
Game Quantification on Automatic Structures

and Hierarchical Model Checking Games ?

 Lukasz Kaiser
kaiser@informatik.rwth-aachen.de

Mathematische Grundlagen der Informatik, RWTH Aachen
Ahornstasse 55, 52074 Aachen, Germany

Abstract. Game quantification is an expressive concept and has been
studied in model theory and descriptive set theory, especially in relation
to infinitary logics. Automatic structures on the other hand appear very
often in computer science, especially in program verification. We extend
first-order logic on structures on words by allowing to use an infinite
string of alternating quantifiers on letters of a word, the game quantifier.
This extended logic is decidable and preserves regularity on automatic
structures, but can be undecidable on other structures even with decid-
able first-order theory. We show that in the presence of game quantifier
any relation that allows to distinguish successors is enough to define all
regular relations and therefore the game quantifier is strictly more ex-
pressive than first-order logic in such cases. Conversely, if there is an
automorphism of atomic relations that swaps some successors then we
prove that it can be extended to any relations definable with game quan-
tifier. After investigating it’s expressiveness, we use game quantification
to introduce a new type of combinatorial games with multiple players
and imperfect information exchanged with respect to a hierarchical con-
straint. It is shown that these games on finite arenas exactly capture
the logic with game quantifier when players alternate their moves but
are undecidable and not necessarily determined in the other case. In this
way we define the first model checking games with finite arenas that can
be used for model checking first-order logic on automatic structures.

1 Introduction

Game quantification, the use of infinite strings of quantifiers Q1x1Q2x2 . . . with
Qi = ∀ or ∃, is an intuitive and expressive concept and has interesting connec-
tions to model theory, infinitary logics and descriptive set theory [10]. A formula
with game quantifiers, e.g.

(∃x1∀y1∃x2∀y2 . . .)R(x1, y1, x2, y2, . . .),

where R is a set of infinite sequences, is normally interpreted using Gale-Stewart
games. In the corresponding game G(∃∀, R) two players alternatively choose

? This research has been partially supported by the European Community Research
Training Network “Games and Automata for Synthesis and Validation” (games)

elements of the structure and the first player wins (and the formula is true) if
the resulting sequence belongs to R.

Traditionally game quantification was investigated on open or closed sets
R, i.e. sets that are defined as infinite disjunctions or conjunctions of finitary
relations, R(x) =

∨

nRn(x1, . . . , xn). In such cases the formulas with alternating
quantifiers can be identified with the monotone open game quantifier G∃ or the
dual closed game quantifier G∀. The duality of these quantifiers (X ∈ G∃ ⇐⇒
X 6∈ G∀) results from the determinacy of Gale-Stewart games for open and closed
sets [7], which was extended by Martin to any Borel set [11].

We are going to introduce game quantification for presentations of auto-
matic structures, i.e. for structures over finite or infinite sequences of letters
chosen from a finite alphabet where each relation R is recognised by a finite
Muller automaton. Automatic structures, for example Presburger arithmetic,
are often used in computer science. They appear in verification problems, have
decidable first-order theory [4] and are actively investigated (see [9, 1] and ref-
erences therein). Automatic relations are Borel, so we can use the duality result
mentioned before, but we look more closely at the games that appear in this
setting. It turns out that we can not only bring the formulas to negation normal
form, but we can as well give a computable procedure to construct the automa-
ton recognising the set defined by any formula with game quantifiers and thus
show that such formulas are decidable.

The expressive power of game quantification is traditionally compared to in-
finitary logics over the structure of elements and is most evident in the formula
that allows to compare order types of two elements with respect to given order-
ings. In our case the alphabet is finite and therefore our reference point will be
first-order logic over finite or infinite sequences of letters, i.e. over the considered
presentation of an automatic structure. It turns out that a formula similar in
some way to the one comparing order types allows us to compare the length
of common prefixes of words. Using this we are able to show that on some au-
tomatic structures game quantification is indeed stronger than first-order logic
and we investigate its expressiveness in more detail. On the other hand, it fol-
lows from the decidability result that the logic with game quantifier collapses to
first-order logic on complete-automatic structures.

To gain deeper insight into definability in the presence of game quantifier on
weaker automatic structures we look for automorphisms of structures that are
invariant for the logic we study. Similar to the action of permutations of ω on
countable models of sentences in infinitary logic studied by invariant descriptive
set theory, we define a family of inductive automorphisms where permutation
of the alphabet is applied on each position separately and show that these are
invariant for the logic with game quantification. This completes the picture of
the dependency between expressibility in logic with game quantification and
possibility to distinguish different successors.

After analysing the logic with game quantifier we define a family of multi-
player Muller games with imperfect information shared in a hierarchical way.
Such games, even when played on a small arenas, can be used to model complex

interactions between players and can be used for model checking. Expressing
the semantic of a logic by means of games has proved fruitful for developing
model checking algorithms [8], especially for µ-calculus which corresponds to
parity games [6]. Additionally, the game semantic is quite intuitive and we use
multi-player Muller games with imperfect information [2], which is interesting
as these types of games have so far not been widely used for model-checking.

We start investigating this class of games by showing that they are not nec-
essarily determined and undecidable if players are not forced to alternate their
moves. On the other hand, when players alternate moves we prove the exact cor-
respondence between the games and the logic with game quantification. More
precisely, the games can be used as model checking games on automatic struc-
tures for first-order logic with game quantifier and at the same time the winning
region can be defined in this logic. It follows that deciding the winner is non-
elementary in this case. Still, we argue that these games can give rise to efficient
algorithms for model checking on complex structures, since recently developed
algorithms for games with semiperfect information [5] could be used in practical
cases.

2 Preliminaries

In this paper we will be working mainly with structures on words, finite or
infinite sequences of letters from a finite alphabet Σ. We denote by Σ∗ the set
of finite words over Σ and by Σω the set of infinite words, Σ≤ω = Σ∗ ∪ Σω.
We normally assume that Σ is fixed and that it contains at least two elements,
in our examples usually Σ = {a, b}, and when we need an element not in the
alphabet we denote it by � 6∈ Σ.

Let us fix the notation used for operations on words. For any sequence or
word w let us denote by w|n the finite word composed of the first n letters of w,
with w|0 = ε, the empty word or sequence, and by w[n] the nth letter or element
of w for n = 1, 2, We say that v v w if v is a prefix of w and in such case we
denote by w − v the word u such that v · u = w. For an infinite word w ∈ Σω

the set of letters that appear infinitely often in this word is denoted by Inf(w).
We sometimes extend all the notations presented here to vectors of words, so for
example if x is a tuple of words then x[n] is a tuple consisting of the nth letter
of each word in x.

2.1 Automatic Structures

We are going to analyse inductive structures modelled over finite and infinite
words, so formally we consider the following structure:

(Σ≤ω, R1, . . . , RK),

where each relation Ri has arity ar(i), so Ri ⊆ (Σ≤ω)ar(i). Sometimes we want
the relations to be recognised by automata and in such cases we will consider

them as ω-languages over the tuple-alphabet extended with � for finite words,
⊗Ri ⊆ ((Σ ∪ {�})ar(i))ω.

To define the relations ⊗Ri we have to compose infinite words over the tuple-
alphabet (Σ ∪ {�})ar(i) from finite and infinite words over Σ. In such case, if
we have a number of words w1 = x1

1x
1
2 . . . and so up to wk = xk

1x
k
2 . . ., then we

denote the composed word by ⊗w =

w1 ⊗ . . .⊗ wk =







x1
1
...
xk

1













x1
2
...
xk

2






. . . ∈ ((Σ ∪ {�})k)ω,

whereas if some wl was finite, wl = xl
1x

l
2 . . . x

l
L, then we prolong it with �

ω, i.e.
xl

L+i = �. This allows us to define ⊗Ri with respect toRi byRi(w1, . . . , wk) ⇐⇒
⊗Ri(w1 ⊗ . . .⊗ wk).

To speak about presentations of ω-automatic structures we will use Muller
automata to recognise ω-regular languages. A (deterministic) Muller automaton
over Γ = Σ ∪ {�} is a tuple A = (Q, δ, q0,F) where Q is a finite set of states,
δ is a state transition function δ : Q× Γ → Q, q0 ∈ Q is the initial state and
F ⊆ P(Q) is the acceptance condition. A run of A on w ∈ Γω is a sequence

ρA(w) = q0, q1, . . . ∈ Qω such that qi = δ(qi−1, w[i]).

The word w is accepted by A if the set of states appearing infinitely often during
the run is in the acceptance condition, also when Inf(ρA(w)) ∈ F , and a language
L ⊆ Γω is ω-regular if there is a Muller automaton A that accepts exactly the
words w ∈ L. A structure is automatic, or actually, as we consider only structures
on words, is a presentation of an automatic structure, if for each relation Ri in
this structure the language ⊗Ri is ω-regular over (Σ ∪ {�})ar(i).

You should note that since we allow both finite and infinite words all our
words when interpreted over Σ∪{�} have the property that if a � appears then
�

ω follows.

2.2 Alternating Automata

We have introduced the standard notion of automata, but we still need to present
alternating Muller automata which are an important tool in our proofs. The in-
tuition behind alternating automata is that, unlike in the deterministic case
when only one run on a given word is possible, we have more possibilities of
transitions from each state for a given letter. Moreover, we do not only want to
accept when there exists an accepting run among all possible ones (nondetermin-
istic automata), or when all possible runs are accepting (universal automata),
but we want to be able to alternate the conditions with respect to states of the
automaton, so to have both existential and universal branching choices.

To define alternating automata we have to consider, for a given set of statesQ,
the set B+(Q) of all positive boolean formulas over Q. By definition B+(Q) is the
set of all boolean formulas built using elements of Q, the junctors ∧ and ∨ and

the constants > (true) and ⊥ (false). We will say that a subset X ⊆ Q satisfies
a formula ϕ ∈ B+(Q) if ϕ is satisfied by the assignment that assigns true to all
elements of X and false to Q \X .

An alternating (Muller) automaton is then a tuple A = (Q, δ, q0,F) where as
before Q is the set of states, q0 is the initial state, F ⊆ P(Q) is the acceptance
condition, but this time δ does not point to a single next state but specifies a
whole boolean condition,

δ : Q× Γ → B+(Q).

Intuitively a correct run of A on a word w is an infinite tree labelled with Q

where the successors of each node form a satisfying set for the boolean condition
related to the state in this node and to the corresponding letter in w.

To capture this intuition formally we will represent runs — infinite trees — as
sets of branches of the tree, so a run R ⊆ Qω. For a run R we define a branching
set after a finite word u as the set of all letters appearing in words prolonging u,

bR(u) = {c ∈ Q : ∃v u · c · v ∈ R}.

In this formalisation R is a correct run of A on the word w when for each u ∈ R

and each prefix u|i the branching set after that prefix satisfies the corresponding
boolean constraint,

bR(u|i) satisfies δ(u[i], w[i]).

We can now define that A accepts a word w if there is a correct non-empty run
R on w starting from q0 such that each branch r ∈ R is accepted, Inf(r) ∈ F .
Of course a language L ⊆ Γω is recognised by an alternating automaton if the
automaton accepts exactly the words w ∈ L.

Alternating automata may seem to be more powerful than deterministic ones
and it is often much easier to express problems in terms of alternating automata
than in terms of deterministic ones, but the following theorem guarantees that
we can always replace an alternating automaton with a deterministic one.

Theorem 1. Every language recognised by an alternating Muller automaton is
ω-regular, i.e. there exists a deterministic Muller automaton that recognises it.

The above theorem can be proved by expressing acceptance of alternating au-
tomata in monadic second-order logic on infinite word (S1S) and then going
back from the logic to automata [3]. However, more effort must be done to see
that the deterministic automaton in the above theorem does not need to be
bigger than double exponential in the size of the alternating one [12].

3 Game Quantifier on Automatic Structures

We want to extend first-order logic to make explicit use of the inductive structure
of the words and therefore let us introduce a, the game quantifier. The meaning
of the formula axy ϕ(x, y) is that ϕ can be satisfied when the arguments are

constructed stepwise by two players, i.e. first the first letter of x, then the first
letter of y given by the second player, another letter of x by the first player and
so on. Formally the play will be infinite so to capture finite words we have to
define it on Γ = Σ ∪ {�} by

axy ϕ(x, y) ⇐⇒ (∃ well-formed f : Γ ∗ × Γ ∗ → Γ)

(∀ well-formed g : Γ ∗ × Γ ∗ → Γ) ϕ(xfg , yfg),

where xfg and yfg are the Σ-words constructed inductively using f and g up to
the first appearance of �,

xfg[n+ 1] = f(xfg|n, yfg|n),

yfg[n+ 1] = g(xfg|n+1, yfg|n),

and well-formedness means that if any of the functions f resp. g outputs � then
the word xfg resp. yfg is considered to be finite and the function must then
continue to output � infinitely, formally h is well-formed when

h(w, u) = � =⇒ (∀w′ w w) (∀u′ w u) h(w′, u′) = �.

Please note that this direct definition coincides with the traditional one that
uses infinite string of quantifiers,

axy ϕ(x, y) ⇐⇒ (∃a1∀b1∃a2∀b2 . . .) ϕ(a1a2 . . . , b1b2 . . .).

Moreover, using our notation, axy ϕ(x) is equivalent to ∃x ϕ(x) as we can always
forget opponent moves and play letters from x or conversely use any g to obtain
the witness x. Similarly axy ϕ(y) is equivalent to ∀y ϕ(y). Thus, we do not need
to consider the standard quantifiers when the game quantifier is present.

On some structures it is possible to encode a pair of words into a single one,
but that is not always the case. Therefore we might sometimes need to use the
game quantifier with more variables:

ax1 . . . xky1 . . . ym ϕ(x, y) ⇐⇒

(∃f : (Γ ∗)k × (Γ ∗)m → Γ k) (∀g : (Γ ∗)k × (Γ ∗)m → Γm) ϕ(xfg, yfg),

where again the functions must be well–formed in each column and

xfg[n+ 1] = f(xfg|n, yfg|n), yfg[n+ 1] = g(xfg|n+1, yfg|n).

As an example of the use of game quantifier let us consider the following
relation R given by the formula:

R(u,w, s, t) := axy (y = u→ x = s) ∧ (y = w → x = t).

We claim, that R means that the common prefix of s and t is longer than the
common prefix of u and w. Denoting by v u r the common prefix of v and r and
by |v| the length of v we can say, that

R(u,w, s, t) ≡ |u u w| < |s u t|

for u 6= w and s 6= t. The way we think about evaluating such formula is by
means of a game played by two players – the Verifier for x and the Falsifier for
y. To see the above equivalence, let us assume that indeed the common prefix of
s and t is longer than the common prefix of u and w. In this case the Falsifier
will have to choose y = u or y = w before the Verifier chooses if x = s or if
x = t, and therefore the Verifier is going to win. In the other case, the Falsifier
can make the formula false as he knows if x = s or if x = t before choosing
whether y = u or y = w.

3.1 Basic Properties of FO+a

The two most important properties of FO+a that interest us are the decidability
of it on ω-automatic structures and the existence of negation normal form, which
semantically corresponds to the determinacy of the underlying games.

To be able to clearly state the existence of negation normal form let us intro-
duce another variation of game quantifier, namely one where it is the Falsifier
who makes the moves first. Formally, let

a
∀xy ϕ(x, y) ⇐⇒ (∃f : Γ ∗ × Γ ∗ → Γ) (∀g : Γ ∗ × Γ ∗ → Γ) ϕ(x∀fg, y

∀
fg),

where again the functions must be well-formed and this time the words are
constructed in reverse order,

y∀fg[n+ 1] = g(x∀fg|n, y
∀
fg|n), x∀fg[n+ 1] = f(x∀fg|n, y

∀
fg|n+1).

If we denote the game quantifier introduced before by a∃ then the intended
relation that leads to negation normal form can be stated as follows:

a
∃xy ϕ(x, y) ≡ ¬a

∀yx ¬ϕ(x, y).

Please note that when the relation of prefixing with a letter is present, the
quantifier a∀ is superfluous and can be eliminated by adding one arbitrary letter,

a
∀xy ϕ(x, y) ⇐⇒ a

∃zy ∃x z = ax ∧ ϕ(x, y).

To verify this equivalence, please note that on the right side the Verifier must
start with an a and later play a strategy that satisfies ϕ, so the same strategy
without the first a can be used on the left side. Conversely, if Verifier’s strategy
on the left side is given then playing an a and later the same strategy is winning
for the right side.

To prove decidability and the existence of negation normal form we actually
need one crucial lemma, namely that if we begin with ω-regular relations then
anything defined in the FO+a logic remains ω-regular. The proof relies on the
fact that, when used on an automaton, the game quantifier indeed constructs a
game and changes the automaton to an alternating one.

Lemma 1. If the relation R(x, y, z) is ω-regular over x⊗y⊗z then the relation
S(z) ⇐⇒ axy R(x, y, z) is ω-regular over ⊗z.

Proof. Let us take the deterministic automaton AR for R over x ⊗ y ⊗ z and
construct an alternating automaton AS for S over ⊗z in the following way. The
set of states, acceptance condition and initial state remain the same and the new
transition relation is defined by

δS(q, z) =
∨

x∈Γ k

∧

y∈Γ l

δR(q, x⊗ y ⊗ z),

where k is the number of elements of x and l is the number of elements of y.
By definition, the semantic of the relation S is

S(z) ⇐⇒ (∃f : (Γ ∗)k×(Γ ∗)l → Γ k)(∀g : (Γ ∗)k×(Γ ∗)l → Γ l) ϕ(xfg, yfg, z).

One can see that the function f in this definition corresponds to the choice of
the letters for x in the boolean formula when selecting the run of the alternating
automaton and that the function g corresponds to the choice of the branch of
the run, as all need to be accepted.

This lemma immediately gives us decidability of FO+a on automatic struc-
tures and also allows us to use determinacy of Muller games for the proof for
game quantifier inversion.

Corollary 1. FO+a is decidable on ω-automatic structures, all relations defin-
able in it are ω-automatic and for a fixed number of quantifier alternations it
has elementary complexity.

Corollary 2. For each FO+a formula ϕ on every automatic structure A

A, z |= a
∃xy ϕ(x, y, z) ⇐⇒ A, z |= ¬a

∀yx ¬ϕ(x, y, z).

The last corollary follows from the determinacy of finitely coloured Muller
games. You should note that because of z the game arena itself might be infinite,
but the number of colours depends only on the size of Muller automaton for ϕ
and is therefore finite. As was already mentioned the determinacy of Muller
games can be derived from a more general result by Martin [11] which can be
used to generalise the corollary to a wider class of structures, namely all where
the relations are Borel sets.

3.2 Expressive Power of Game Quantification

Some automatic structures are known to be complete, meaning that every regular
relation over such structure can be defined in first-order logic. For structures over
finite and infinite words the canonical example of such structure is the binary
tree, T = ({a, b}≤ω, σa, σb,v, el), where σa and σb denote a and b-successors of
a finite word (i.e. σa(u, ua)), v is the prefix relation and el(x, y) means that x
and y have equal length. Each automatic and ω-automatic relation over {a, b}≤ω

can be described by an FO formula over this structure, so since FO+a relations
are automatic by Lemma 1, then FO+a is as strong as FO in such case.

This situation changes when v and el are not given as then FO+a can be
used to define them using just σa and σb and is therefore complete and stronger
than FO.

Fact 1. On the structure ({a, b}≤ω, σa, σb) the logic FO+a can define all regular
relations and is therefore stronger than FO.

Proof. First let us recall a few basic formulas that we are going to use. As
we have already shown in the example we can use the game quantifier to talk
about the length of common prefix of words, i.e. for u 6= w, s 6= t we can say
|su t| < |uuw| and the other variants with ≤,=,≥ and > are expressible using
boolean combinations and argument permutations.

To say that x is a prefix of y we are going to say that no word z 6= x has
longer common prefix with x than y,

x v y ≡ (x = y) ∨ (∀z 6= x) |x u z| ≤ |x u y|.

To define equal length we will again use the |s u t| < |u u w| relation to
define that |x| ≤ |y|. We will say that for any x′ 6= x there is an y′ 6= y that has
common prefix with y not shorter that the common prefix of x′ and x:

|x| ≤ |y| ≡ (∀x′ 6= x) (∃y′ 6= y) |x u x′| ≤ |y u y′|.

We can of course use boolean combinations to define |x| = |y| and in this way
both v and el are defined and thus any regular relation can be defined.

You should note that the above proof does not make any use of the successor
relations to define v and el.

Let us now take a weaker structure, namely ({a, b}≤ω, Sa) where Sa(x, y) is
any relation with the property that for each x ∈ {a, b}∗ it holds Sa(x, xa) but
Sa(x, xb) does not hold. We did not specify how the relation Sa behaves on words
of bigger difference in length, but this can be compensated for using v and el.
Therefore with game quantifier the relation Sa is enough to express successors
in the following way:

|x| = |y| + 1 ≡ |x| < |y| ∧ ∀z |z| < |y| → |z| ≤ |x|,

σa(x) = (y ≡ Sa(x, y) ∧ |y| = |x| + 1), σb(x) = (y ≡ ¬Sa(x, y) ∧ |y| = |x| + 1).

When one considers encoding natural numbers as binary words and analysing
such structure, it is necessary to have a relation EQ that defines the equality
between numbers as opposed to equality over words which might have redundant
zeros, EQ(x, y) ≡ (x = n0k and y = n0l). You can see that the relation EQ,
definable in the natural presentation of numbers, satisfies the constraints that we
put on S0. Therefore the game quantifier is enough to define all regular relations
in the binary presentation of (N,=). This can as well be used to define + in
such presentation so if we add some stronger non-regular relation then model
checking becomes undecidable.

Corollary 3. On the binary presentation of (N,=) the logic FO+a can define
all regular relations and therefore the binary presentations of
(N,=), (N, s), (N, <), (N,+) are complete-automatic for FO+a.

Corollary 4. The logic FO+a is undecidable on the binary presentation of
Skolem arithmetic (N, ·).

3.3 Inductive Automorphisms

After analysing what can be expressed in FO+a we want to look for methods to
establish what relations can not be expressed in this logic. For example one could
ask if aω can be expressed in FO+a without any relations other than equality
of words. We are going to develop a general method to answer such questions
by showing that there is a class of automorphisms of a structure that extend to
all relations definable in FO+a.

First of all please note that not all automorphisms extend to relations defin-
able in FO+a. For example you can take the bijection of Σ≤ω that swaps aω

with bω and leaves other elements untouched. The relation |s u t| < |u u w| is
definable in FO+a just with equality, but you can see that this bijection does
not extend to an automorphism of the set with this relation as

|bω u abω| < |aω u abω| but |aω u abω| > |bω u abω|.

To define the class of inductive automorphisms that do extend to relations
definable in FO+a we are going to restrict the bijections of Σ≤ω only to a special
form.

Definition 1. The bijection π : Σ≤ω → Σ≤ω is inductive when it does not
change the length of the words, |π(u)| = |u| for every word u, and additionally
there exists a family of permutations

{πw}w∈Σ∗ πw : Σ → Σ,

so that for each word u with at least n letters the nth letter of π(u) is given by
the appropriate permutation

π(u)[n] = πu|n−1
(u[n]).

Please note that the inverse automorphism φ−1 of any inductive automorphism
φ is again inductive as inverse permutations {π−1

w } can be used.
It turns out that if we restrict our attention only to an automorphism φ that

is an inductive bijection then the structure can be extended with any FO+a

definable relation and φ will still be an automorphism of the extended structure.

Theorem 2. If φ is an inductive automorphism of a structure (Σ≤ω, R1, . . . , Rk)
and R is a relation definable by an FO+a formula, R(x) ⇐⇒ ϕ(x) for some ϕ ∈
FO+a, then φ is an automorphism of the extended structure (Σ≤ω, R1, . . . , Rk, R).

Proof. Clearly when we proceed by induction on the structure of formulas it
is enough to consider the inductive step for game quantifier, i.e. to show that
if for a formula ϕ it holds that ϕ(x, y, z) ⇐⇒ ϕ(φ(x), φ(y), φ(y)) then for
ψ(z) = axy ϕ(x, y, z) it holds ψ(z) ⇐⇒ ψ(φ(z)) (the converse follows with the
inverse automorphism φ−1).

To show the above let us first define for any strategies f of the Verifier and
g of the Verifier used in axy ϕ(x, y, z) the transposed strategies fφ, gφ in the
following way:

fφ(x, y) = πφ−1(x)h(φ−1(x), φ−1(y)), gφ(x, y) = πφ−1(y)h(φ−1(x), φ−1(y)),

where πw is the permutation for word w associated with φ. You should observe
that when the players play with strategies fφ, gφ then the resulting words are
exactly the images of the words that result from using f and g,

xfφgφ
= φ(xfg), yfφgφ

= φ(yfg).

In this way we can use the winning strategy f for the first player in ψ(z) and
play with fφ in ψ(φ(z)). If the opponent chooses to play g then at the end the
formula ϕ(xfφg, yfφg, φ(z)) will be evaluated, but

ϕ(xfφg, yfφg, φ(z)) ≡ ϕ(φ(xfg
φ−1), φ(yfg

φ−1), φ(z)) ≡ ϕ(xfg
φ−1 , yfg

φ−1
, z),

which is true as f is winning against any strategy, in particular against gφ−1 .
The above theorem gives a general method to investigate definability in

FO+a. For example we can answer the question we stated at the beginning
and say that aω is not definable in FO+a just with equality, because a bijection
of Σ≤ω that swaps the first letter is an inductive bijections and moves aω to
baω. Together with the fact proved in the previous section that a relation dis-
tinguishing successors is enough to define all regular relations in FO+a we get
a detailed picture of what can and what can not be defined in this logic.

4 Muller Games with Information Levels

To define model checking games that capture first-order and game quantification
on automatic structures we need to go beyond two-player perfect information
games and use multi-player games with imperfect information. Therefore these
games will be played by two coalitions, I and II, each consisting of N players,

Π = (1, I), (2, I), . . . , (N, I), (1, II), (2, II), . . . , (N, II),

taking actions described as letters in Σ. The arena of the game is therefore given
by the pairwise disjoint sets of positions belonging to each player V1,I, . . . , VN,I,

V1,II, . . . , VN,II and the function µ defining the moves. Positions of coalition I are
denoted by VI = V1,I∪. . .∪VN,I and of coalition II by VII = V1,II∪. . .∪VN,II with
all positions V = VI ∪ VII. In any position v the player can choose an action a

from Σ and then move to the position µ(v, a) as µ : V ×Σ → V . The objective
of the game is given by a Muller winning condition F .

The (general) Muller game with information levels or hierarchical Muller
game is therefore given by the tuple

(V1,I, . . . , VN,I, V1,II, . . . , VN,II, µ, F ⊆ P(V)).

In such game play actions are the sequence of actions taken by the players
during a play, so formally it is an infinite word α ∈ Σω. The play corresponding
to play actions α and starting in position v0 is an infinite sequence of positions
resulting from taking the moves as described by α,

πα(v0) = v0v1 . . . ⇐⇒ vi = µ(vi−1, α[i]), i = 1, 2,

During the play πα(v0) we encounter a sequence of players that take the moves
and let us denote this sequence by Πα(v0) = p0p1 . . . ⇔ vi ∈ Vpi

.

When we want to play the game each of the 2N players has to decide on a
strategy sp : Σ∗ → Σ. In a game with perfect information we would say that
play actions α are coherent with the strategy sp in a play starting in v0 when
for each move i taken by player p, also vi ∈ Vp, the action taken is given by the
strategy acting on the history of actions, α[i+ 1] = sp(α|i).

But since the players do not have perfect information, we assume additionally
that for each player p there is a function νp that extracts from the history of play
actions the information visible for this player. More precisely νp : (Σ ×Π)∗ →
Σ∗ extracts the information visible to player p from the history of play actions
together with players that took the moves. Therefore play actions α in a play
starting in v0 are coherent with sp when for each i such that vi ∈ Vp it holds

α[i + 1] = sp(νp((a1, p0)(a2, p1) . . . (ai, pi−1))),

where α = a1, a2, . . . and Πα(v0) = p0, p1,
The above definition of views of play history is very general and we will

use only a concrete special case of hierarchical view functions. The hierarchical
information views are defined so that in each coalition the player i is able to
see the moves of players 1, . . . , i in both coalitions, but can not see the moves of
players with numbers j > i. More formally νi,c((a1, p0)(a2, p1) . . .) = ai1 , ai2 , . . .

when the indices ik are precisely those for which pik−1 = (j, d) with j ≤ i.
To define when coalition I wins such a hierarchical game we can not require

from coalition I to put forth their winning strategies before II does (as usual
in such definitions), because as you saw the player with higher numbers have
strictly more information and their advantage would be lost if they disclosed their
strategies too early. Therefore we use the following definition that requires that
strategies are given stepwise, level by level going through the levels of information
visibility.

Definition 2. Coalition I wins the hierarchical game

(V1,I, . . . , VN,I, V1,II, . . . , VN,II, µ, F)

starting from position v0 when the following condition holds. There exists a strat-
egy s1,I for player 1, I such that for each strategy s1,II of player 1, II there exists
a strategy s2,I such that for each strategy s2,II . . . there exists a strategy sN,I

such that for each strategy sN,II the play actions sequence α, starting from v0
and coherent with all strategies s1,I, s1,II, . . . , sN,I, sN,II, results in a play πα(v0)
winning for I, i.e. such that Inf(πα(v0)) ∈ F .

As you can expect, the definition for coalition II is dual, i.e. it says that there
exists a s1,II so that for all s1,I, . . ., the play is not winning, Inf(πα(v0)) 6∈ F .

4.1 Example of a Hierarchical Game

To get some intuition on what kind of behaviour can be captured with hierar-
chical games let us consider the simple example depicted on Figure 1.

A

L F

A

L F

B

L

A B

Fig. 1. Example of a Hierarchical Muller Game.

You can think that this game is played using a coin with two sides, A and
B, and each of the players can choose to flip the coin (F) or leave it as it is (L).
Formally in this game we have 4 players, two in each coalition, the top position
belongs to 2, II and the two bottom positions belong to 1, II. The game proceeds
as follows: first the second player of the coalition II chooses either to flip the coin
or to leave it as it is. Then only the other two players play by either flipping the
coin or leaving it intact. We will say that coalition I wins if the A side is seen
infinitely often in positions where I move in the game, as marked on Figure 1.

To illustrate the importance of the hierarchical information levels let us con-
sider two variants of this game. In the first one, the bottom strongly connected
component belongs to players on the same information levels, i.e. to 1, II and 1, I.
You can see that in this scenario coalition II can win, because first the player
2, II can flip the coin to B and latter the player 1, II can play by always repeating
the last move of player 1, I.

In the other variant let the player for I have more information, i.e. let the
bottom strongly connected component belong to 1, II and 2, I, with V1,I = ∅.
Now coalition I can win because the strategy of player 2, I is given after the
strategy of 1, II is set. Therefore I can assure that the coin will be flipped after
each two moves infinitely often, which guarantees that I holds the coin on A side
infinitely often independent of the first move of 2, II.

4.2 Alternating Moves in Hierachical Games

In general, determining the winner of hierarchical games is undecidable, what
can be proved by reducing the Post correspondence problem. Let us state it as
a theorem (proved in Appendix A).

Theorem 3. The question whether coalition I wins in a general Muller game
with information levels is undecidable.

Moreover, let us show on Figure 2(a) a simple example of a hierarchical game
that is not determined. The positions of coalition I are round, the positions of

coalition II are square and there are two levels of information, the positions on
the upper level are dotted. The component w is winning for coalition I and l is
losing. When you analyse this game you will see that on the lower information
level the player has to predict the move of the opponent to win, i.e. his strategy
has to start with an a exactly if the opponent starts with an a. This of course
leads to a non-determined game as each player can counter the strategy of the
opponent once it is known.

(a)

a b

a b a b

ba a
b a b a

b

w l l w

(b)

a b

a

b a

b

a,b a,b

ba a
b a b a

b

w l l w

Fig. 2. (a) Non-determined General Hierarchical Game, (b) Similar Determined Game.

Both non-determinsm and undecidability can be countered by restricting to
games where players alternate their moves. More precisely let an alternating
game with information levels be such a game, where for each letter a ∈ Σ and
each level i = 1, . . . , N the following alternation conditions hold:

vi ∈ Vi,I =⇒ µ(vi, a) ∈ Vi,II, vi ∈ Vi,II =⇒ µ(vi, a) ∈ V(i modN)+1,I.

To see that alternation of moves really helps you can look at Figure 2(b)
where two positions were added that may seem useless, but that make the game
determined. To convince yourself that in the extended game coalition II can
indeed win, try to take the following strategy of player 1, II. Let him play always
the opposite move to the one that was taken before by player 1, I. For player
2, II take the following strategy — if player 1, I declared that he will play a first
then play b and else play a first. You can check that these strategies are indeed
winning for II, but this is possible only because constructing the strategy for
1, II we knew the first letter played by 1, I.

5 Model Checking with Hierarchical Games

To connect the logic FO+a to the games with information levels let us restrict
our attention only to such games where players alternate their moves in order
of information visibility, as defined above.

In an alternating game every infinite play actions sequence can be divided
into sequences of 2N actions, each taken by a different player,

α = a
1,I
1 a

1,II
1 a

2,I
1 a

2,II
1 . . . a

N,I
1 a

N,II
1 a

1,I
2 . . . a

N,II
2 a

1,I
3

Let the 2N -split of these play actions be the tuple of words played by each of
the players,

split2N (α) = (a1,I
1 a

1,I
2 . . . , {a1,II

i }, . . . , {aN,I
i }, {aN,II

i }).

You should note that, since the set of plays starting from a fixed v0 that are
winning for I is ω-regular, then also the set of corresponding 2N -splits of play
actions is ω-regular. This can be seen by taking only each 2Nth state of the
Muller automaton recognising the plays and making a product with Σ2N to
store the states that were omitted from the path in the original automaton.
For an alternating hierarchical Muller game G let us denote the 2Nary relation
recognising the 2N -split of plays winning for I by

W
G,v0

I (a1, . . . , a2N) ⇔ ∀α (split2N (α) = (a1, . . . , a2N) ⇒ Inf(πα(v0)) ∈ FG).

The definition for coalition II is analogous, just with Inf(πα(v0)) 6∈ FG.
You can now note that the condition that coalition I (resp. II) wins in an al-

ternating hierarchical Muller game can be expressed in FO+a using the relation
W

G,v0

I , which results in the following theorem, proved in Appendix B.

Theorem 4. For any alternating game with information levels G and the rela-
tions WG,v0

I and WG,v0

II defined as above, coalition I (resp. II) wins the game G

starting from v0 exactly if the following formula holds in (Σω,W
G,v0

I):

ax1y1 . . .axNyN W
G,v0

I (x1, y1, . . . , xN , yN).

After we captured winning in alternating games in FO+a let us do the con-
verse and construct a model checking game for a given FO+a formula on an
automatic structure. At first we will restrict ourself to formulas in the form

ϕ = ax1y1ax2y2 . . .axNyN R(x1, y1, . . . , xN , yN)

and just construct a game so that the split of the winning plays will allow us to
use the previous theorem.

The construction can be understood intuitively as prefixing each variable
with all possible letters in the order of information hierarchy and making a step
of the automaton when all variables are prefixed. To define these games precisely
let us take the automaton for R, namely AR = (Q, q0, δ,FR), and construct the

model checking game Gϕ for ϕ in the following way. For each even tuple of letters
c1, d1, c2, d2, . . . , cM , dM , with 0 ≤ M < N , and for every state q ∈ Q, we will
have in our game the position

Rq(c1x1, d1y1, . . . , cMxM , dMyM , xM+1, . . . , yN), (1)

and for each uneven tuple c1, d1, c2, d2, . . . , cM , dM , cM+1, 0 ≤ M < N , the
position

Rq(c1x1, . . . , dMyM , cM+1xM+1, yM+1, . . . , yN). (2)

In each of these positions the next move is made by the player corresponding to
the next variable that is not yet prefixed by a letter, e.g. in position 1 it is the
player M + 1 of coalition I who makes the move for xM+1 and in position 2 it is
the player M + 1 of coalition II. We can now formally define the set of positions
for players on each level i as Vi,I = Q×Σ2(i−1), Vi,II = Q×Σ2i−1.

The moves in Gϕ are defined in an intuitive way — the player chooses a
letter to prefix his variable with, so for 0 ≤M < N

µ(Rq(c1x1, . . . , dMyM , xM+1, . . . , yN), cM+1) =

= Rq(c1x1, . . . , dMyM , cM+1xM+1, yM+1, . . . , yN),

and for 0 ≤M < N − 1

µ(Rq(c1x1, . . . , cM+1xM+1, yM+1, . . . , yN), dM+1) =

= Rq(c1x1, . . . , cM+1xM+1, dM+1yM+1, xM+2, . . . , yN).

The only special case is the final position Rq(c1x1, d1y1, . . . , cNxN , yN). When
the player N, II chooses the final letter dN then it will not be appended, but
instead all the prefixing letters will be removed and the state of the automaton
will be changed (here α = c1d1 . . . cNdN):

µ(Rq(c1x1, d1y1, . . . , cNxN , yN), dN) = Rδ(q,α)(x1, y1, . . . , xN , yN).

The winning condition F in the game is defined to correspond to the accep-
tance condition FR of the automaton for R in such way, that we look only at
the state component of each position.

To see that the game Gϕ is indeed the model checking game for ϕ we can
use Theorem 4 again, just observe that the 2N -split of the winning paths in Gϕ

is exactly the relation R, W
Gϕ,Rq0 (x1,y1,...,xN ,yN)
I = R.

In this way we know how to construct the model checking game for formulas
in simple form. As we have seen, any formula in FO+a can be written in negation
normal form and additionally, by renaming variables, it can be reduced to prenex
normal form. Let us therefore consider now a general formula in the form ϕ =
ax1y1ax2y2 . . .axNyN ψ(x1, y1, . . . , xN , yN), where ψ is in negation normal form
and does not contain quantifiers. Let us construct the game Gϕ inductively with
respect to ψ.

In the case of ψ(x) = R(x) or ψ(x) = ¬R(x) the solution was already pre-
sented, when considering ¬R we just have to complement the acceptance condi-
tion of the automaton for R. Let us show how to construct the game for boolean
connectives, i.e. for ψ1 ∧ ψ2 and for ψ1 ∨ ψ2. We want to adhere to the usual
convention of model checking games and to have only one additional position
for any junctor. The game for ψ1 ◦ ψ2, where ◦ = ∧,∨, is therefore constructed
as follows: we take the two games for ψ1 and ψ2 and we add one more position
on higher level of information that has two possible moves — to the starting
position of ψ1 and to the starting position of ψ2. The new position belongs to
coalition I when ◦ = ∨ and to coalition II when ◦ = ∧ and in both cases the
other coalition does not play on that information level. With the construction
described above we face a problem, as the game is not strictly alternating any
more, but it is not a significant obstacle. An example of a model checking game
and the way to overcome this technical problem can be seen in Appendix C.

To formally prove that the resulting games are indeed model checking games
for formulas with boolean connectives you can just replace the connectives with
a new variable and the formula with one relation where only the first letter of
connective-variables is considered. Then the automata for such relation corre-
sponds to the defined game and Theorem 4 can be used again.

The exact correspondence of alternating hierarchical games and FO+a makes
it possible to use our knowledge about this logic. In particular we can transfer the
results about complexity including the non-elementary lower bound on deciding
first-order logic on automatic structures.

Corollary 5. The question whether coalition I (resp. II) wins in an alternat-
ing Muller game with information levels on a finite arena is decidable, non-
elementary when the number of levels is not fixed and it can be done in 2K-

EXPTIME for K information levels.

The possibility to get negation normal form for FO+a can as well be trans-
lated and gives the proof of determinacy of alternating hierarchical games.

Corollary 6. Alternating Muller games with information levels are determined.

6 Conclusions and Future Work

We described how game quantification can be used on automatic structures and
the resulting logic turned out to be very interesting. It is decidable and the de-
fined relations remain regular, which might be used in the study of presentations
of automatic structures. On the other hand the logic is strictly more expressive
than first-order on some weaker structures. Most notably on the binary tree and
on presentations of natural numbers it is possible to define all regular relations
when game quantification is allowed. The methods that we used, for example in-
ductive automorphisms, might be extended to morphisms between presentations
of the same automatic structure and used to study intrinsic regularity.

On the other hand, it might be interesting to ask what is the expressive power
of FO+a on formulas with just one game quantifier, i.e. axy ϕ(x, y) where ϕ

is quantifier-free. Such formulas may be more expressive than just existential
or universal fragment of first-order logic even on complete-automatic structures
and can be decided with double exponential complexity.

Game quantification made it possible to define an expressive class of model
checking games that we used for checking first-order logic on automatic struc-
tures. These games use multiple players and imperfect information in a novel way
and might be used to derive more efficient algorithms for verification, especially
if the efficient algorithms from [5] can be generalised to hierarchical games.

References

1. V. Barany, Invariants of Automatic Presentations and Semi-Synchronous trans-

ductions, Proceedings of STACS 06, vol. 3884 of Lecture Notes in Computer
Science, pp. 289-300, 2006.

2. J. C. Bradfield, Parity of Imperfection or Fixing Independence, vol. 2803 of Lec-
ture Notes in Computer Science, pp. 72-85, 2003.

3. J. R. Büchi, On Decision Method in Restricted Second Order Arithmetic, Pro-
ceedings of the International Congress on Logic, Methodology and Philosophy of
Science, pp. 1-11, 1962.

4. A. Blumensath, E. Grädel, Finite Presentations of Infinite Structures: Automata

and Interpretations, vol. 37 of Theory of Computing Systems, pp. 641-674, 2004.
5. K. Chatterjee, T. A. Henzinger, Semiperfect-Information Games, Proceedings of

FSTTCS 2005, vol. 3821 of Lecture Notes in Computer Science, pp. 1-18, 2005.
6. A. Emerson, C. Jutla, Tree automata, mu-calculus and determinacy, in Proc. 32nd

IEEE Symp. on Foundations of Computer Science, pp. 368-377, 1991.
7. D. Gale, F.M. Stewart. Infinite Games with Perfect Information, in H. W. Kuhn,

A. W. Tucker eds. Contributions to the Theory of Games, Volume II, pp. 245-266,
Annals of Mathematics Studies, Princeton University Press, 1953.

8. E. Grädel, Model Checking Games, Proceedings of WOLLIC 02, vol. 67 of Elec-
tronic Notes in Theoretical Computer Science, 2002.

9. B. Khoussainov, A. Nerode, Automatic Presentations of Structures, Proceedings
of LCC 94, vol. 960 of Lecture Notes in Computer Science, pp. 367-392, 1995.

10. Ph. G. Kolaitis Game Quantification, in J. Barwise, S. Feferman eds. Model
Theoretic Logics, pp. 365-422, 1985

11. D. Martin, Borel determinacy, Annals of Mathematics (102), pp. 336-371, 1975.
12. S. Miyano, T. Hayashi, Alternating Finite Automata on ω-words, vol. 32 of The-

oretical Computer Science, pp. 321-330, 1984.

A Proof of Undecidability of Hierarchical Muller Games.

Theorem 5. The question whether coalition I wins in a general Muller game
with information levels is undecidable.

Proof. Let us reduce the Post correspondence problem for u = u1, . . . , uK and
v = v1, . . . , vK , where ui, vi ∈ {a, b}∗, to the problem if I wins in the hierarchical
game Gu,v. The possible actions in Gu,v are Σ = {a, b,�, 1, 2, . . . ,K} and they
will roughly correspond to the players choosing letters in words ui, vi, special
delimiter �, and choosing which word to play next.

In constructing Gu,v we are going to use sub-games, such that for a given
word u the sub-game enforces that u is played, else the player that moves loses. It
is easy to construct such sub-game, it has one more position than u has letters
and if the wrong letter is chosen then it leads to a position where the player
looses. There is one outgoing edge in the sub-game and it is the one taken when
the last letter u is played. On Figure 3(a) there is an example sub-game for
u = aba.

Constructing the game Gu,v we start with a position belonging to player 3, II
with two possible (non-losing) moves. In this position the coalition II can decide
if the test will be done for the words u or for the words v. All other positions will
be on lower level of information, so that coalition I will never be able to deduce
in what component the play is taking place.

Each of the two components for u and for v starts with a position of player
2, I where this player chooses if he wants to play some word 1, . . . ,K or the
special symbol �. If the special symbol is chosen, the player 1, I must play the
same symbol and return back to the position, where 2, II chooses a word. When
a word number L is chosen, then in each of the components first the word vL and
then uL is played. But in the u component, it is the player 2, II that must play
vL and 1, I must play uL, and in the component for v it is the other way round,
1, I must play vL. Later the game returns to the position where 2, I chooses a
word. The complete game, using the sub-games for ui and vi, is depicted on
Figure 3(b). The winning condition is as follows: the special symbol � must be
chosen by 2, I infinitely often, and there must also be another L 6= � that is
played infinitely often.

Let us first look at the game and show that if there is a solution for the
Post correspondence problem then I has winning strategies for Gu,v. Indeed, let
i1, i2, . . . , iM be the indices for the solution of the correspondence problem, so
ui1ui2 . . . uiM

= vi1vi2 . . . viM
. Let the player 2, I play so that he chooses first i1,

then i2, and so on up to iM , then the special symbol � and then again i1 and
so on. The player 1, I is going to play the letters from the word ui1ui2 . . . uiM

in turn and then � and then again the letters ui1ui2 . . . uiM
and � and so on.

Please note that it does not matter in which component the play is taking place,
the player 1, I will never play the wrong letter and the player 2, I will choose �

and non-� infinitely often, so coalition I is going to win.
To prove the converse, namely that if there is a winning strategy for I then

the correspondence problem has a solution, you have to observe two facts. First

(a)

a b,�,1,...,K

b

a,�,1,...,K

a

b,�,1,...,K
l

(b)
1 K

�

1 K

�

v1 . . . vK v1 . . . vK

u1 uK u1 uK

Fig. 3. (a)Example sub-game for u = aba, (b) Complete Game Gu,v.

of all, 2, I can never deduce in which component the play is taking place, because
what he can see after each of his moves is the same in both components. Second,
� must be played and can played by 2, I only if up to that point the words
played would have the same length in both components. This is because playing
� makes I loose everywhere except for the special position, � can not be played
in a sub-game for any word.

Formally, let us first fix the only sensible strategy for 2, II, namely that when
the last number played is L and it is the recently played action, then play vL,
and if there were other actions {a, b}∗ taken after the last L then play uL. Please
note that the player 2, II in fact knows in which component the play takes place,
even if the move of 3, II is not visible for him. With this strategy fixed, the
condition that coalition I has a winning strategy for Gu,v means that there
exists a strategy σ1 for player 1, I and a strategy σ2 for player 2, I such that the
play corresponding to these two strategies and the fixed one for 2, II is in the
winning condition independent of the component chosen by 3, II.

Let us first concentrate on the strategy σ2. Since, according to the winning
condition, � can not be played infinitely often and in each component the only
possible answer to � is again �, let us assume without loss of generality that the
first move taken by σ2 is not � and let it be L1. The play after L1 goes through
vL1 and uL1 and let us denote by L2 the next move of 2, I, i.e.

L1 = σ2(ε), L2 = σ2(L1vL1uL1).

Let us continue the play and denote the next moves of I by L2, . . . , LM , up to
the point where he plays a �, more formally

Li+1 = σ2(L1vL1uL1L2 . . . LivLi
uLi

), LM+1 = �.

Since we are able to extract the sequence L1, . . . , LM of moves of 2, I from
his winning strategy, let us now look at the player 1, I. This is the only player on
information level 1, so he sees only his own previous moves and instead of the
strategy σ1 we can say that he plays a word t ∈ {a, b,�}ω such that

t[i] = σ1(t|i−1) for i = 0, 1,

Due to the structure of the game, no � can be played by 1, I before 2, I decides
to play � and then � must be played. Therefore if w is the prefix of t up to the
first �, then we know that w is exactly the word played by 1, I while 2, I played
the moves L1, . . . , LM . But due to the structure of the game, coalition II can
decide if w = uL1 . . . uLM

or if w = vL1 . . . vLM
and w has to be good for both

cases, it must therefore be the solution for the Post correspondence problem.

B Expressing Alternating Hierarchical Games in FO+a

Theorem. For any alternating game with information levels

G = (V1,I, . . . , VN,I, V1,II, . . . , VN,II, µ,F)

and position v0 ∈ V1,I, coalition I wins G starting from v0 when

ϕI = ax1y1 . . .axNyN W
G,v0

I (x1, y1, . . . , xN , yN)

holds, and coalition II wins G starting from v0 when

ϕII = a
∀y1x1 . . .a

∀yNxN W
G,v0

II (x1, y1, . . . , xN , yN)

holds, where the relations WG,v0

I and WG,v0

II are defined as

W
G,v0

I (a1, . . . , a2N) ⇔ ∀α (split2N (α) = (a1, . . . , a2N) ⇒ Inf(πα(v0)) ∈ FG),

W
G,v0

II (a1, . . . , a2N) ⇔ ∀α (split2N (α) = (a1, . . . , a2N) ⇒ Inf(πα(v0)) 6∈ FG).

Proof. When you read the definition of when a coalition i wins a game with
information levels you can see, that it has similar semantic structure to the
formula ϕi. To fix the notation, let us read the definition, which says that there
is a strategy σ1 for player on level 1 of coalition i so that for any counter-strategy
ρ1 there exists a strategy σ2 and so on up to σN so that for all ρN the resulting
play must be good for coalition i. On the other hand, the formula ϕi, according
to the definition of a, says that there is a function f1 so that for all functions

g1 there is a function f2 and so on up to a function fN so that for all gN if you
construct the words according to f and g, then they form a 2N -split of a play
that is good for coalition i.

As the final condition in both cases above is equivalent, due to the definition
of WG,v0

i , the only problem is to show how to relate the functions fi and the
strategies σi. Here the alternation of the game plays a crucial role, as we are
going to rely on the fact, that it is always known which player takes actions
where. Therefore, when a function f is given we can construct a strategy σf

by looking only at the moves taken by by the players on the current level of
information and applying f to them. Conversely, when a strategy σ on level L is
given, you can compute the function fσ by collecting every action the strategy
σ has taken as the first argument and then collecting every action the opponent
on level L has taken as the second argument. Even though we are not explicitly
writing it here, you should be aware that since in an alternating game coalition I
makes moves before coalition II, then in case if i = I the first argument will be as
long as the second, whereas in case of i = II it will be longer. That corresponds
exactly to the use of a∀ quantifiers in the formula for coalition II.

You can see that the correspondence between functions in the formula and
strategies in the game that we fixed is injective, i.e. if f 6= g then σf 6= σg.
Therefore if coalition i wins the game G then indeed the formula ϕi must be
true with fk = fσk

, because else you could take the functions gl and construct
the counter-strategies ρl = σgl

.
On the other hand, even if the correspondence is not formally bijective, you

should note that once all functions fi, gi with i < k are given then during the
construction of the strategy σfk

for function fk the complete history is known.
Therefore if we had some counter-strategy ρl then the function gl = fρl

would
also disprove the formula ϕi.

C Example of Model Checking Game

To illustrate the construction of model checking games let us look at a simple
formula ∃x (R1(x) ∧ R2(x)) with R1 = {aω} and R2 = {a, b}ω\{aω}. You can
see that both the automaton for R1 and the one for R2 has two states and the
transition function is identical too — on any b the automata go from q0 to q1
and stay there infinitely. Just the acceptance conditions differ, with F1 = {{q0}}
and F2 = {{q1}}.

On Figure 4(a) you can see the game for this formula, with dumb moves
for the second player, as ∃x ϕ(x) ≡ axy ϕ(x). You should remember that this
is actually a 4-player game and the top position belongs to player 2, II. Since
the formula is false, coalition II wins this game, because for I to win the player
1, I would have to present a strategy to visit both of the double-circled vertices
infinitely often without knowing in which branch he is, and that is impossible.

To see that the broken alternation is not a problem, let us formally say that
the game for ψ1 ◦ ψ2 is not like the one depicted on Figure 4(a), but rather
like the one depicted on Figure 4(b), where dumb moves are added to make the

(a)

R
q0
1

(x) ∧ R
q0
2

(x)

R
q0
1 (x)

a b

R
q0
2 (x)

b a

R
q1
1 (x)

a,b

R
q1
2 (x)

a,b

(b)

R
q0
1

(x) ∧ R
q0
2

(x)

R
q0
1

(x)

a
b

R
q0
2

(x)

b
a

R
q1
1 (x)

a,b

R
q1
2 (x)

a,b

Fig. 4. (a) Game for ∃x (R1(x) ∧ R2(x)), (b) Equivalent Alternating Game.

game alternating. It is clear that winning strategies in these two games can be
transferred as in each move on each level of visibility the players know how many
moves on the other levels were made.

