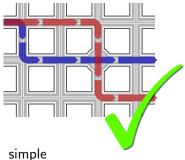
Semiring Provenance for Büchi Games: Strategy Analysis with Absorptive Polynomials

Erich Grädel, Niels Lücking, Matthias Naaf

September 20, GandALF 2021

Traveling in Manhattan with minimal effort

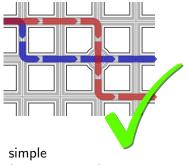
Traveling in Manhattan with minimal effort



(always go straight)

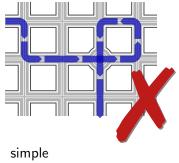
not positional (no unique direction at roundabout)

Traveling in Manhattan with minimal effort



(always go straight)

not positional (no unique direction at roundabout)

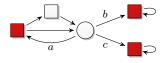


(always go straight)

not minimal effort (the loop is redundant)

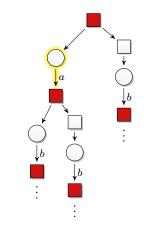
Winning Büchi games with minimal effort

Büchi Games



- infinite duration
- \bigcirc = Player 0 (we) \square = Player 1 (opponent)
- we win an infinite play if target nodes occur infinitely often
- positional determinacy

Strategies as Trees



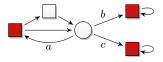
Strategies with minimal effort

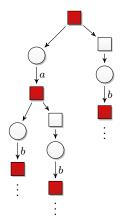
Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away"

Antoine de Saint-Exupéry

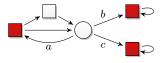
Idea

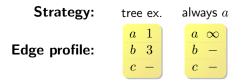
- positional = minimize the set of edges
- "Manhattan" = minimize the multi-set of edges

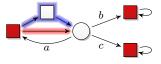


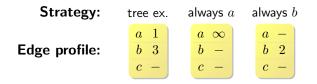


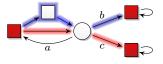
M. Naaf (RWTH Aachen) Semiring Provenance for Strategy Analysis in Büchi Games

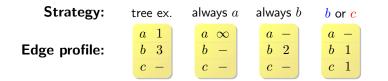


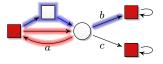


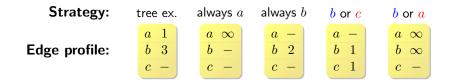


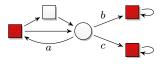


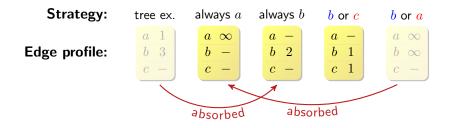






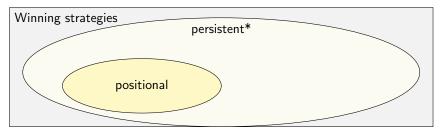






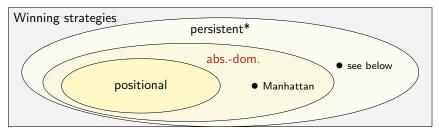
The remaining strategies are absorption-dominant ("Manhattan").

Relation to other Strategies



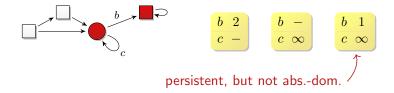
*persistent = positional within each play

Relation to other Strategies



*persistent = positional within each play

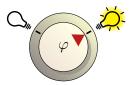
Counterexample:



Chapter II

Semiring Provenance

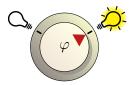
Semiring Semantics with Lightbulbs



Boolean semantics

Semiring semantics

Semiring Semantics with Lightbulbs



Boolean semantics

Semiring semantics

Semiring provenance

$$v \bigvee \pi \llbracket \varphi_{\mathsf{win}}(v) \rrbracket = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

Semirings

Commutative Semiring

 $(K, +, \cdot, 0, 1)$ such that (K, +, 0) and $(K, \cdot, 1)$ are commutative monoids, \cdot distributes over +, $0 \neq 1$ and $0 \cdot a = 0$.

$$\begin{split} & \mathbb{B} = (\{0,1\}, \lor, \land, 0, 1) & \widehat{=} \text{ Boolean semantics} \\ & \mathbb{N} = (\mathbb{N}, +, \cdot, 0, 1) & \text{count proofs, bag semantics} \\ & \mathbb{T} = (\mathbb{R}^{\infty}_{+}, \min, +, \infty, 0) & \text{cost computation} \\ & \mathbb{A} = (\{\mathsf{P} < \mathsf{C} < \mathsf{S} < \mathsf{T} < 0\}, \min, \max, 0, \mathsf{P}) & \text{access levels} \\ \end{split}$$

Semirings

Commutative Semiring

 $(K, +, \cdot, 0, 1)$ such that (K, +, 0) and $(K, \cdot, 1)$ are commutative monoids, \cdot distributes over +, $0 \neq 1$ and $0 \cdot a = 0$.

Semiring Semantics of FO

Assumptions: finite universe A, relational signature τ .

► $\operatorname{Lit}_A(\tau) \coloneqq \operatorname{Atoms}_A(\tau) \cup \operatorname{NegAtoms}_A(\tau) \cup \{a \stackrel{\neq}{=} b \mid a, b \in A\}.$

K-interpretation

 $\pi: \operatorname{Lit}_A(\tau) \to K$ mapping (in)equalities to their truth values 0 or 1, such that precisely one of $\pi(R\bar{a})$ and $\pi(\neg R\bar{a})$ is 0.

Semiring Semantics of FO

Assumptions: finite universe A, relational signature τ .

► $\operatorname{Lit}_A(\tau) \coloneqq \operatorname{Atoms}_A(\tau) \cup \operatorname{NegAtoms}_A(\tau) \cup \{a \stackrel{\neq}{=} b \mid a, b \in A\}.$

K-interpretation

 $\pi: \operatorname{Lit}_A(\tau) \to K$ mapping (in)equalities to their truth values 0 or 1, such that precisely one of $\pi(R\bar{a})$ and $\pi(\neg R\bar{a})$ is 0.

FO-semantics

$$\begin{split} &\pi[\![\varphi \lor \psi]\!] = \pi[\![\varphi]\!] + \pi[\![\psi]\!] \\ &\pi[\![\exists x \,\varphi(x)]\!] = \sum_{a \in A} \pi[\![\varphi(a)]\!] \\ &\pi[\![\neg\varphi]\!] = \pi[\![\mathsf{nnf}(\neg\varphi)]\!] \end{split}$$

$$\begin{aligned} \pi \llbracket \varphi \wedge \psi \rrbracket &= \pi \llbracket \varphi \rrbracket \cdot \pi \llbracket \psi \rrbracket \\ \pi \llbracket \forall x \, \varphi(x) \rrbracket &= \prod_{a \in A} \pi \llbracket \varphi(a) \rrbracket \end{aligned}$$

Semiring Semantics of LFP

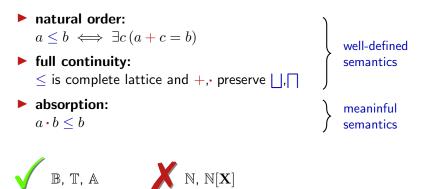
To express winning regions in games, we need fixed-point logic.

Q: Can semiring semantics be generalized from FO to LFP?

Semiring Semantics of LFP

To express winning regions in games, we need fixed-point logic.

- Q: Can semiring semantics be generalized from FO to LFP?
- A: Yes, with some assumptions (Dannert, Grädel, N., Tannen, CSL'21)



Absorptive Polynomials

Modify $\mathbb{N}[\mathbf{X}]$ by

dropping coefficients,

$$2X^2Y + XY^2 + 5X^2 + 3Z^{10}$$

Absorptive Polynomials

Modify $\mathbb{N}[\mathbf{X}]$ by

- dropping coefficients,
- absorption among monomials (by comparing exponents),

$$2X^2Y + XY^2 + 5X^2 + 3Z^{10}$$

Absorptive Polynomials

Modify $\mathbb{N}[\mathbf{X}]$ by

- dropping coefficients,
- absorption among monomials (by comparing exponents),
- \blacktriangleright allowing ∞ as exponent.

$$2X^2Y + XY^2 + 5X^2 + 3Z^{\infty}$$

Absorptive polynomials $\mathbb{S}^\infty[\mathbf{X}]$ are

- always finite (Dickson's lemma),
- the most general absorptive, fully-continuous semiring.

Chapter III

Case Study: Strategy Analysis

Case Study

Objective

Apply semiring semantics of LFP to strategy analysis in infinite games

Why Büchi games?

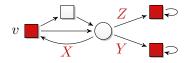
simplicity, relevance, ...

non-trivial winning condition for infinite plays

Which formula and semiring?

- winning region formula: $\varphi_{win}(v) = gfp \dots lfp \dots$
- \blacktriangleright absorptive polynomials $\mathbb{S}^\infty[\mathbf{X}]$ to track edges

Case Study – Overview



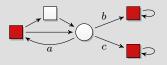
edge-tracking $\mathbb{S}^{\infty}[\mathbf{X}]$ -interpretation π

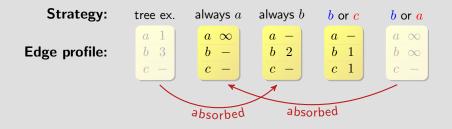
$$\begin{split} \varphi_{\mathsf{win}}(x) &\coloneqq \left[\mathsf{gfp} \, Yy. \, \left[\mathsf{lfp} \, Zz. \, \vartheta(Y, Z, z) \right](y) \right](x) \quad \mathsf{where} \\ \vartheta(Y, Z, z) &\coloneqq \left(Fz \ \land \ \left((V_0 z \land \exists u(\underline{Ezu} \land Yu)) \lor (V_1 z \land \forall u(\underline{Ezu} \to Yu))) \right) \\ &\lor \left(\neg Fz \ \land \ \left((V_0 z \land \exists u(\underline{Ezu} \land Zu)) \lor (V_1 z \land \forall u(\underline{Ezu} \to Zu))) \right) \end{split}$$

$$\pi\llbracket\varphi_{\mathsf{win}}(v)\rrbracket = X^{\infty} + Y^2 + Z^2 + YZ$$

M. Naaf (RWTH Aachen) Semiring Provenance for Strategy Analysis in Büchi Games

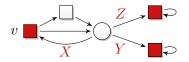
Old Memories





The remaining strategies are absorption-dominant ("Manhattan").

Sum-of-Strategies Theorem



$$\pi[\![\varphi_{\mathsf{win}}(v)]\!] = X^\infty + Y^2 + Z^2 + YZ$$

Theorem

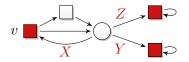
For K absorptive and fully continuous, π edge-tracking:

$$\pi \llbracket \varphi_{\mathsf{win}}(v) \rrbracket = \sum \left\{ \pi \llbracket \mathcal{S} \rrbracket_{\uparrow} \right\}$$

S is an absorption-dominant winning strategy from v

product of $\pi(Evw)$ for all edges in the strategy tree (e.g. minimal access level of S, total cost, ...)

Results on Strategy Analysis



$$\pi[\![\varphi_{\mathsf{win}}(v)]\!] = X^\infty + Y^2 + Z^2 + YZ$$

Corollary

From the polynomial $\pi[\![\varphi_{win}(v)]\!]$ in $\mathbb{S}^{\infty}[\mathbf{X}]$ we can derive:

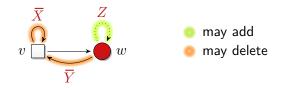
- whether Player 0 wins
- edge profiles of all absorption-dominant winning strategies
- number and shape of all positional winning strategies
- whether Player 0 can still win if we delete edges
- (how often an edge can occur in a play of a strategy)

Application: Minimal Repairs

Task: Add or delete edges so that Player 0 wins

Application: Minimal Repairs

Task: Add or delete edges so that Player 0 wins



Solution: Use $\mathbb{S}^{\infty}[\mathbf{X}, \overline{\mathbf{X}}]$, get $\pi[\![\varphi_{\mathsf{win}}(v)]\!] = \overline{X}Z^{\infty} + \overline{X}^{\infty}Y^{\infty}$ delete X, add Z delete X

Proposition: All minimal repairs occur as monomials (and all monomials represent repairs)

M. Naaf (RWTH Aachen) Semiring Provenance for Strategy Analysis in Büchi Games

Further Remarks

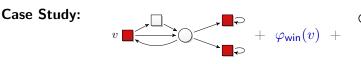
Limitation: Cost computation in $\ensuremath{\mathbb{T}}$

- Reasonable cost measure for a strategy? "Unlocking fees"
- Problem: \[\mathcal{\[Theta\]}\] is product over all edges (pay multiples times, pay for all plays at once)
- Workaround: Use polynomial (expensive)

Complexity

- $\blacktriangleright~\mathbb{S}^\infty[\mathbf{X}]:$ polynomials can (and will) become exponentially large
- Computing $\pi \llbracket \varphi_{win}(v) \rrbracket$: polynomially many semiring operations

Summary



Results

- $\pi \llbracket \varphi_{win}(v) \rrbracket$ = sum of winning strategies
- Absorptive polynomials: detailed information on absorption-dominant winning strategies
- Extensions: track winning region, parity games, ...

Absorption-dominant strategies

- minimize multi-set of edges
- ▶ positional \subsetneq abs.-dom. \subsetneq persistent

