computer
Science, 1997.

[10] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model
Theory. Springer Verlag, 2005.

[11] Erich Grädel et al. Finite Model Theory and its
Applications. Springer-Verlag, 2007.

[12] Kousha Etessami. Dynamic tree isomorphism via
first-order updates to a relational database. In
Proceedings of PODS 98, pages 235–243, 1998.

[13] Kousha Etessami and Neil Immerman. Tree
canonization and transitive closure. In Proceedings of
LICS 95, pages 331–341, 1995.

[14] William Hesse. The dynamic complexity of transitive
closure is in Dyn-TC0. In Proceedings of ICDT 2002,
pages 234–247, 2002.

[15] William Hesse and Neil Immerman. Complete
problems for dynamic complexity classes. In
Proceedings of LICS 2002, pages 313–322, 2002.

[16] Neil Immerman. Languages that capture complexity
classes. SIAM Journal of Computing, 16:760–778,
1987.

[17] Neil Immerman. Expressibility and parallel
complexity. SIAM J. of Comput, 18:625–638, 1989.

[18] Leonid Libkin. Elements of Finite Model Theory.
Springer Verlag, 2004.

[19] Peter B. Miltersen, Jeffresy S. Vitter, Sairam
Subramanian, and Roberto Tamassia. Complexity
models for incremental computation. Theoretical

Computer Science, 130:203–236, 1994.

[20] Sushant Patnaik and Neil Immerman. Dyn-FO: A
parallel, dynamic complexity class. Journal of
Computer and System Sciences, pages 210–221, 1994.

[21] Volker Weber and Thomas Schwentick. Dynamic
complexity theory revisited. In Proceedings of STACS
2005, LNCS 3404, pages 256–268. Springer, 2005.

